Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/Eigen/src/Geometry/EulerAngles.h b/Eigen/src/Geometry/EulerAngles.h
new file mode 100644
index 0000000..82802fb
--- /dev/null
+++ b/Eigen/src/Geometry/EulerAngles.h
@@ -0,0 +1,104 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_EULERANGLES_H
+#define EIGEN_EULERANGLES_H
+
+namespace Eigen { 
+
+/** \geometry_module \ingroup Geometry_Module
+  *
+  *
+  * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2)
+  *
+  * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}.
+  * For instance, in:
+  * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode
+  * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that
+  * we have the following equality:
+  * \code
+  * mat == AngleAxisf(ea[0], Vector3f::UnitZ())
+  *      * AngleAxisf(ea[1], Vector3f::UnitX())
+  *      * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode
+  * This corresponds to the right-multiply conventions (with right hand side frames).
+  * 
+  * The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].
+  * 
+  * \sa class AngleAxis
+  */
+template<typename Derived>
+inline Matrix<typename MatrixBase<Derived>::Scalar,3,1>
+MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const
+{
+  using std::atan2;
+  using std::sin;
+  using std::cos;
+  /* Implemented from Graphics Gems IV */
+  EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3)
+
+  Matrix<Scalar,3,1> res;
+  typedef Matrix<typename Derived::Scalar,2,1> Vector2;
+
+  const Index odd = ((a0+1)%3 == a1) ? 0 : 1;
+  const Index i = a0;
+  const Index j = (a0 + 1 + odd)%3;
+  const Index k = (a0 + 2 - odd)%3;
+  
+  if (a0==a2)
+  {
+    res[0] = atan2(coeff(j,i), coeff(k,i));
+    if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0)))
+    {
+      res[0] = (res[0] > Scalar(0)) ? res[0] - Scalar(M_PI) : res[0] + Scalar(M_PI);
+      Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm();
+      res[1] = -atan2(s2, coeff(i,i));
+    }
+    else
+    {
+      Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm();
+      res[1] = atan2(s2, coeff(i,i));
+    }
+    
+    // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
+    // we can compute their respective rotation, and apply its inverse to M. Since the result must
+    // be a rotation around x, we have:
+    //
+    //  c2  s1.s2 c1.s2                   1  0   0 
+    //  0   c1    -s1       *    M    =   0  c3  s3
+    //  -s2 s1.c2 c1.c2                   0 -s3  c3
+    //
+    //  Thus:  m11.c1 - m21.s1 = c3  &   m12.c1 - m22.s1 = s3
+    
+    Scalar s1 = sin(res[0]);
+    Scalar c1 = cos(res[0]);
+    res[2] = atan2(c1*coeff(j,k)-s1*coeff(k,k), c1*coeff(j,j) - s1 * coeff(k,j));
+  } 
+  else
+  {
+    res[0] = atan2(coeff(j,k), coeff(k,k));
+    Scalar c2 = Vector2(coeff(i,i), coeff(i,j)).norm();
+    if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0))) {
+      res[0] = (res[0] > Scalar(0)) ? res[0] - Scalar(M_PI) : res[0] + Scalar(M_PI);
+      res[1] = atan2(-coeff(i,k), -c2);
+    }
+    else
+      res[1] = atan2(-coeff(i,k), c2);
+    Scalar s1 = sin(res[0]);
+    Scalar c1 = cos(res[0]);
+    res[2] = atan2(s1*coeff(k,i)-c1*coeff(j,i), c1*coeff(j,j) - s1 * coeff(k,j));
+  }
+  if (!odd)
+    res = -res;
+  
+  return res;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_EULERANGLES_H