blob: ea80e738c6ceba4acb16438230420649240c99a1 [file] [log] [blame]
James Kuszmaul51fa1ae2022-02-26 00:49:57 -08001#include "y2022/localizer/localizer.h"
James Kuszmaul29c59522022-02-12 16:44:26 -08002
3#include "frc971/control_loops/c2d.h"
4#include "frc971/wpilib/imu_batch_generated.h"
James Kuszmaul5ed29dd2022-02-13 18:32:06 -08005#include "y2022/constants.h"
James Kuszmaul8c4f6592022-02-26 15:49:30 -08006#include "aos/json_to_flatbuffer.h"
James Kuszmaul29c59522022-02-12 16:44:26 -08007
8namespace frc971::controls {
9
10namespace {
11constexpr double kG = 9.80665;
12constexpr std::chrono::microseconds kNominalDt(500);
13
James Kuszmaul8c4f6592022-02-26 15:49:30 -080014// Field position of the target (the 2022 target is conveniently in the middle
15// of the field....).
16constexpr double kVisionTargetX = 0.0;
17constexpr double kVisionTargetY = 0.0;
18
James Kuszmaul29c59522022-02-12 16:44:26 -080019template <int N>
20Eigen::Matrix<double, N, 1> MakeState(std::vector<double> values) {
21 CHECK_EQ(static_cast<size_t>(N), values.size());
22 Eigen::Matrix<double, N, 1> vector;
23 for (int ii = 0; ii < N; ++ii) {
24 vector(ii, 0) = values[ii];
25 }
26 return vector;
27}
James Kuszmaul29c59522022-02-12 16:44:26 -080028} // namespace
29
30ModelBasedLocalizer::ModelBasedLocalizer(
31 const control_loops::drivetrain::DrivetrainConfig<double> &dt_config)
32 : dt_config_(dt_config),
33 velocity_drivetrain_coefficients_(
34 dt_config.make_hybrid_drivetrain_velocity_loop()
35 .plant()
36 .coefficients()),
37 down_estimator_(dt_config) {
James Kuszmaul8c4f6592022-02-26 15:49:30 -080038 statistics_.rejection_counts.fill(0);
James Kuszmaul93825a02022-02-13 16:50:33 -080039 CHECK_EQ(branches_.capacity(), static_cast<size_t>(std::chrono::seconds(1) /
40 kNominalDt / kBranchPeriod));
James Kuszmaul29c59522022-02-12 16:44:26 -080041 if (dt_config_.is_simulated) {
42 down_estimator_.assume_perfect_gravity();
43 }
44 A_continuous_accel_.setZero();
45 A_continuous_model_.setZero();
46 B_continuous_accel_.setZero();
47 B_continuous_model_.setZero();
48
49 A_continuous_accel_(kX, kVelocityX) = 1.0;
50 A_continuous_accel_(kY, kVelocityY) = 1.0;
51
52 const double diameter = 2.0 * dt_config_.robot_radius;
53
54 A_continuous_model_(kTheta, kLeftVelocity) = -1.0 / diameter;
55 A_continuous_model_(kTheta, kRightVelocity) = 1.0 / diameter;
56 A_continuous_model_(kLeftEncoder, kLeftVelocity) = 1.0;
57 A_continuous_model_(kRightEncoder, kRightVelocity) = 1.0;
58 const auto &vel_coefs = velocity_drivetrain_coefficients_;
59 A_continuous_model_(kLeftVelocity, kLeftVelocity) =
60 vel_coefs.A_continuous(0, 0);
61 A_continuous_model_(kLeftVelocity, kRightVelocity) =
62 vel_coefs.A_continuous(0, 1);
63 A_continuous_model_(kRightVelocity, kLeftVelocity) =
64 vel_coefs.A_continuous(1, 0);
65 A_continuous_model_(kRightVelocity, kRightVelocity) =
66 vel_coefs.A_continuous(1, 1);
67
68 A_continuous_model_(kLeftVelocity, kLeftVoltageError) =
69 1 * vel_coefs.B_continuous(0, 0);
70 A_continuous_model_(kLeftVelocity, kRightVoltageError) =
71 1 * vel_coefs.B_continuous(0, 1);
72 A_continuous_model_(kRightVelocity, kLeftVoltageError) =
73 1 * vel_coefs.B_continuous(1, 0);
74 A_continuous_model_(kRightVelocity, kRightVoltageError) =
75 1 * vel_coefs.B_continuous(1, 1);
76
77 B_continuous_model_.block<1, 2>(kLeftVelocity, kLeftVoltage) =
78 vel_coefs.B_continuous.row(0);
79 B_continuous_model_.block<1, 2>(kRightVelocity, kLeftVoltage) =
80 vel_coefs.B_continuous.row(1);
81
82 B_continuous_accel_(kVelocityX, kAccelX) = 1.0;
83 B_continuous_accel_(kVelocityY, kAccelY) = 1.0;
84 B_continuous_accel_(kTheta, kThetaRate) = 1.0;
85
86 Q_continuous_model_.setZero();
James Kuszmaul8c4f6592022-02-26 15:49:30 -080087 Q_continuous_model_.diagonal() << 1e-2, 1e-2, 1e-8, 1e-2, 1e-0, 1e-0, 1e-2,
James Kuszmaul29c59522022-02-12 16:44:26 -080088 1e-0, 1e-0;
89
James Kuszmaul8c4f6592022-02-26 15:49:30 -080090 Q_continuous_accel_.setZero();
91 Q_continuous_accel_.diagonal() << 1e-2, 1e-2, 1e-20, 1e-4, 1e-4;
92
James Kuszmaul29c59522022-02-12 16:44:26 -080093 P_model_ = Q_continuous_model_ * aos::time::DurationInSeconds(kNominalDt);
James Kuszmaul8c4f6592022-02-26 15:49:30 -080094
95 // We can precalculate the discretizations of the accel model because it is
96 // actually LTI.
