Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 4 | // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_BASIC_PRECONDITIONERS_H |
| 11 | #define EIGEN_BASIC_PRECONDITIONERS_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | /** \ingroup IterativeLinearSolvers_Module |
| 16 | * \brief A preconditioner based on the digonal entries |
| 17 | * |
| 18 | * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix. |
| 19 | * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 20 | \code |
| 21 | A.diagonal().asDiagonal() . x = b |
| 22 | \endcode |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 23 | * |
| 24 | * \tparam _Scalar the type of the scalar. |
| 25 | * |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 26 | * \implsparsesolverconcept |
| 27 | * |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 28 | * This preconditioner is suitable for both selfadjoint and general problems. |
| 29 | * The diagonal entries are pre-inverted and stored into a dense vector. |
| 30 | * |
| 31 | * \note A variant that has yet to be implemented would attempt to preserve the norm of each column. |
| 32 | * |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 33 | * \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 34 | */ |
| 35 | template <typename _Scalar> |
| 36 | class DiagonalPreconditioner |
| 37 | { |
| 38 | typedef _Scalar Scalar; |
| 39 | typedef Matrix<Scalar,Dynamic,1> Vector; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 40 | public: |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 41 | typedef typename Vector::StorageIndex StorageIndex; |
| 42 | enum { |
| 43 | ColsAtCompileTime = Dynamic, |
| 44 | MaxColsAtCompileTime = Dynamic |
| 45 | }; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 46 | |
| 47 | DiagonalPreconditioner() : m_isInitialized(false) {} |
| 48 | |
| 49 | template<typename MatType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 50 | explicit DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols()) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 51 | { |
| 52 | compute(mat); |
| 53 | } |
| 54 | |
| 55 | Index rows() const { return m_invdiag.size(); } |
| 56 | Index cols() const { return m_invdiag.size(); } |
| 57 | |
| 58 | template<typename MatType> |
| 59 | DiagonalPreconditioner& analyzePattern(const MatType& ) |
| 60 | { |
| 61 | return *this; |
| 62 | } |
| 63 | |
| 64 | template<typename MatType> |
| 65 | DiagonalPreconditioner& factorize(const MatType& mat) |
| 66 | { |
| 67 | m_invdiag.resize(mat.cols()); |
| 68 | for(int j=0; j<mat.outerSize(); ++j) |
| 69 | { |
| 70 | typename MatType::InnerIterator it(mat,j); |
| 71 | while(it && it.index()!=j) ++it; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 72 | if(it && it.index()==j && it.value()!=Scalar(0)) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 73 | m_invdiag(j) = Scalar(1)/it.value(); |
| 74 | else |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 75 | m_invdiag(j) = Scalar(1); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 76 | } |
| 77 | m_isInitialized = true; |
| 78 | return *this; |
| 79 | } |
| 80 | |
| 81 | template<typename MatType> |
| 82 | DiagonalPreconditioner& compute(const MatType& mat) |
| 83 | { |
| 84 | return factorize(mat); |
| 85 | } |
| 86 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 87 | /** \internal */ |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 88 | template<typename Rhs, typename Dest> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 89 | void _solve_impl(const Rhs& b, Dest& x) const |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 90 | { |
| 91 | x = m_invdiag.array() * b.array() ; |
| 92 | } |
| 93 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 94 | template<typename Rhs> inline const Solve<DiagonalPreconditioner, Rhs> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 95 | solve(const MatrixBase<Rhs>& b) const |
| 96 | { |
| 97 | eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized."); |
| 98 | eigen_assert(m_invdiag.size()==b.rows() |
| 99 | && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b"); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 100 | return Solve<DiagonalPreconditioner, Rhs>(*this, b.derived()); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 101 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 102 | |
| 103 | ComputationInfo info() { return Success; } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 104 | |
| 105 | protected: |
| 106 | Vector m_invdiag; |
| 107 | bool m_isInitialized; |
| 108 | }; |
