Unify y2022 localizer into y2022/localizer folder
Somehow ended up creating multiple folders....
Change-Id: Ib8e7e69a7583379caecb9d0639042c77bba039ed
Signed-off-by: James Kuszmaul <jabukuszmaul+collab@gmail.com>
diff --git a/y2022/localizer/localizer.cc b/y2022/localizer/localizer.cc
new file mode 100644
index 0000000..8d4f908
--- /dev/null
+++ b/y2022/localizer/localizer.cc
@@ -0,0 +1,629 @@
+#include "y2022/localizer/localizer.h"
+
+#include "frc971/control_loops/c2d.h"
+#include "frc971/wpilib/imu_batch_generated.h"
+#include "y2022/constants.h"
+
+namespace frc971::controls {
+
+namespace {
+constexpr double kG = 9.80665;
+constexpr std::chrono::microseconds kNominalDt(500);
+
+template <int N>
+Eigen::Matrix<double, N, 1> MakeState(std::vector<double> values) {
+ CHECK_EQ(static_cast<size_t>(N), values.size());
+ Eigen::Matrix<double, N, 1> vector;
+ for (int ii = 0; ii < N; ++ii) {
+ vector(ii, 0) = values[ii];
+ }
+ return vector;
+}
+} // namespace
+
+ModelBasedLocalizer::ModelBasedLocalizer(
+ const control_loops::drivetrain::DrivetrainConfig<double> &dt_config)
+ : dt_config_(dt_config),
+ velocity_drivetrain_coefficients_(
+ dt_config.make_hybrid_drivetrain_velocity_loop()
+ .plant()
+ .coefficients()),
+ down_estimator_(dt_config) {
+ CHECK_EQ(branches_.capacity(), static_cast<size_t>(std::chrono::seconds(1) /
+ kNominalDt / kBranchPeriod));
+ if (dt_config_.is_simulated) {
+ down_estimator_.assume_perfect_gravity();
+ }
+ A_continuous_accel_.setZero();
+ A_continuous_model_.setZero();
+ B_continuous_accel_.setZero();
+ B_continuous_model_.setZero();
+
+ A_continuous_accel_(kX, kVelocityX) = 1.0;
+ A_continuous_accel_(kY, kVelocityY) = 1.0;
+
+ const double diameter = 2.0 * dt_config_.robot_radius;
+
+ A_continuous_model_(kTheta, kLeftVelocity) = -1.0 / diameter;
+ A_continuous_model_(kTheta, kRightVelocity) = 1.0 / diameter;
+ A_continuous_model_(kLeftEncoder, kLeftVelocity) = 1.0;
+ A_continuous_model_(kRightEncoder, kRightVelocity) = 1.0;
+ const auto &vel_coefs = velocity_drivetrain_coefficients_;
+ A_continuous_model_(kLeftVelocity, kLeftVelocity) =
+ vel_coefs.A_continuous(0, 0);
+ A_continuous_model_(kLeftVelocity, kRightVelocity) =
+ vel_coefs.A_continuous(0, 1);
+ A_continuous_model_(kRightVelocity, kLeftVelocity) =
+ vel_coefs.A_continuous(1, 0);
+ A_continuous_model_(kRightVelocity, kRightVelocity) =
+ vel_coefs.A_continuous(1, 1);
+
+ A_continuous_model_(kLeftVelocity, kLeftVoltageError) =
+ 1 * vel_coefs.B_continuous(0, 0);
+ A_continuous_model_(kLeftVelocity, kRightVoltageError) =
+ 1 * vel_coefs.B_continuous(0, 1);
+ A_continuous_model_(kRightVelocity, kLeftVoltageError) =
+ 1 * vel_coefs.B_continuous(1, 0);
+ A_continuous_model_(kRightVelocity, kRightVoltageError) =
+ 1 * vel_coefs.B_continuous(1, 1);
+
+ B_continuous_model_.block<1, 2>(kLeftVelocity, kLeftVoltage) =
+ vel_coefs.B_continuous.row(0);
+ B_continuous_model_.block<1, 2>(kRightVelocity, kLeftVoltage) =
+ vel_coefs.B_continuous.row(1);
+
+ B_continuous_accel_(kVelocityX, kAccelX) = 1.0;
+ B_continuous_accel_(kVelocityY, kAccelY) = 1.0;
+ B_continuous_accel_(kTheta, kThetaRate) = 1.0;
+
+ Q_continuous_model_.setZero();
+ Q_continuous_model_.diagonal() << 1e-4, 1e-4, 1e-4, 1e-2, 1e-0, 1e-0, 1e-2,
+ 1e-0, 1e-0;
+
+ P_model_ = Q_continuous_model_ * aos::time::DurationInSeconds(kNominalDt);
+}
+
+Eigen::Matrix<double, ModelBasedLocalizer::kNModelStates,
+ ModelBasedLocalizer::kNModelStates>
+ModelBasedLocalizer::AModel(
+ const ModelBasedLocalizer::ModelState &state) const {
+ Eigen::Matrix<double, kNModelStates, kNModelStates> A = A_continuous_model_;
+ const double theta = state(kTheta);
+ const double stheta = std::sin(theta);
+ const double ctheta = std::cos(theta);
