blob: 7f2b6b6dbae706ac5b992a9ed8f58617ff9a3068 [file] [log] [blame]
#ifndef FRC971_CONTROL_LOOPS_RUNGE_KUTTA_H_
#define FRC971_CONTROL_LOOPS_RUNGE_KUTTA_H_
#include "absl/log/check.h"
#include "absl/log/log.h"
#include <Eigen/Dense>
#include "frc971/control_loops/runge_kutta_helpers.h"
namespace frc971::control_loops {
// Implements Runge Kutta integration (4th order). fn is the function to
// integrate. It must take 1 argument of type T. The integration starts at an
// initial value X, and integrates for dt.
template <typename F, typename T>
T RungeKutta(const F &fn, T X, double dt) {
const double half_dt = dt * 0.5;
T k1 = fn(X);
T k2 = fn(X + half_dt * k1);
T k3 = fn(X + half_dt * k2);
T k4 = fn(X + dt * k3);
return X + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4);
}
// Implements Runge Kutta integration (4th order) split up into steps steps. fn
// is the function to integrate. It must take 1 argument of type T. The
// integration starts at an initial value X, and integrates for dt.
template <typename F, typename T>
T RungeKuttaSteps(const F &fn, T X, double dt, int steps) {
dt = dt / steps;
for (int i = 0; i < steps; ++i) {
X = RungeKutta(fn, X, dt);
}
return X;
}
// Implements Runge Kutta integration (4th order). This integrates dy/dt =
// fn(t, y). It must have the call signature of fn(double t, T y). The
// integration starts at an initial value y, and integrates for dt.
template <typename F, typename T>
T RungeKutta(const F &fn, T y, double t, double dt) {
const double half_dt = dt * 0.5;
T k1 = dt * fn(t, y);
T k2 = dt * fn(t + half_dt, y + k1 / 2.0);
T k3 = dt * fn(t + half_dt, y + k2 / 2.0);
T k4 = dt * fn(t + dt, y + k3);
return y + (k1 + 2.0 * k2 + 2.0 * k3 + k4) / 6.0;
}
template <typename F, typename T>
T RungeKuttaSteps(const F &fn, T X, double t, double dt, int steps) {
dt = dt / steps;
for (int i = 0; i < steps; ++i) {
X = RungeKutta(fn, X, t + dt * i, dt);
}
return X;
}
// Implements Runge Kutta integration (4th order). fn is the function to
// integrate. It must take 1 argument of type T. The integration starts at an
// initial value X, and integrates for dt.
template <typename F, typename T, typename Tu>
T RungeKuttaU(const F &fn, T X, Tu U, double dt) {
const double half_dt = dt * 0.5;
T k1 = fn(X, U);
T k2 = fn(X + half_dt * k1, U);
T k3 = fn(X + half_dt * k2, U);
T k4 = fn(X + dt * k3, U);
return X + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4);
}
// Integrates f(t, y) from t0 to t0 + dt using an explicit Runge Kutta 5(4) to
// implement an adaptive step size. Translated from Scipy.
//
// This uses the Dormand-Prince pair of formulas. The error is controlled
// assuming accuracy of the fourth-order method accuracy, but steps are taken
// using the fifth-order accurate formula (local extrapolation is done). A
// quartic interpolation polynomial is used for the dense output.
//
// fn(t, y) is the function to integrate. y0 is the initial y, t0 is the
// initial time, dt is the duration to integrate, rtol is the relative
// tolerance, and atol is the absolute tolerance.
template <typename F, typename T>
T AdaptiveRungeKutta(const F &fn, T y0, double t0, double dt,
double rtol = 1e-3, double atol = 1e-6) {
// Multiply steps computed from asymptotic behaviour of errors by this.
constexpr double SAFETY = 0.9;
// Minimum allowed decrease in a step size.
constexpr double MIN_FACTOR = 0.2;
// Maximum allowed increase in a step size.