97
98 DiscretizeQAFast(Q_continuous_accel_, A_continuous_accel_, kNominalDt,
99 &Q_discrete_accel_, &A_discrete_accel_);
100 P_accel_ = Q_discrete_accel_;
James Kuszmaul29c59522022-02-12 16:44:26 -0800101}
102
103Eigen::Matrix<double, ModelBasedLocalizer::kNModelStates,
104 ModelBasedLocalizer::kNModelStates>
105ModelBasedLocalizer::AModel(
106 const ModelBasedLocalizer::ModelState &state) const {
107 Eigen::Matrix<double, kNModelStates, kNModelStates> A = A_continuous_model_;
108 const double theta = state(kTheta);
109 const double stheta = std::sin(theta);
110 const double ctheta = std::cos(theta);
111 const double velocity = (state(kLeftVelocity) + state(kRightVelocity)) / 2.0;
112 A(kX, kTheta) = -stheta * velocity;
113 A(kX, kLeftVelocity) = ctheta / 2.0;
114 A(kX, kRightVelocity) = ctheta / 2.0;
115 A(kY, kTheta) = ctheta * velocity;
116 A(kY, kLeftVelocity) = stheta / 2.0;
117 A(kY, kRightVelocity) = stheta / 2.0;
118 return A;
119}
120
121Eigen::Matrix<double, ModelBasedLocalizer::kNAccelStates,
122 ModelBasedLocalizer::kNAccelStates>
123ModelBasedLocalizer::AAccel() const {
124 return A_continuous_accel_;
125}
126
127ModelBasedLocalizer::ModelState ModelBasedLocalizer::DiffModel(
128 const ModelBasedLocalizer::ModelState &state,
129 const ModelBasedLocalizer::ModelInput &U) const {
130 ModelState x_dot = AModel(state) * state + B_continuous_model_ * U;
131 const double theta = state(kTheta);
132 const double stheta = std::sin(theta);
133 const double ctheta = std::cos(theta);
134 const double velocity = (state(kLeftVelocity) + state(kRightVelocity)) / 2.0;
135 x_dot(kX) = ctheta * velocity;
136 x_dot(kY) = stheta * velocity;
137 return x_dot;
138}
139
140ModelBasedLocalizer::AccelState ModelBasedLocalizer::DiffAccel(
141 const ModelBasedLocalizer::AccelState &state,
142 const ModelBasedLocalizer::AccelInput &U) const {
143 return AAccel() * state + B_continuous_accel_ * U;
144}
145
146ModelBasedLocalizer::ModelState ModelBasedLocalizer::UpdateModel(
147 const ModelBasedLocalizer::ModelState &model,
148 const ModelBasedLocalizer::ModelInput &input,
149 const aos::monotonic_clock::duration dt) const {
150 return control_loops::RungeKutta(
151 std::bind(&ModelBasedLocalizer::DiffModel, this, std::placeholders::_1,
152 input),
153 model, aos::time::DurationInSeconds(dt));
154}
155
156ModelBasedLocalizer::AccelState ModelBasedLocalizer::UpdateAccel(
157 const ModelBasedLocalizer::AccelState &accel,
158 const ModelBasedLocalizer::AccelInput &input,
159 const aos::monotonic_clock::duration dt) const {
160 return control_loops::RungeKutta(
161 std::bind(&ModelBasedLocalizer::DiffAccel, this, std::placeholders::_1,
162 input),
163 accel, aos::time::DurationInSeconds(dt));
164}
165
166ModelBasedLocalizer::AccelState ModelBasedLocalizer::AccelStateForModelState(
167 const ModelBasedLocalizer::ModelState &state) const {
168 const double robot_speed =
169 (state(kLeftVelocity) + state(kRightVelocity)) / 2.0;
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800170 const double lat_speed = (AModel(state) * state)(kTheta) * long_offset_;
171 const double velocity_x = std::cos(state(kTheta)) * robot_speed -
172 std::sin(state(kTheta)) * lat_speed;
173 const double velocity_y = std::sin(state(kTheta)) * robot_speed +
174 std::cos(state(kTheta)) * lat_speed;
James Kuszmaul29c59522022-02-12 16:44:26 -0800175 return (AccelState() << state(0), state(1), state(2), velocity_x, velocity_y)
176 .finished();
177}
178
179ModelBasedLocalizer::ModelState ModelBasedLocalizer::ModelStateForAccelState(
180 const ModelBasedLocalizer::AccelState &state,
181 const Eigen::Vector2d &encoders, const double yaw_rate) const {
182 const double robot_speed = state(kVelocityX) * std::cos(state(kTheta)) +
183 state(kVelocityY) * std::sin(state(kTheta));
184 const double radius = dt_config_.robot_radius;
185 const double left_velocity = robot_speed - yaw_rate * radius;
186 const double right_velocity = robot_speed + yaw_rate * radius;
187 return (ModelState() << state(0), state(1), state(2), encoders(0),
188 left_velocity, 0.0, encoders(1), right_velocity, 0.0)
189 .finished();
190}
191
192double ModelBasedLocalizer::ModelDivergence(
193 const ModelBasedLocalizer::CombinedState &state,
194 const ModelBasedLocalizer::AccelInput &accel_inputs,
195 const Eigen::Vector2d &filtered_accel,
196 const ModelBasedLocalizer::ModelInput &model_inputs) {
197 // Convert the model state into the acceleration-based state-space and check
198 // the distance between the two (should really be a weighted norm, but all the
199 // numbers are on ~the same scale).
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800200 // TODO(james): Maybe weight lateral velocity divergence different than
201 // longitudinal? Seems like we tend to get false-positives currently when in
202 // sharp turns.
203 // TODO(james): For off-center gyros, maybe reduce noise when turning?
James Kuszmaul29c59522022-02-12 16:44:26 -0800204 VLOG(2) << "divergence: "
205 << (state.accel_state - AccelStateForModelState(state.model_state))
206 .transpose();
207 const AccelState diff_accel = DiffAccel(state.accel_state, accel_inputs);
208 const ModelState diff_model = DiffModel(state.model_state, model_inputs);
209 const double model_lng_velocity =
210 (state.model_state(kLeftVelocity) + state.model_state(kRightVelocity)) /
211 2.0;
212 const double model_lng_accel =
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800213 (diff_model(kLeftVelocity) + diff_model(kRightVelocity)) / 2.0 -
214 diff_model(kTheta) * diff_model(kTheta) * long_offset_;
215 const double model_lat_accel = diff_model(kTheta) * model_lng_velocity;
216 const Eigen::Vector2d robot_frame_accel(model_lng_accel, model_lat_accel);
James Kuszmaul29c59522022-02-12 16:44:26 -0800217 const Eigen::Vector2d model_accel =
218 Eigen::AngleAxisd(state.model_state(kTheta), Eigen::Vector3d::UnitZ())
219 .toRotationMatrix()
220 .block<2, 2>(0, 0) *
221 robot_frame_accel;
222 const double accel_diff = (model_accel - filtered_accel).norm();
223 const double theta_rate_diff =
224 std::abs(diff_accel(kTheta) - diff_model(kTheta));
225
226 const Eigen::Vector2d accel_vel = state.accel_state.bottomRows<2>();
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800227 Eigen::Vector2d model_vel =
James Kuszmaul29c59522022-02-12 16:44:26 -0800228 AccelStateForModelState(state.model_state).bottomRows<2>();
229 velocity_residual_ = (accel_vel - model_vel).norm() /
230 (1.0 + accel_vel.norm() + model_vel.norm());
231 theta_rate_residual_ = theta_rate_diff;
232 accel_residual_ = accel_diff / 4.0;
233 return velocity_residual_ + theta_rate_residual_ + accel_residual_;
234}
235
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800236void ModelBasedLocalizer::UpdateState(
237 CombinedState *state,
238 const Eigen::Matrix<double, kNModelStates, kNModelOutputs> &K,
239 const Eigen::Matrix<double, kNModelOutputs, 1> &Z,
240 const Eigen::Matrix<double, kNModelOutputs, kNModelStates> &H,
241 const AccelInput &accel_input, const ModelInput &model_input,
242 aos::monotonic_clock::duration dt) {
243 state->accel_state = UpdateAccel(state->accel_state, accel_input, dt);
244 if (down_estimator_.consecutive_still() > 500.0) {
245 state->accel_state(kVelocityX) *= 0.9;
246 state->accel_state(kVelocityY) *= 0.9;
247 }
248 state->model_state = UpdateModel(state->model_state, model_input, dt);
249 state->model_state += K * (Z - H * state->model_state);
250}
251
James Kuszmaul29c59522022-02-12 16:44:26 -0800252void ModelBasedLocalizer::HandleImu(aos::monotonic_clock::time_point t,
253 const Eigen::Vector3d &gyro,
254 const Eigen::Vector3d &accel,
255 const Eigen::Vector2d encoders,
256 const Eigen::Vector2d voltage) {
257 VLOG(2) << t;
258 if (t_ == aos::monotonic_clock::min_time) {
259 t_ = t;
260 }
261 if (t_ + 2 * kNominalDt < t) {
262 t_ = t;
263 ++clock_resets_;
264 }
265 const aos::monotonic_clock::duration dt = t - t_;
266 t_ = t;
267 down_estimator_.Predict(gyro, accel, dt);
268 // TODO(james): Should we prefer this or use the down-estimator corrected
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800269 // version? Using the down estimator is more principled, but does create more
270 // opportunities for subtle biases.
