blob: 7f2b6b6dbae706ac5b992a9ed8f58617ff9a3068 [file] [log] [blame]
Austin Schuhacd335a2017-01-01 16:20:54 -08001#ifndef FRC971_CONTROL_LOOPS_RUNGE_KUTTA_H_
2#define FRC971_CONTROL_LOOPS_RUNGE_KUTTA_H_
3
Austin Schuh99f7c6a2024-06-25 22:07:44 -07004#include "absl/log/check.h"
5#include "absl/log/log.h"
Austin Schuhacd335a2017-01-01 16:20:54 -08006#include <Eigen/Dense>
7
Austin Schuhb0bfaf82024-06-19 19:47:23 -07008#include "frc971/control_loops/runge_kutta_helpers.h"
9
Stephan Pleinesd99b1ee2024-02-02 20:56:44 -080010namespace frc971::control_loops {
Austin Schuhacd335a2017-01-01 16:20:54 -080011
12// Implements Runge Kutta integration (4th order). fn is the function to
13// integrate. It must take 1 argument of type T. The integration starts at an
14// initial value X, and integrates for dt.
15template <typename F, typename T>
16T RungeKutta(const F &fn, T X, double dt) {
17 const double half_dt = dt * 0.5;
Austin Schuh92ebcbb2018-01-23 11:17:08 -080018 T k1 = fn(X);
19 T k2 = fn(X + half_dt * k1);
20 T k3 = fn(X + half_dt * k2);
21 T k4 = fn(X + dt * k3);
Austin Schuhacd335a2017-01-01 16:20:54 -080022 return X + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4);
23}
24
milind-ue53bf552021-12-11 14:42:00 -080025// Implements Runge Kutta integration (4th order) split up into steps steps. fn
26// is the function to integrate. It must take 1 argument of type T. The
27// integration starts at an initial value X, and integrates for dt.
28template <typename F, typename T>
29T RungeKuttaSteps(const F &fn, T X, double dt, int steps) {
30 dt = dt / steps;
31 for (int i = 0; i < steps; ++i) {
32 X = RungeKutta(fn, X, dt);
33 }
34 return X;
35}
36
Austin Schuhf7466732023-02-20 22:11:41 -080037// Implements Runge Kutta integration (4th order). This integrates dy/dt =
38// fn(t, y). It must have the call signature of fn(double t, T y). The
Austin Schuhca52a242018-12-23 09:19:29 +110039// integration starts at an initial value y, and integrates for dt.
40template <typename F, typename T>
41T RungeKutta(const F &fn, T y, double t, double dt) {
42 const double half_dt = dt * 0.5;
43 T k1 = dt * fn(t, y);
44 T k2 = dt * fn(t + half_dt, y + k1 / 2.0);
45 T k3 = dt * fn(t + half_dt, y + k2 / 2.0);
46 T k4 = dt * fn(t + dt, y + k3);
47
48 return y + (k1 + 2.0 * k2 + 2.0 * k3 + k4) / 6.0;
49}
50
Austin Schuhf7466732023-02-20 22:11:41 -080051template <typename F, typename T>
52T RungeKuttaSteps(const F &fn, T X, double t, double dt, int steps) {
53 dt = dt / steps;
54 for (int i = 0; i < steps; ++i) {
55 X = RungeKutta(fn, X, t + dt * i, dt);
56 }
57 return X;
58}
59
Austin Schuh268a94f2018-02-17 17:10:19 -080060// Implements Runge Kutta integration (4th order). fn is the function to
61// integrate. It must take 1 argument of type T. The integration starts at an
62// initial value X, and integrates for dt.
63template <typename F, typename T, typename Tu>
Austin Schuh9edb5df2018-12-23 09:03:15 +110064T RungeKuttaU(const F &fn, T X, Tu U, double dt) {
Austin Schuh268a94f2018-02-17 17:10:19 -080065 const double half_dt = dt * 0.5;
66 T k1 = fn(X, U);
67 T k2 = fn(X + half_dt * k1, U);
68 T k3 = fn(X + half_dt * k2, U);
69 T k4 = fn(X + dt * k3, U);
70 return X + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4);
71}
72
Austin Schuhb0bfaf82024-06-19 19:47:23 -070073// Integrates f(t, y) from t0 to t0 + dt using an explicit Runge Kutta 5(4) to
74// implement an adaptive step size. Translated from Scipy.
75//
76// This uses the Dormand-Prince pair of formulas. The error is controlled
77// assuming accuracy of the fourth-order method accuracy, but steps are taken
78// using the fifth-order accurate formula (local extrapolation is done). A
79// quartic interpolation polynomial is used for the dense output.
80//
81// fn(t, y) is the function to integrate. y0 is the initial y, t0 is the
82// initial time, dt is the duration to integrate, rtol is the relative
83// tolerance, and atol is the absolute tolerance.
84template <typename F, typename T>
85T AdaptiveRungeKutta(const F &fn, T y0, double t0, double dt,
86 double rtol = 1e-3, double atol = 1e-6) {
87 // Multiply steps computed from asymptotic behaviour of errors by this.