+ const double velocity = (state(kLeftVelocity) + state(kRightVelocity)) / 2.0;
+ A(kX, kTheta) = -stheta * velocity;
+ A(kX, kLeftVelocity) = ctheta / 2.0;
+ A(kX, kRightVelocity) = ctheta / 2.0;
+ A(kY, kTheta) = ctheta * velocity;
+ A(kY, kLeftVelocity) = stheta / 2.0;
+ A(kY, kRightVelocity) = stheta / 2.0;
+ return A;
+}
+
+Eigen::Matrix<double, ModelBasedLocalizer::kNAccelStates,
+ ModelBasedLocalizer::kNAccelStates>
+ModelBasedLocalizer::AAccel() const {
+ return A_continuous_accel_;
+}
+
+ModelBasedLocalizer::ModelState ModelBasedLocalizer::DiffModel(
+ const ModelBasedLocalizer::ModelState &state,
+ const ModelBasedLocalizer::ModelInput &U) const {
+ ModelState x_dot = AModel(state) * state + B_continuous_model_ * U;
+ const double theta = state(kTheta);
+ const double stheta = std::sin(theta);
+ const double ctheta = std::cos(theta);
+ const double velocity = (state(kLeftVelocity) + state(kRightVelocity)) / 2.0;
+ x_dot(kX) = ctheta * velocity;
+ x_dot(kY) = stheta * velocity;
+ return x_dot;
+}
+
+ModelBasedLocalizer::AccelState ModelBasedLocalizer::DiffAccel(
+ const ModelBasedLocalizer::AccelState &state,
+ const ModelBasedLocalizer::AccelInput &U) const {
+ return AAccel() * state + B_continuous_accel_ * U;
+}
+
+ModelBasedLocalizer::ModelState ModelBasedLocalizer::UpdateModel(
+ const ModelBasedLocalizer::ModelState &model,
+ const ModelBasedLocalizer::ModelInput &input,
+ const aos::monotonic_clock::duration dt) const {
+ return control_loops::RungeKutta(
+ std::bind(&ModelBasedLocalizer::DiffModel, this, std::placeholders::_1,
+ input),
+ model, aos::time::DurationInSeconds(dt));
+}
+
+ModelBasedLocalizer::AccelState ModelBasedLocalizer::UpdateAccel(
+ const ModelBasedLocalizer::AccelState &accel,
+ const ModelBasedLocalizer::AccelInput &input,
+ const aos::monotonic_clock::duration dt) const {
+ return control_loops::RungeKutta(
+ std::bind(&ModelBasedLocalizer::DiffAccel, this, std::placeholders::_1,
+ input),
+ accel, aos::time::DurationInSeconds(dt));
+}
+
+ModelBasedLocalizer::AccelState ModelBasedLocalizer::AccelStateForModelState(
+ const ModelBasedLocalizer::ModelState &state) const {
+ const double robot_speed =
+ (state(kLeftVelocity) + state(kRightVelocity)) / 2.0;
+ const double lat_speed = (AModel(state) * state)(kTheta) * long_offset_;
+ const double velocity_x = std::cos(state(kTheta)) * robot_speed -
+ std::sin(state(kTheta)) * lat_speed;
+ const double velocity_y = std::sin(state(kTheta)) * robot_speed +
+ std::cos(state(kTheta)) * lat_speed;
+ return (AccelState() << state(0), state(1), state(2), velocity_x, velocity_y)
+ .finished();
+}
+
+ModelBasedLocalizer::ModelState ModelBasedLocalizer::ModelStateForAccelState(
+ const ModelBasedLocalizer::AccelState &state,
+ const Eigen::Vector2d &encoders, const double yaw_rate) const {
+ const double robot_speed = state(kVelocityX) * std::cos(state(kTheta)) +
+ state(kVelocityY) * std::sin(state(kTheta));
+ const double radius = dt_config_.robot_radius;
+ const double left_velocity = robot_speed - yaw_rate * radius;
+ const double right_velocity = robot_speed + yaw_rate * radius;
+ return (ModelState() << state(0), state(1), state(2), encoders(0),
+ left_velocity, 0.0, encoders(1), right_velocity, 0.0)
+ .finished();
+}
+
+double ModelBasedLocalizer::ModelDivergence(
+ const ModelBasedLocalizer::CombinedState &state,
+ const ModelBasedLocalizer::AccelInput &accel_inputs,
+ const Eigen::Vector2d &filtered_accel,
+ const ModelBasedLocalizer::ModelInput &model_inputs) {
+ // Convert the model state into the acceleration-based state-space and check
+ // the distance between the two (should really be a weighted norm, but all the
+ // numbers are on ~the same scale).