James Kuszmaul29c59522022-02-12 16:44:26 -0800271 const double yaw_rate = (dt_config_.imu_transform * gyro)(2);
272 const double diameter = 2.0 * dt_config_.robot_radius;
273
274 const Eigen::AngleAxis<double> orientation(
275 Eigen::AngleAxis<double>(xytheta()(kTheta), Eigen::Vector3d::UnitZ()) *
276 down_estimator_.X_hat());
James Kuszmaul10d3fd42022-02-25 21:57:36 -0800277 last_orientation_ = orientation;
James Kuszmaul29c59522022-02-12 16:44:26 -0800278
279 const Eigen::Vector3d absolute_accel =
280 orientation * dt_config_.imu_transform * kG * accel;
281 abs_accel_ = absolute_accel;
James Kuszmaul29c59522022-02-12 16:44:26 -0800282
283 VLOG(2) << "abs accel " << absolute_accel.transpose();
James Kuszmaul29c59522022-02-12 16:44:26 -0800284 VLOG(2) << "dt " << aos::time::DurationInSeconds(dt);
285
286 // Update all the branched states.
287 const AccelInput accel_input(absolute_accel.x(), absolute_accel.y(),
288 yaw_rate);
289 const ModelInput model_input(voltage);
290
291 const Eigen::Matrix<double, kNModelStates, kNModelStates> A_continuous =
292 AModel(current_state_.model_state);
293
294 Eigen::Matrix<double, kNModelStates, kNModelStates> A_discrete;
295 Eigen::Matrix<double, kNModelStates, kNModelStates> Q_discrete;
296
297 DiscretizeQAFast(Q_continuous_model_, A_continuous, dt, &Q_discrete,
298 &A_discrete);
299
300 P_model_ = A_discrete * P_model_ * A_discrete.transpose() + Q_discrete;
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800301 P_accel_ = A_discrete_accel_ * P_accel_ * A_discrete_accel_.transpose() +
302 Q_discrete_accel_;
James Kuszmaul29c59522022-02-12 16:44:26 -0800303
304 Eigen::Matrix<double, kNModelOutputs, kNModelStates> H;
305 Eigen::Matrix<double, kNModelOutputs, kNModelOutputs> R;
306 {
307 H.setZero();
308 R.setZero();
309 H(0, kLeftEncoder) = 1.0;
310 H(1, kRightEncoder) = 1.0;
311 H(2, kRightVelocity) = 1.0 / diameter;
312 H(2, kLeftVelocity) = -1.0 / diameter;
313
314 R.diagonal() << 1e-9, 1e-9, 1e-13;
315 }
316
317 const Eigen::Matrix<double, kNModelOutputs, 1> Z(encoders(0), encoders(1),
318 yaw_rate);
319
320 if (branches_.empty()) {
321 VLOG(2) << "Initializing";
James Kuszmaul29c59522022-02-12 16:44:26 -0800322 current_state_.model_state(kLeftEncoder) = encoders(0);
323 current_state_.model_state(kRightEncoder) = encoders(1);
324 current_state_.branch_time = t;
325 branches_.Push(current_state_);
326 }
327
328 const Eigen::Matrix<double, kNModelStates, kNModelOutputs> K =
329 P_model_ * H.transpose() * (H * P_model_ * H.transpose() + R).inverse();
330 P_model_ = (Eigen::Matrix<double, kNModelStates, kNModelStates>::Identity() -
331 K * H) *
332 P_model_;
333 VLOG(2) << "K\n" << K;
334 VLOG(2) << "Z\n" << Z.transpose();
335
336 for (CombinedState &state : branches_) {
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800337 UpdateState(&state, K, Z, H, accel_input, model_input, dt);
James Kuszmaul29c59522022-02-12 16:44:26 -0800338 }
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800339 UpdateState(&current_state_, K, Z, H, accel_input, model_input, dt);
James Kuszmaul29c59522022-02-12 16:44:26 -0800340
341 VLOG(2) << "oildest accel " << branches_[0].accel_state.transpose();
342 VLOG(2) << "oildest accel diff "
343 << DiffAccel(branches_[0].accel_state, accel_input).transpose();
344 VLOG(2) << "oildest model " << branches_[0].model_state.transpose();
345
346 // Determine whether to switch modes--if we are currently in model-based mode,
347 // swap to accel-based if the two states have divergeed meaningfully in the
348 // oldest branch. If we are currently in accel-based, then swap back to model
349 // if the oldest model branch matches has matched the
350 filtered_residual_accel_ +=
351 0.01 * (accel_input.topRows<2>() - filtered_residual_accel_);
352 const double model_divergence =
353 branches_.full() ? ModelDivergence(branches_[0], accel_input,
354 filtered_residual_accel_, model_input)
355 : 0.0;
356 filtered_residual_ +=
357 (1.0 - std::exp(-aos::time::DurationInSeconds(kNominalDt) / 0.0095)) *
358 (model_divergence - filtered_residual_);
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800359 // TODO(james): Tune this more. Currently set to generally trust the model,
360 // perhaps a bit too much.