| 109 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 110 | /** \ingroup IterativeLinearSolvers_Module |
| 111 | * \brief Jacobi preconditioner for LeastSquaresConjugateGradient |
| 112 | * |
| 113 | * This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix. |
| 114 | * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: |
| 115 | \code |
| 116 | (A.adjoint() * A).diagonal().asDiagonal() * x = b |
| 117 | \endcode |
| 118 | * |
| 119 | * \tparam _Scalar the type of the scalar. |
| 120 | * |
| 121 | * \implsparsesolverconcept |
| 122 | * |
| 123 | * The diagonal entries are pre-inverted and stored into a dense vector. |
| 124 | * |
| 125 | * \sa class LeastSquaresConjugateGradient, class DiagonalPreconditioner |
| 126 | */ |
| 127 | template <typename _Scalar> |
| 128 | class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<_Scalar> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 129 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 130 | typedef _Scalar Scalar; |
| 131 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 132 | typedef DiagonalPreconditioner<_Scalar> Base; |
| 133 | using Base::m_invdiag; |
| 134 | public: |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 135 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 136 | LeastSquareDiagonalPreconditioner() : Base() {} |
| 137 | |
| 138 | template<typename MatType> |
| 139 | explicit LeastSquareDiagonalPreconditioner(const MatType& mat) : Base() |
| 140 | { |
| 141 | compute(mat); |
| 142 | } |
| 143 | |
| 144 | template<typename MatType> |
| 145 | LeastSquareDiagonalPreconditioner& analyzePattern(const MatType& ) |
| 146 | { |
| 147 | return *this; |
| 148 | } |
| 149 | |
| 150 | template<typename MatType> |
| 151 | LeastSquareDiagonalPreconditioner& factorize(const MatType& mat) |
| 152 | { |
| 153 | // Compute the inverse squared-norm of each column of mat |
| 154 | m_invdiag.resize(mat.cols()); |
| 155 | if(MatType::IsRowMajor) |
| 156 | { |
| 157 | m_invdiag.setZero(); |
| 158 | for(Index j=0; j<mat.outerSize(); ++j) |
| 159 | { |
| 160 | for(typename MatType::InnerIterator it(mat,j); it; ++it) |
| 161 | m_invdiag(it.index()) += numext::abs2(it.value()); |
| 162 | } |
| 163 | for(Index j=0; j<mat.cols(); ++j) |
| 164 | if(numext::real(m_invdiag(j))>RealScalar(0)) |
| 165 | m_invdiag(j) = RealScalar(1)/numext::real(m_invdiag(j)); |
| 166 | } |
| 167 | else |
| 168 | { |
| 169 | for(Index j=0; j<mat.outerSize(); ++j) |
| 170 | { |
| 171 | RealScalar sum = mat.col(j).squaredNorm(); |
| 172 | if(sum>RealScalar(0)) |
| 173 | m_invdiag(j) = RealScalar(1)/sum; |
| 174 | else |
| 175 | m_invdiag(j) = RealScalar(1); |
| 176 | } |
| 177 | } |
| 178 | Base::m_isInitialized = true; |
| 179 | return *this; |
| 180 | } |
| 181 | |
| 182 | template<typename MatType> |
| 183 | LeastSquareDiagonalPreconditioner& compute(const MatType& mat) |
| 184 | { |
| 185 | return factorize(mat); |
| 186 | } |
| 187 | |
| 188 | ComputationInfo info() { return Success; } |
| 189 | |
| 190 | protected: |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 191 | }; |
| 192 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 193 | /** \ingroup IterativeLinearSolvers_Module |
| 194 | * \brief A naive preconditioner which approximates any matrix as the identity matrix |
| 195 | * |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 196 | * \implsparsesolverconcept |
| 197 | * |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 198 | * \sa class DiagonalPreconditioner |
| 199 | */ |
| 200 | class IdentityPreconditioner |
| 201 | { |
| 202 | public: |
| 203 | |
| 204 | IdentityPreconditioner() {} |
| 205 | |
| 206 | template<typename MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 207 | explicit IdentityPreconditioner(const MatrixType& ) {} |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 208 | |
| 209 | template<typename MatrixType> |
| 210 | IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; } |
| 211 | |
| 212 | template<typename MatrixType> |
| 213 | IdentityPreconditioner& factorize(const MatrixType& ) { return *this; } |
| 214 | |
| 215 | template<typename MatrixType> |
| 216 | IdentityPreconditioner& compute(const MatrixType& ) { return *this; } |
| 217 | |
| 218 | template<typename Rhs> |
| 219 | inline const Rhs& solve(const Rhs& b) const { return b; } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 220 | |
| 221 | ComputationInfo info() { return Success; } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 222 | }; |
| 223 | |
| 224 | } // end namespace Eigen |
| 225 | |
| 226 | #endif // EIGEN_BASIC_PRECONDITIONERS_H |