88 constexpr double SAFETY = 0.9;
89 // Minimum allowed decrease in a step size.
90 constexpr double MIN_FACTOR = 0.2;
91 // Maximum allowed increase in a step size.
92 constexpr double MAX_FACTOR = 10;
93
94 // Final time
95 const double t_bound = t0 + dt;
96
97 constexpr int order = 5;
98 constexpr int error_estimator_order = 4;
99 constexpr int n_stages = 6;
100 constexpr int states = y0.rows();
101 const double sqrt_rows = std::sqrt(static_cast<double>(states));
102 const Eigen::Matrix<double, 1, n_stages> C =
103 (Eigen::Matrix<double, 1, n_stages>() << 0, 1.0 / 5.0, 3.0 / 10.0,
104 4.0 / 5.0, 8.0 / 9.0, 1.0)
105 .finished();
106
107 const Eigen::Matrix<double, n_stages, order> A =
108 (Eigen::Matrix<double, n_stages, order>() << 0.0, 0.0, 0.0, 0.0, 0.0,
109 1.0 / 5.0, 0.0, 0.0, 0.0, 0.0, 3.0 / 40.0, 9.0 / 40.0, 0.0, 0.0, 0.0,
110 44.0 / 45.0, -56.0 / 15.0, 32.0 / 9.0, 0.0, 0.0, 19372.0 / 6561.0,
111 -25360.0 / 2187.0, 64448.0 / 6561.0, -212.0 / 729.0, 0.0,
112 9017.0 / 3168.0, -355.0 / 33.0, 46732.0 / 5247.0, 49.0 / 176.0,
113 -5103.0 / 18656.0)
114 .finished();
115
116 const Eigen::Matrix<double, 1, n_stages> B =
117 (Eigen::Matrix<double, 1, n_stages>() << 35.0 / 384.0, 0.0,
118 500.0 / 1113.0, 125.0 / 192.0, -2187.0 / 6784.0, 11.0 / 84.0)
119 .finished();
120
121 const Eigen::Matrix<double, 1, n_stages + 1> E =
122 (Eigen::Matrix<double, 1, n_stages + 1>() << -71.0 / 57600.0, 0.0,
123 71.0 / 16695.0, -71.0 / 1920.0, 17253.0 / 339200.0, -22.0 / 525.0,
124 1.0 / 40.0)
125 .finished();
126
127 T f = fn(t0, y0);
128 double h_abs = SelectRungeKuttaInitialStep(fn, t0, y0, f,
129 error_estimator_order, rtol, atol);
130 Eigen::Matrix<double, n_stages + 1, states> K;
131
132 Eigen::Matrix<double, states, 1> y = y0;
133 const double error_exponent = -1.0 / (error_estimator_order + 1.0);
134
135 double t = t0;
136 while (true) {
137 if (t >= t_bound) {
138 return y;
139 }
140
141 // Step
142 double min_step =
143 10 * (std::nextafter(t, std::numeric_limits<double>::infinity()) - t);
144
145 // TODO(austin): max_step if we care.
146 if (h_abs < min_step) {
147 h_abs = min_step;
148 }
149
150 bool step_accepted = false;
151 bool step_rejected = false;
152
153 double t_new;
154 Eigen::Matrix<double, states, 1> y_new;
155 Eigen::Matrix<double, states, 1> f_new;
156 while (!step_accepted) {
157 // TODO(austin): Tell the user rather than just explode?
158 CHECK_GE(h_abs, min_step);
159
160 double h = h_abs;
161 t_new = t + h;
162 if (t_new >= t_bound) {
163 t_new = t_bound;
164 }
165 h = t_new - t;
166 h_abs = std::abs(h);
167
168 std::tie(y_new, f_new) =
169 RKStep<states, n_stages, order>(fn, t, y, f, h, A, B, C, K);
170
171 const Eigen::Matrix<double, states, 1> scale =
172 atol + y.array().abs().max(y_new.array().abs()) * rtol;
173
174 double error_norm =
175 (((K.transpose() * E.transpose()) * h).array() / scale.array())
176 .matrix()
177 .norm() /
178 sqrt_rows;
179
180 if (error_norm < 1) {
181 double factor;
182 if (error_norm == 0) {
183 factor = MAX_FACTOR;
184 } else {
185 factor = std::min(MAX_FACTOR,
186 SAFETY * std::pow(error_norm, error_exponent));
187 }
188
189 if (step_rejected) {
190 factor = std::min(1.0, factor);
191 }
192
193 h_abs *= factor;
194
195 step_accepted = true;
196 } else {
197 h_abs *=
198 std::max(MIN_FACTOR, SAFETY * std::pow(error_norm, error_exponent));
199 step_rejected = true;
200 }
201 }
202
203 t = t_new;
204 y = y_new;
205 f = f_new;
206 }
207
208 return y;
209}
210
Stephan Pleinesd99b1ee2024-02-02 20:56:44 -0800211} // namespace frc971::control_loops
Austin Schuhacd335a2017-01-01 16:20:54 -0800212
213#endif // FRC971_CONTROL_LOOPS_RUNGE_KUTTA_H_