361 // When the residual exceeds the accel threshold, we start using the inertials
362 // alone; when it drops back below the model threshold, we go back to being
363 // model-based.
364 constexpr double kUseAccelThreshold = 2.0;
365 constexpr double kUseModelThreshold = 0.5;
James Kuszmaul29c59522022-02-12 16:44:26 -0800366 constexpr size_t kShareStates = kNModelStates;
367 static_assert(kUseModelThreshold < kUseAccelThreshold);
368 if (using_model_) {
369 if (filtered_residual_ > kUseAccelThreshold) {
370 hysteresis_count_++;
371 } else {
372 hysteresis_count_ = 0;
373 }
374 if (hysteresis_count_ > 0) {
375 using_model_ = false;
376 // Grab the accel-based state from back when we started diverging.
377 // TODO(james): This creates a problematic selection bias, because
378 // we will tend to bias towards deliberately out-of-tune measurements.
379 current_state_.accel_state = branches_[0].accel_state;
380 current_state_.model_state = branches_[0].model_state;
381 current_state_.model_state = ModelStateForAccelState(
382 current_state_.accel_state, encoders, yaw_rate);
383 } else {
384 VLOG(2) << "Normal branching";
James Kuszmaul29c59522022-02-12 16:44:26 -0800385 current_state_.accel_state =
386 AccelStateForModelState(current_state_.model_state);
387 current_state_.branch_time = t;
388 }
389 hysteresis_count_ = 0;
390 } else {
391 if (filtered_residual_ < kUseModelThreshold) {
392 hysteresis_count_++;
393 } else {
394 hysteresis_count_ = 0;
395 }
396 if (hysteresis_count_ > 100) {
397 using_model_ = true;
398 // Grab the model-based state from back when we stopped diverging.
399 current_state_.model_state.topRows<kShareStates>() =
400 ModelStateForAccelState(branches_[0].accel_state, encoders, yaw_rate)
401 .topRows<kShareStates>();
402 current_state_.accel_state =
403 AccelStateForModelState(current_state_.model_state);
404 } else {
James Kuszmaul29c59522022-02-12 16:44:26 -0800405 // TODO(james): Why was I leaving the encoders/wheel velocities in place?
James Kuszmaul29c59522022-02-12 16:44:26 -0800406 current_state_.model_state = ModelStateForAccelState(
407 current_state_.accel_state, encoders, yaw_rate);
408 current_state_.branch_time = t;
409 }
410 }
411
412 // Generate a new branch, with the accel state reset based on the model-based
413 // state (really, just getting rid of the lateral velocity).
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800414 // By resetting the accel state in the new branch, this tries to minimize the
415 // odds of runaway lateral velocities. This doesn't help with runaway
416 // longitudinal velocities, however.
James Kuszmaul29c59522022-02-12 16:44:26 -0800417 CombinedState new_branch = current_state_;
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800418 new_branch.accel_state = AccelStateForModelState(new_branch.model_state);
James Kuszmaul29c59522022-02-12 16:44:26 -0800419 new_branch.accumulated_divergence = 0.0;
420
James Kuszmaul93825a02022-02-13 16:50:33 -0800421 ++branch_counter_;
422 if (branch_counter_ % kBranchPeriod == 0) {
423 branches_.Push(new_branch);
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800424 old_positions_.Push(OldPosition{t, xytheta(), latest_turret_position_,
425 latest_turret_velocity_});
James Kuszmaul93825a02022-02-13 16:50:33 -0800426 branch_counter_ = 0;
427 }
James Kuszmaul29c59522022-02-12 16:44:26 -0800428
429 last_residual_ = model_divergence;
430
431 VLOG(2) << "Using " << (using_model_ ? "model" : "accel");
432 VLOG(2) << "Residual " << last_residual_;
433 VLOG(2) << "Filtered Residual " << filtered_residual_;
434 VLOG(2) << "buffer size " << branches_.size();
435 VLOG(2) << "Model state " << current_state_.model_state.transpose();
436 VLOG(2) << "Accel state " << current_state_.accel_state.transpose();
437 VLOG(2) << "Accel state for model "
438 << AccelStateForModelState(current_state_.model_state).transpose();
439 VLOG(2) << "Input acce " << accel.transpose();
440 VLOG(2) << "Input gyro " << gyro.transpose();
441 VLOG(2) << "Input voltage " << voltage.transpose();
442 VLOG(2) << "Input encoder " << encoders.transpose();
443 VLOG(2) << "yaw rate " << yaw_rate;
444
445 CHECK(std::isfinite(last_residual_));
446}
447
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800448const ModelBasedLocalizer::OldPosition ModelBasedLocalizer::GetStateForTime(
449 aos::monotonic_clock::time_point time) {
450 if (old_positions_.empty()) {
451 return OldPosition{};
452 }
453
454 aos::monotonic_clock::duration lowest_time_error =
455 aos::monotonic_clock::duration::max();
456 const OldPosition *best_match = nullptr;
457 for (const OldPosition &sample : old_positions_) {
458 const aos::monotonic_clock::duration time_error =
459 std::chrono::abs(sample.sample_time - time);
460 if (time_error < lowest_time_error) {
461 lowest_time_error = time_error;
462 best_match = &sample;
463 }
464 }
465 return *best_match;
466}
467
468namespace {
469// Converts a flatbuffer TransformationMatrix to an Eigen matrix. Technically,
470// this should be able to do a single memcpy, but the extra verbosity here seems
471// appropriate.
472Eigen::Matrix<double, 4, 4> FlatbufferToTransformationMatrix(
473 const frc971::vision::calibration::TransformationMatrix &flatbuffer) {
474 CHECK_EQ(16u, CHECK_NOTNULL(flatbuffer.data())->size());
475 Eigen::Matrix<double, 4, 4> result;
476 result.setIdentity();
477 for (int row = 0; row < 4; ++row) {
478 for (int col = 0; col < 4; ++col) {
479 result(row, col) = (*flatbuffer.data())[row * 4 + col];
480 }
481 }
482 return result;
483}
484
485// Node names of the pis to listen for cameras from.
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800486const std::array<std::string_view, 4> kPisToUse{"pi1", "pi2", "pi3", "pi4"};
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800487}
488
489const Eigen::Matrix<double, 4, 4> ModelBasedLocalizer::CameraTransform(
490 const OldPosition &state,
491 const frc971::vision::calibration::CameraCalibration *calibration,
492 std::optional<RejectionReason> *rejection_reason) const {
493 CHECK_NOTNULL(rejection_reason);
494 CHECK_NOTNULL(calibration);
495 // Per the CameraCalibration specification, we can actually determine whether
496 // the camera is the turret camera just from the presence of the
497 // turret_extrinsics member.
498 const bool is_turret = calibration->has_turret_extrinsics();
499 // Ignore readings when the turret is spinning too fast, on the assumption
500 // that the odds of screwing up the time compensation are higher.