constexpr double MAX_FACTOR = 10;
// Final time
const double t_bound = t0 + dt;
constexpr int order = 5;
constexpr int error_estimator_order = 4;
constexpr int n_stages = 6;
constexpr int states = y0.rows();
const double sqrt_rows = std::sqrt(static_cast<double>(states));
const Eigen::Matrix<double, 1, n_stages> C =
(Eigen::Matrix<double, 1, n_stages>() << 0, 1.0 / 5.0, 3.0 / 10.0,
4.0 / 5.0, 8.0 / 9.0, 1.0)
.finished();
const Eigen::Matrix<double, n_stages, order> A =
(Eigen::Matrix<double, n_stages, order>() << 0.0, 0.0, 0.0, 0.0, 0.0,
1.0 / 5.0, 0.0, 0.0, 0.0, 0.0, 3.0 / 40.0, 9.0 / 40.0, 0.0, 0.0, 0.0,
44.0 / 45.0, -56.0 / 15.0, 32.0 / 9.0, 0.0, 0.0, 19372.0 / 6561.0,
-25360.0 / 2187.0, 64448.0 / 6561.0, -212.0 / 729.0, 0.0,
9017.0 / 3168.0, -355.0 / 33.0, 46732.0 / 5247.0, 49.0 / 176.0,
-5103.0 / 18656.0)
.finished();
const Eigen::Matrix<double, 1, n_stages> B =
(Eigen::Matrix<double, 1, n_stages>() << 35.0 / 384.0, 0.0,
500.0 / 1113.0, 125.0 / 192.0, -2187.0 / 6784.0, 11.0 / 84.0)
.finished();
const Eigen::Matrix<double, 1, n_stages + 1> E =
(Eigen::Matrix<double, 1, n_stages + 1>() << -71.0 / 57600.0, 0.0,
71.0 / 16695.0, -71.0 / 1920.0, 17253.0 / 339200.0, -22.0 / 525.0,
1.0 / 40.0)
.finished();
T f = fn(t0, y0);
double h_abs = SelectRungeKuttaInitialStep(fn, t0, y0, f,
error_estimator_order, rtol, atol);
Eigen::Matrix<double, n_stages + 1, states> K;
Eigen::Matrix<double, states, 1> y = y0;
const double error_exponent = -1.0 / (error_estimator_order + 1.0);
double t = t0;
while (true) {
if (t >= t_bound) {
return y;
}
// Step
double min_step =
10 * (std::nextafter(t, std::numeric_limits<double>::infinity()) - t);
// TODO(austin): max_step if we care.
if (h_abs < min_step) {
h_abs = min_step;
}
bool step_accepted = false;
bool step_rejected = false;
double t_new;
Eigen::Matrix<double, states, 1> y_new;
Eigen::Matrix<double, states, 1> f_new;
while (!step_accepted) {
// TODO(austin): Tell the user rather than just explode?
CHECK_GE(h_abs, min_step);
double h = h_abs;
t_new = t + h;
if (t_new >= t_bound) {
t_new = t_bound;
}
h = t_new - t;
h_abs = std::abs(h);
std::tie(y_new, f_new) =
RKStep<states, n_stages, order>(fn, t, y, f, h, A, B, C, K);
const Eigen::Matrix<double, states, 1> scale =
atol + y.array().abs().max(y_new.array().abs()) * rtol;
double error_norm =
(((K.transpose() * E.transpose()) * h).array() / scale.array())
.matrix()
.norm() /
sqrt_rows;
if (error_norm < 1) {
double factor;
if (error_norm == 0) {
factor = MAX_FACTOR;
} else {
factor = std::min(MAX_FACTOR,
SAFETY * std::pow(error_norm, error_exponent));
}
if (step_rejected) {
factor = std::min(1.0, factor);
}
h_abs *= factor;
step_accepted = true;
} else {
h_abs *=
std::max(MIN_FACTOR, SAFETY * std::pow(error_norm, error_exponent));
step_rejected = true;
}
}
t = t_new;
y = y_new;
f = f_new;
}
return y;
}
} // namespace frc971::control_loops
#endif // FRC971_CONTROL_LOOPS_RUNGE_KUTTA_H_