Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_EULERANGLES_H |
| 11 | #define EIGEN_EULERANGLES_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | /** \geometry_module \ingroup Geometry_Module |
| 16 | * |
| 17 | * |
| 18 | * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2) |
| 19 | * |
| 20 | * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}. |
| 21 | * For instance, in: |
| 22 | * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode |
| 23 | * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that |
| 24 | * we have the following equality: |
| 25 | * \code |
| 26 | * mat == AngleAxisf(ea[0], Vector3f::UnitZ()) |
| 27 | * * AngleAxisf(ea[1], Vector3f::UnitX()) |
| 28 | * * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode |
| 29 | * This corresponds to the right-multiply conventions (with right hand side frames). |
| 30 | * |
| 31 | * The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi]. |
| 32 | * |
| 33 | * \sa class AngleAxis |
| 34 | */ |
| 35 | template<typename Derived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 36 | EIGEN_DEVICE_FUNC inline Matrix<typename MatrixBase<Derived>::Scalar,3,1> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 37 | MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const |
| 38 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 39 | EIGEN_USING_STD_MATH(atan2) |
| 40 | EIGEN_USING_STD_MATH(sin) |
| 41 | EIGEN_USING_STD_MATH(cos) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 42 | /* Implemented from Graphics Gems IV */ |
| 43 | EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3) |
| 44 | |
| 45 | Matrix<Scalar,3,1> res; |
| 46 | typedef Matrix<typename Derived::Scalar,2,1> Vector2; |
| 47 | |
| 48 | const Index odd = ((a0+1)%3 == a1) ? 0 : 1; |
| 49 | const Index i = a0; |
| 50 | const Index j = (a0 + 1 + odd)%3; |
| 51 | const Index k = (a0 + 2 - odd)%3; |
| 52 | |
| 53 | if (a0==a2) |
| 54 | { |
| 55 | res[0] = atan2(coeff(j,i), coeff(k,i)); |
| 56 | if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0))) |
| 57 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 58 | if(res[0] > Scalar(0)) { |
| 59 | res[0] -= Scalar(EIGEN_PI); |
| 60 | } |
| 61 | else { |
| 62 | res[0] += Scalar(EIGEN_PI); |
| 63 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 64 | Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm(); |
| 65 | res[1] = -atan2(s2, coeff(i,i)); |
| 66 | } |
| 67 | else |
| 68 | { |
| 69 | Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm(); |
| 70 | res[1] = atan2(s2, coeff(i,i)); |
| 71 | } |
| 72 | |
| 73 | // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles, |
| 74 | // we can compute their respective rotation, and apply its inverse to M. Since the result must |
| 75 | // be a rotation around x, we have: |
| 76 | // |
| 77 | // c2 s1.s2 c1.s2 1 0 0 |
| 78 | // 0 c1 -s1 * M = 0 c3 s3 |
| 79 | // -s2 s1.c2 c1.c2 0 -s3 c3 |
| 80 | // |
| 81 | // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3 |
| 82 | |
| 83 | Scalar s1 = sin(res[0]); |
| 84 | Scalar c1 = cos(res[0]); |
| 85 | res[2] = atan2(c1*coeff(j,k)-s1*coeff(k,k), c1*coeff(j,j) - s1 * coeff(k,j)); |
| 86 | } |
| 87 | else |
| 88 | { |
| 89 | res[0] = atan2(coeff(j,k), coeff(k,k)); |
| 90 | Scalar c2 = Vector2(coeff(i,i), coeff(i,j)).norm(); |
| 91 | if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0))) { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 92 | if(res[0] > Scalar(0)) { |
| 93 | res[0] -= Scalar(EIGEN_PI); |
| 94 | } |
| 95 | else { |
| 96 | res[0] += Scalar(EIGEN_PI); |
| 97 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 98 | res[1] = atan2(-coeff(i,k), -c2); |
| 99 | } |
| 100 | else |
| 101 | res[1] = atan2(-coeff(i,k), c2); |
| 102 | Scalar s1 = sin(res[0]); |
| 103 | Scalar c1 = cos(res[0]); |
| 104 | res[2] = atan2(s1*coeff(k,i)-c1*coeff(j,i), c1*coeff(j,j) - s1 * coeff(k,j)); |
| 105 | } |
| 106 | if (!odd) |
| 107 | res = -res; |
| 108 | |
| 109 | return res; |
| 110 | } |
| 111 | |
| 112 | } // end namespace Eigen |
| 113 | |
| 114 | #endif // EIGEN_EULERANGLES_H |