501 // Note that the current number here is chosen pretty arbitrarily--1 rad / sec
502 // seems reasonable, but may be unnecessarily low or high.
503 constexpr double kMaxTurretVelocity = 1.0;
504 if (is_turret && std::abs(state.turret_velocity) > kMaxTurretVelocity &&
505 !rejection_reason->has_value()) {
506 *rejection_reason = RejectionReason::TURRET_TOO_FAST;
507 }
508 CHECK(calibration->has_fixed_extrinsics());
509 const Eigen::Matrix<double, 4, 4> fixed_extrinsics =
510 FlatbufferToTransformationMatrix(*calibration->fixed_extrinsics());
511
512 // Calculate the pose of the camera relative to the robot origin.
513 Eigen::Matrix<double, 4, 4> H_robot_camera = fixed_extrinsics;
514 if (is_turret) {
515 H_robot_camera =
516 H_robot_camera *
517 frc971::control_loops::TransformationMatrixForYaw<double>(
518 state.turret_position) *
519 FlatbufferToTransformationMatrix(*calibration->turret_extrinsics());
520 }
521 return H_robot_camera;
522}
523
524const std::optional<Eigen::Vector2d>
525ModelBasedLocalizer::CameraMeasuredRobotPosition(
526 const OldPosition &state, const y2022::vision::TargetEstimate *target,
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800527 std::optional<RejectionReason> *rejection_reason,
528 Eigen::Matrix<double, 4, 4> *H_field_camera_measured) const {
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800529 if (!target->has_camera_calibration()) {
530 *rejection_reason = RejectionReason::NO_CALIBRATION;
531 return std::nullopt;
532 }
533 const Eigen::Matrix<double, 4, 4> H_robot_camera =
534 CameraTransform(state, target->camera_calibration(), rejection_reason);
535 const control_loops::Pose robot_pose(
536 {state.xytheta(0), state.xytheta(1), 0.0}, state.xytheta(2));
537 const Eigen::Matrix<double, 4, 4> H_field_robot =
538 robot_pose.AsTransformationMatrix();
539 // Current estimated pose of the camera in the global frame.
540 // Note that this is all really just an elaborate way of extracting the
541 // current estimated camera yaw, and nothing else.
542 const Eigen::Matrix<double, 4, 4> H_field_camera =
543 H_field_robot * H_robot_camera;
544 // Grab the implied yaw of the camera (the +Z axis is coming out of the front
545 // of the cameras).
546 const Eigen::Vector3d rotated_camera_z =
547 H_field_camera.block<3, 3>(0, 0) * Eigen::Vector3d(0, 0, 1);
548 const double camera_yaw =
549 std::atan2(rotated_camera_z.y(), rotated_camera_z.x());
550 // All right, now we need to use the heading and distance from the
551 // TargetEstimate, plus the yaw embedded in the camera_pose, to determine what
552 // the implied X/Y position of the robot is. To do this, we calculate the
553 // heading/distance from the target to the robot. The distance is easy, since
554 // that's the same as the distance from the robot to the target. The heading
555 // isn't too hard, but is obnoxious to think about, since the heading from the
556 // target to the robot is distinct from the heading from the robot to the
557 // target.
558
559 // Just to walk through examples to confirm that the below calculation is
560 // correct:
561 // * If yaw = 0, and angle_to_target = 0, we are at 180 deg relative to the
562 // target.
563 // * If yaw = 90 deg, and angle_to_target = 0, we are at -90 deg relative to
564 // the target.
565 // * If yaw = 0, and angle_to_target = 90 deg, we are at -90 deg relative to
566 // the target.
567 const double heading_from_target =
568 aos::math::NormalizeAngle(M_PI + camera_yaw + target->angle_to_target());
569 const double distance_from_target = target->distance();
570 // Extract the implied camera position on the field.
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800571 *H_field_camera_measured = H_field_camera;
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800572 // TODO(james): Are we going to need to evict the roll/pitch components of the
573 // camera extrinsics this year as well?
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800574 (*H_field_camera_measured)(0, 3) =
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800575 distance_from_target * std::cos(heading_from_target) + kVisionTargetX;
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800576 (*H_field_camera_measured)(1, 3) =
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800577 distance_from_target * std::sin(heading_from_target) + kVisionTargetY;
578 const Eigen::Matrix<double, 4, 4> H_field_robot_measured =
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800579 *H_field_camera_measured * H_robot_camera.inverse();
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800580 return H_field_robot_measured.block<2, 1>(0, 3);
581}
582
583void ModelBasedLocalizer::HandleImageMatch(
584 aos::monotonic_clock::time_point sample_time,
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800585 const y2022::vision::TargetEstimate *target, int camera_index) {
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800586 std::optional<RejectionReason> rejection_reason;
587
588 const OldPosition &state = GetStateForTime(sample_time);
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800589 Eigen::Matrix<double, 4, 4> H_field_camera_measured;
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800590 const std::optional<Eigen::Vector2d> measured_robot_position =
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800591 CameraMeasuredRobotPosition(state, target, &rejection_reason,
592 &H_field_camera_measured);
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800593 // Technically, rejection_reason should always be set if
594 // measured_robot_position is nullopt, but in the future we may have more
595 // recoverable rejection reasons that we wish to allow to propagate further
596 // into the process.
597 if (!measured_robot_position || rejection_reason.has_value()) {
598 CHECK(rejection_reason.has_value());
599 TallyRejection(rejection_reason.value());
600 return;
601 }
602
603 // Next, go through and do the actual Kalman corrections for the x/y
604 // measurement, for both the accel state and the model-based state.
