Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h b/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
new file mode 100644
index 0000000..73ca9bf
--- /dev/null
+++ b/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
@@ -0,0 +1,149 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_BASIC_PRECONDITIONERS_H
+#define EIGEN_BASIC_PRECONDITIONERS_H
+
+namespace Eigen { 
+
+/** \ingroup IterativeLinearSolvers_Module
+  * \brief A preconditioner based on the digonal entries
+  *
+  * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
+  * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
+  * \code
+  * A.diagonal().asDiagonal() . x = b
+  * \endcode
+  *
+  * \tparam _Scalar the type of the scalar.
+  *
+  * This preconditioner is suitable for both selfadjoint and general problems.
+  * The diagonal entries are pre-inverted and stored into a dense vector.
+  *
+  * \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
+  *
+  */
+template <typename _Scalar>
+class DiagonalPreconditioner
+{
+    typedef _Scalar Scalar;
+    typedef Matrix<Scalar,Dynamic,1> Vector;
+    typedef typename Vector::Index Index;
+
+  public:
+    // this typedef is only to export the scalar type and compile-time dimensions to solve_retval
+    typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
+
+    DiagonalPreconditioner() : m_isInitialized(false) {}
+
+    template<typename MatType>
+    DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols())
+    {
+      compute(mat);
+    }
+
+    Index rows() const { return m_invdiag.size(); }
+    Index cols() const { return m_invdiag.size(); }
+    
+    template<typename MatType>
+    DiagonalPreconditioner& analyzePattern(const MatType& )
+    {
+      return *this;
+    }
+    
+    template<typename MatType>
+    DiagonalPreconditioner& factorize(const MatType& mat)
+    {
+      m_invdiag.resize(mat.cols());
+      for(int j=0; j<mat.outerSize(); ++j)
+      {
+        typename MatType::InnerIterator it(mat,j);
+        while(it && it.index()!=j) ++it;
+        if(it && it.index()==j)
+          m_invdiag(j) = Scalar(1)/it.value();
+        else
+          m_invdiag(j) = 0;
+      }
+      m_isInitialized = true;
+      return *this;
+    }
+    
+    template<typename MatType>
+    DiagonalPreconditioner& compute(const MatType& mat)
+    {
+      return factorize(mat);
+    }
+
+    template<typename Rhs, typename Dest>
+    void _solve(const Rhs& b, Dest& x) const
+    {
+      x = m_invdiag.array() * b.array() ;
+    }
+
+    template<typename Rhs> inline const internal::solve_retval<DiagonalPreconditioner, Rhs>
+    solve(const MatrixBase<Rhs>& b) const
+    {
+      eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
+      eigen_assert(m_invdiag.size()==b.rows()
+                && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
+      return internal::solve_retval<DiagonalPreconditioner, Rhs>(*this, b.derived());
+    }
+
+  protected:
+    Vector m_invdiag;
+    bool m_isInitialized;
+};
+
+namespace internal {
+
+template<typename _MatrixType, typename Rhs>
+struct solve_retval<DiagonalPreconditioner<_MatrixType>, Rhs>
+  : solve_retval_base<DiagonalPreconditioner<_MatrixType>, Rhs>
+{
+  typedef DiagonalPreconditioner<_MatrixType> Dec;
+  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+  template<typename Dest> void evalTo(Dest& dst) const
+  {
+    dec()._solve(rhs(),dst);
+  }
+};
+
+}
+
+/** \ingroup IterativeLinearSolvers_Module
+  * \brief A naive preconditioner which approximates any matrix as the identity matrix
+  *
+  * \sa class DiagonalPreconditioner
+  */
+class IdentityPreconditioner
+{
+  public:
+
+    IdentityPreconditioner() {}
+
+    template<typename MatrixType>
+    IdentityPreconditioner(const MatrixType& ) {}
+    
+    template<typename MatrixType>
+    IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; }
+    
+    template<typename MatrixType>
+    IdentityPreconditioner& factorize(const MatrixType& ) { return *this; }
+
+    template<typename MatrixType>
+    IdentityPreconditioner& compute(const MatrixType& ) { return *this; }
+    
+    template<typename Rhs>
+    inline const Rhs& solve(const Rhs& b) const { return b; }
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_BASIC_PRECONDITIONERS_H