605 const Eigen::Matrix<double, kNModelStates, kNModelStates> A_continuous_model =
606 AModel(current_state_.model_state);
607
608 Eigen::Matrix<double, kNModelStates, kNModelStates> A_discrete_model;
609 Eigen::Matrix<double, kNModelStates, kNModelStates> Q_discrete_model;
610
611 DiscretizeQAFast(Q_continuous_model_, A_continuous_model, kNominalDt,
612 &Q_discrete_model, &A_discrete_model);
613
614 Eigen::Matrix<double, 2, kNModelStates> H_model;
615 H_model.setZero();
616 Eigen::Matrix<double, 2, kNAccelStates> H_accel;
617 H_accel.setZero();
618 Eigen::Matrix<double, 2, 2> R;
619 R.setZero();
620 H_model(0, kX) = 1.0;
621 H_model(1, kY) = 1.0;
622 H_accel(0, kX) = 1.0;
623 H_accel(1, kY) = 1.0;
624 R.diagonal() << 1e-2, 1e-2;
625
626 const Eigen::Matrix<double, kNModelStates, 2> K_model =
627 P_model_ * H_model.transpose() *
628 (H_model * P_model_ * H_model.transpose() + R).inverse();
629 const Eigen::Matrix<double, kNAccelStates, 2> K_accel =
630 P_accel_ * H_accel.transpose() *
631 (H_accel * P_accel_ * H_accel.transpose() + R).inverse();
632 P_model_ = (Eigen::Matrix<double, kNModelStates, kNModelStates>::Identity() -
633 K_model * H_model) *
634 P_model_;
635 P_accel_ = (Eigen::Matrix<double, kNAccelStates, kNAccelStates>::Identity() -
636 K_accel * H_accel) *
637 P_accel_;
638 // And now we have to correct *everything* on all the branches:
639 for (CombinedState &state : branches_) {
640 state.model_state += K_model * (measured_robot_position.value() -
641 H_model * state.model_state);
642 state.accel_state += K_accel * (measured_robot_position.value() -
643 H_accel * state.accel_state);
644 }
645 current_state_.model_state +=
646 K_model *
647 (measured_robot_position.value() - H_model * current_state_.model_state);
648 current_state_.accel_state +=
649 K_accel *
650 (measured_robot_position.value() - H_accel * current_state_.accel_state);
651
652 statistics_.total_accepted++;
653 statistics_.total_candidates++;
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800654
655 const Eigen::Vector3d camera_z_in_field =
656 H_field_camera_measured.block<3, 3>(0, 0) * Eigen::Vector3d::UnitZ();
657 const double camera_yaw =
658 std::atan2(camera_z_in_field.y(), camera_z_in_field.x());
659
660 TargetEstimateDebugT debug;
661 debug.camera = static_cast<uint8_t>(camera_index);
662 debug.camera_x = H_field_camera_measured(0, 3);
663 debug.camera_y = H_field_camera_measured(1, 3);
664 debug.camera_theta = camera_yaw;
665 debug.implied_robot_x = measured_robot_position.value().x();
666 debug.implied_robot_y = measured_robot_position.value().y();
667 debug.implied_robot_theta = xytheta()(2);
668 debug.implied_turret_goal =
669 aos::math::NormalizeAngle(camera_yaw + target->angle_to_target());
670 debug.accepted = true;
671 debug.image_age_sec = aos::time::DurationInSeconds(t_ - sample_time);
672 image_debugs_.push_back(debug);
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800673}
674
675void ModelBasedLocalizer::HandleTurret(
676 aos::monotonic_clock::time_point sample_time, double turret_position,
677 double turret_velocity) {
678 last_turret_update_ = sample_time;
679 latest_turret_position_ = turret_position;
680 latest_turret_velocity_ = turret_velocity;
681}
682
James Kuszmaul29c59522022-02-12 16:44:26 -0800683void ModelBasedLocalizer::HandleReset(aos::monotonic_clock::time_point now,
684 const Eigen::Vector3d &xytheta) {
685 branches_.Reset();
686 t_ = now;
687 using_model_ = true;
688 current_state_.model_state << xytheta(0), xytheta(1), xytheta(2),
689 current_state_.model_state(kLeftEncoder), 0.0, 0.0,
690 current_state_.model_state(kRightEncoder), 0.0, 0.0;
691 current_state_.accel_state =
692 AccelStateForModelState(current_state_.model_state);
693 last_residual_ = 0.0;
694 filtered_residual_ = 0.0;
695 filtered_residual_accel_.setZero();
696 abs_accel_.setZero();
697}
698
699flatbuffers::Offset<AccelBasedState> ModelBasedLocalizer::BuildAccelState(
700 flatbuffers::FlatBufferBuilder *fbb, const AccelState &state) {
701 AccelBasedState::Builder accel_state_builder(*fbb);
702 accel_state_builder.add_x(state(kX));
703 accel_state_builder.add_y(state(kY));
704 accel_state_builder.add_theta(state(kTheta));
705 accel_state_builder.add_velocity_x(state(kVelocityX));
706 accel_state_builder.add_velocity_y(state(kVelocityY));
707 return accel_state_builder.Finish();
708}
709
710flatbuffers::Offset<ModelBasedState> ModelBasedLocalizer::BuildModelState(
711 flatbuffers::FlatBufferBuilder *fbb, const ModelState &state) {
712 ModelBasedState::Builder model_state_builder(*fbb);
713 model_state_builder.add_x(state(kX));
714 model_state_builder.add_y(state(kY));
715 model_state_builder.add_theta(state(kTheta));
716 model_state_builder.add_left_encoder(state(kLeftEncoder));
717 model_state_builder.add_left_velocity(state(kLeftVelocity));
718 model_state_builder.add_left_voltage_error(state(kLeftVoltageError));
719 model_state_builder.add_right_encoder(state(kRightEncoder));
720 model_state_builder.add_right_velocity(state(kRightVelocity));
721 model_state_builder.add_right_voltage_error(state(kRightVoltageError));
722 return model_state_builder.Finish();
723}
724
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800725flatbuffers::Offset<CumulativeStatistics>
726ModelBasedLocalizer::PopulateStatistics(flatbuffers::FlatBufferBuilder *fbb) {
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800727 const auto rejections_offset = fbb->CreateVector(
728 statistics_.rejection_counts.data(), statistics_.rejection_counts.size());
729
730 CumulativeStatistics::Builder stats_builder(*fbb);
731 stats_builder.add_total_accepted(statistics_.total_accepted);
732 stats_builder.add_total_candidates(statistics_.total_candidates);
733 stats_builder.add_rejection_reason_count(rejections_offset);
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800734 return stats_builder.Finish();
735}
736
737flatbuffers::Offset<ModelBasedStatus> ModelBasedLocalizer::PopulateStatus(
738 flatbuffers::FlatBufferBuilder *fbb) {
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800739 const flatbuffers::Offset<CumulativeStatistics> stats_offset =
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800740 PopulateStatistics(fbb);
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800741
James Kuszmaul29c59522022-02-12 16:44:26 -0800742 const flatbuffers::Offset<control_loops::drivetrain::DownEstimatorState>
743 down_estimator_offset = down_estimator_.PopulateStatus(fbb, t_);
744
745 const CombinedState &state = current_state_;
746
747 const flatbuffers::Offset<ModelBasedState> model_state_offset =
748 BuildModelState(fbb, state.model_state);
749
750 const flatbuffers::Offset<AccelBasedState> accel_state_offset =
751 BuildAccelState(fbb, state.accel_state);
752
753 const flatbuffers::Offset<AccelBasedState> oldest_accel_state_offset =
754 branches_.empty() ? flatbuffers::Offset<AccelBasedState>()
755 : BuildAccelState(fbb, branches_[0].accel_state);
756
757 const flatbuffers::Offset<ModelBasedState> oldest_model_state_offset =
758 branches_.empty() ? flatbuffers::Offset<ModelBasedState>()
759 : BuildModelState(fbb, branches_[0].model_state);
760
761 ModelBasedStatus::Builder builder(*fbb);
762 builder.add_accel_state(accel_state_offset);
763 builder.add_oldest_accel_state(oldest_accel_state_offset);
764 builder.add_oldest_model_state(oldest_model_state_offset);
765 builder.add_model_state(model_state_offset);
766 builder.add_using_model(using_model_);
767 builder.add_residual(last_residual_);
768 builder.add_filtered_residual(filtered_residual_);
769 builder.add_velocity_residual(velocity_residual_);
770 builder.add_accel_residual(accel_residual_);
771 builder.add_theta_rate_residual(theta_rate_residual_);
772 builder.add_down_estimator(down_estimator_offset);
773 builder.add_x(xytheta()(0));
774 builder.add_y(xytheta()(1));
775 builder.add_theta(xytheta()(2));
776 builder.add_implied_accel_x(abs_accel_(0));
777 builder.add_implied_accel_y(abs_accel_(1));
778 builder.add_implied_accel_z(abs_accel_(2));
779 builder.add_clock_resets(clock_resets_);
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800780 builder.add_statistics(stats_offset);
James Kuszmaul29c59522022-02-12 16:44:26 -0800781 return builder.Finish();
782}
783
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800784flatbuffers::Offset<LocalizerVisualization>
785ModelBasedLocalizer::PopulateVisualization(
786 flatbuffers::FlatBufferBuilder *fbb) {
787 const flatbuffers::Offset<CumulativeStatistics> stats_offset =
788 PopulateStatistics(fbb);
789
790 aos::SizedArray<flatbuffers::Offset<TargetEstimateDebug>, kDebugBufferSize>
791 debug_offsets;
792
793 for (const TargetEstimateDebugT& debug : image_debugs_) {
794 debug_offsets.push_back(PackTargetEstimateDebug(debug, fbb));
795 }
796
797 image_debugs_.clear();
798
799 const flatbuffers::Offset<
800 flatbuffers::Vector<flatbuffers::Offset<TargetEstimateDebug>>>
801 debug_offset =
802 fbb->CreateVector(debug_offsets.data(), debug_offsets.size());
803
804 LocalizerVisualization::Builder builder(*fbb);
805 builder.add_statistics(stats_offset);
806 builder.add_targets(debug_offset);
807 return builder.Finish();
808}
809
810void ModelBasedLocalizer::TallyRejection(const RejectionReason reason) {
811 statistics_.total_candidates++;
812 statistics_.rejection_counts[static_cast<size_t>(reason)]++;
813 TargetEstimateDebugT debug;
814 debug.accepted = false;
815 debug.rejection_reason = reason;
816 image_debugs_.push_back(debug);
817}
818
819flatbuffers::Offset<TargetEstimateDebug>
820ModelBasedLocalizer::PackTargetEstimateDebug(
821 const TargetEstimateDebugT &debug, flatbuffers::FlatBufferBuilder *fbb) {
822 if (!debug.accepted) {
823 TargetEstimateDebug::Builder builder(*fbb);
824 builder.add_accepted(debug.accepted);
825 builder.add_rejection_reason(debug.rejection_reason);
826 return builder.Finish();
827 } else {
828 flatbuffers::Offset<TargetEstimateDebug> offset =
829 TargetEstimateDebug::Pack(*fbb, &debug);
830 flatbuffers::GetMutableTemporaryPointer(*fbb, offset)
831 ->clear_rejection_reason();
832 return offset;
833 }
834}
835
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800836namespace {
837// Period at which the encoder readings from the IMU board wrap.
838static double DrivetrainWrapPeriod() {
839 return y2022::constants::Values::DrivetrainEncoderToMeters(1 << 16);
840}
841}
842
James Kuszmaul29c59522022-02-12 16:44:26 -0800843EventLoopLocalizer::EventLoopLocalizer(
844 aos::EventLoop *event_loop,
845 const control_loops::drivetrain::DrivetrainConfig<double> &dt_config)
846 : event_loop_(event_loop),
847 model_based_(dt_config),
848 status_sender_(event_loop_->MakeSender<LocalizerStatus>("/localizer")),
849 output_sender_(event_loop_->MakeSender<LocalizerOutput>("/localizer")),
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800850 visualization_sender_(
851 event_loop_->MakeSender<LocalizerVisualization>("/localizer")),
James Kuszmaul29c59522022-02-12 16:44:26 -0800852 output_fetcher_(
853 event_loop_->MakeFetcher<frc971::control_loops::drivetrain::Output>(
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800854 "/drivetrain")),
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800855 clock_offset_fetcher_(
856 event_loop_->MakeFetcher<aos::message_bridge::ServerStatistics>(
857 "/aos")),
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800858 left_encoder_(-DrivetrainWrapPeriod() / 2.0, DrivetrainWrapPeriod()),
859 right_encoder_(-DrivetrainWrapPeriod() / 2.0, DrivetrainWrapPeriod()) {
James Kuszmaul29c59522022-02-12 16:44:26 -0800860 event_loop_->MakeWatcher(
861 "/drivetrain",
862 [this](
863 const frc971::control_loops::drivetrain::LocalizerControl &control) {
864 const double theta = control.keep_current_theta()
865 ? model_based_.xytheta()(2)
866 : control.theta();
867 model_based_.HandleReset(event_loop_->monotonic_now(),
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800868 {control.x(), control.y(), theta});
James Kuszmaul29c59522022-02-12 16:44:26 -0800869 });
870 event_loop_->MakeWatcher(
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800871 "/superstructure",
872 [this](const y2022::control_loops::superstructure::Status &status) {
873 if (!status.has_turret()) {
874 return;
875 }
876 CHECK(status.has_turret());
877 model_based_.HandleTurret(event_loop_->context().monotonic_event_time,
878 status.turret()->position(),
879 status.turret()->velocity());
880 });
881
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800882 for (size_t camera_index = 0; camera_index < kPisToUse.size(); ++camera_index) {
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800883 event_loop_->MakeWatcher(
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800884 absl::StrCat("/", kPisToUse[camera_index], "/camera"),
885 [this, camera_index](const y2022::vision::TargetEstimate &target) {
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800886 const std::optional<aos::monotonic_clock::duration> monotonic_offset =
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800887 ClockOffset(kPisToUse[camera_index]);
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800888 if (!monotonic_offset.has_value()) {
889 return;
890 }
891 // TODO(james): Get timestamp from message contents.
892 aos::monotonic_clock::time_point capture_time(
893 event_loop_->context().monotonic_remote_time - monotonic_offset.value());
894 if (capture_time > event_loop_->context().monotonic_event_time) {
895 model_based_.TallyRejection(RejectionReason::IMAGE_FROM_FUTURE);
896 return;
897 }
James Kuszmaul0dedb5e2022-03-05 16:02:20 -0800898 model_based_.HandleImageMatch(capture_time, &target, camera_index);
899 if (model_based_.NumQueuedImageDebugs() ==
900 ModelBasedLocalizer::kDebugBufferSize ||
901 (last_visualization_send_ + kMinVisualizationPeriod <
902 event_loop_->monotonic_now())) {
903 auto builder = visualization_sender_.MakeBuilder();
904 visualization_sender_.CheckOk(
905 builder.Send(model_based_.PopulateVisualization(builder.fbb())));
906 }
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800907 });
908 }
909 event_loop_->MakeWatcher(
James Kuszmaul29c59522022-02-12 16:44:26 -0800910 "/localizer", [this](const frc971::IMUValuesBatch &values) {
911 CHECK(values.has_readings());
James Kuszmaul29c59522022-02-12 16:44:26 -0800912 output_fetcher_.Fetch();
913 for (const IMUValues *value : *values.readings()) {
914 zeroer_.InsertAndProcessMeasurement(*value);
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800915 const Eigen::Vector2d encoders{
916 left_encoder_.Unwrap(value->left_encoder()),
917 right_encoder_.Unwrap(value->right_encoder())};
James Kuszmaul29c59522022-02-12 16:44:26 -0800918 if (zeroer_.Zeroed()) {
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800919 const aos::monotonic_clock::time_point pico_timestamp{
920 std::chrono::microseconds(value->pico_timestamp_us())};
921 // TODO(james): If we get large enough drift off of the pico,
922 // actually do something about it.
923 if (!pico_offset_.has_value()) {
924 pico_offset_ =
925 event_loop_->context().monotonic_event_time - pico_timestamp;
926 last_pico_timestamp_ = pico_timestamp;
James Kuszmaule5f67dd2022-02-12 20:08:29 -0800927 }
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800928 if (pico_timestamp < last_pico_timestamp_) {
929 pico_offset_.value() += std::chrono::microseconds(1ULL << 32);
930 }
931 const aos::monotonic_clock::time_point sample_timestamp =
932 pico_offset_.value() + pico_timestamp;
933 pico_offset_error_ =
934 event_loop_->context().monotonic_event_time - sample_timestamp;
935 const bool disabled =
936 (output_fetcher_.get() == nullptr) ||
937 (output_fetcher_.context().monotonic_event_time +
938 std::chrono::milliseconds(10) <
939 event_loop_->context().monotonic_event_time);
940 model_based_.HandleImu(
941 sample_timestamp,
942 zeroer_.ZeroedGyro(), zeroer_.ZeroedAccel(), encoders,
943 disabled ? Eigen::Vector2d::Zero()
944 : Eigen::Vector2d{output_fetcher_->left_voltage(),
945 output_fetcher_->right_voltage()});
946 last_pico_timestamp_ = pico_timestamp;
James Kuszmaul29c59522022-02-12 16:44:26 -0800947 }
948 {
949 auto builder = status_sender_.MakeBuilder();
950 const flatbuffers::Offset<ModelBasedStatus> model_based_status =
951 model_based_.PopulateStatus(builder.fbb());
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800952 const flatbuffers::Offset<control_loops::drivetrain::ImuZeroerState>
953 zeroer_status = zeroer_.PopulateStatus(builder.fbb());
James Kuszmaul29c59522022-02-12 16:44:26 -0800954 LocalizerStatus::Builder status_builder =
955 builder.MakeBuilder<LocalizerStatus>();
956 status_builder.add_model_based(model_based_status);
957 status_builder.add_zeroed(zeroer_.Zeroed());
958 status_builder.add_faulted_zero(zeroer_.Faulted());
James Kuszmaul5ed29dd2022-02-13 18:32:06 -0800959 status_builder.add_zeroing(zeroer_status);
960 status_builder.add_left_encoder(encoders(0));
961 status_builder.add_right_encoder(encoders(1));
962 if (pico_offset_.has_value()) {
963 status_builder.add_pico_offset_ns(pico_offset_.value().count());
964 status_builder.add_pico_offset_error_ns(
965 pico_offset_error_.count());
966 }
James Kuszmaul29c59522022-02-12 16:44:26 -0800967 builder.CheckOk(builder.Send(status_builder.Finish()));
968 }
969 if (last_output_send_ + std::chrono::milliseconds(5) <
970 event_loop_->context().monotonic_event_time) {
971 auto builder = output_sender_.MakeBuilder();
972 LocalizerOutput::Builder output_builder =
973 builder.MakeBuilder<LocalizerOutput>();
James Kuszmaul1798c072022-02-13 15:32:11 -0800974 // TODO(james): Should we bother to try to estimate time offsets for
975 // the pico?
976 output_builder.add_monotonic_timestamp_ns(
977 value->monotonic_timestamp_ns());
James Kuszmaul29c59522022-02-12 16:44:26 -0800978 output_builder.add_x(model_based_.xytheta()(0));
979 output_builder.add_y(model_based_.xytheta()(1));
980 output_builder.add_theta(model_based_.xytheta()(2));
James Kuszmaul10d3fd42022-02-25 21:57:36 -0800981 const Eigen::Quaterniond &orientation = model_based_.orientation();
982 Quaternion quaternion;
983 quaternion.mutate_x(orientation.x());
984 quaternion.mutate_y(orientation.y());
985 quaternion.mutate_z(orientation.z());
986 quaternion.mutate_w(orientation.w());
987 output_builder.add_orientation(&quaternion);
James Kuszmaul29c59522022-02-12 16:44:26 -0800988 builder.CheckOk(builder.Send(output_builder.Finish()));
989 last_output_send_ = event_loop_->monotonic_now();
990 }
991 }
992 });
993}
994
James Kuszmaul8c4f6592022-02-26 15:49:30 -0800995std::optional<aos::monotonic_clock::duration> EventLoopLocalizer::ClockOffset(
996 std::string_view pi) {
997 std::optional<aos::monotonic_clock::duration> monotonic_offset;
998 clock_offset_fetcher_.Fetch();
999 if (clock_offset_fetcher_.get() != nullptr) {
1000 for (const auto connection : *clock_offset_fetcher_->connections()) {
1001 if (connection->has_node() && connection->node()->has_name() &&
1002 connection->node()->name()->string_view() == pi) {
1003 if (connection->has_monotonic_offset()) {
1004 monotonic_offset =
1005 std::chrono::nanoseconds(connection->monotonic_offset());
1006 } else {
1007 // If we don't have a monotonic offset, that means we aren't
1008 // connected.
1009 model_based_.TallyRejection(
1010 RejectionReason::MESSAGE_BRIDGE_DISCONNECTED);
1011 return std::nullopt;
1012 }
1013 break;
1014 }
1015 }
1016 }
1017 CHECK(monotonic_offset.has_value());
1018 return monotonic_offset;
1019}
1020
James Kuszmaul29c59522022-02-12 16:44:26 -08001021} // namespace frc971::controls