+ // TODO(james): Maybe weight lateral velocity divergence different than
+ // longitudinal? Seems like we tend to get false-positives currently when in
+ // sharp turns.
+ // TODO(james): For off-center gyros, maybe reduce noise when turning?
+ VLOG(2) << "divergence: "
+ << (state.accel_state - AccelStateForModelState(state.model_state))
+ .transpose();
+ const AccelState diff_accel = DiffAccel(state.accel_state, accel_inputs);
+ const ModelState diff_model = DiffModel(state.model_state, model_inputs);
+ const double model_lng_velocity =
+ (state.model_state(kLeftVelocity) + state.model_state(kRightVelocity)) /
+ 2.0;
+ const double model_lng_accel =
+ (diff_model(kLeftVelocity) + diff_model(kRightVelocity)) / 2.0 -
+ diff_model(kTheta) * diff_model(kTheta) * long_offset_;
+ const double model_lat_accel = diff_model(kTheta) * model_lng_velocity;
+ const Eigen::Vector2d robot_frame_accel(model_lng_accel, model_lat_accel);
+ const Eigen::Vector2d model_accel =
+ Eigen::AngleAxisd(state.model_state(kTheta), Eigen::Vector3d::UnitZ())
+ .toRotationMatrix()
+ .block<2, 2>(0, 0) *
+ robot_frame_accel;
+ const double accel_diff = (model_accel - filtered_accel).norm();
+ const double theta_rate_diff =
+ std::abs(diff_accel(kTheta) - diff_model(kTheta));
+
+ const Eigen::Vector2d accel_vel = state.accel_state.bottomRows<2>();
+ Eigen::Vector2d model_vel =
+ AccelStateForModelState(state.model_state).bottomRows<2>();
+ velocity_residual_ = (accel_vel - model_vel).norm() /
+ (1.0 + accel_vel.norm() + model_vel.norm());
+ theta_rate_residual_ = theta_rate_diff;
+ accel_residual_ = accel_diff / 4.0;
+ return velocity_residual_ + theta_rate_residual_ + accel_residual_;
+}
+
+void ModelBasedLocalizer::UpdateState(
+ CombinedState *state,
+ const Eigen::Matrix<double, kNModelStates, kNModelOutputs> &K,
+ const Eigen::Matrix<double, kNModelOutputs, 1> &Z,
+ const Eigen::Matrix<double, kNModelOutputs, kNModelStates> &H,
+ const AccelInput &accel_input, const ModelInput &model_input,
+ aos::monotonic_clock::duration dt) {
+ state->accel_state = UpdateAccel(state->accel_state, accel_input, dt);
+ if (down_estimator_.consecutive_still() > 500.0) {
+ state->accel_state(kVelocityX) *= 0.9;
+ state->accel_state(kVelocityY) *= 0.9;
+ }
+ state->model_state = UpdateModel(state->model_state, model_input, dt);
+ state->model_state += K * (Z - H * state->model_state);
+}
+
+void ModelBasedLocalizer::HandleImu(aos::monotonic_clock::time_point t,
+ const Eigen::Vector3d &gyro,
+ const Eigen::Vector3d &accel,
+ const Eigen::Vector2d encoders,
+ const Eigen::Vector2d voltage) {
+ VLOG(2) << t;
+ if (t_ == aos::monotonic_clock::min_time) {
+ t_ = t;
+ }
+ if (t_ + 2 * kNominalDt < t) {
+ t_ = t;
+ ++clock_resets_;
+ }
+ const aos::monotonic_clock::duration dt = t - t_;
+ t_ = t;
+ down_estimator_.Predict(gyro, accel, dt);
+ // TODO(james): Should we prefer this or use the down-estimator corrected
+ // version? Using the down estimator is more principled, but does create more
+ // opportunities for subtle biases.
+ const double yaw_rate = (dt_config_.imu_transform * gyro)(2);
+ const double diameter = 2.0 * dt_config_.robot_radius;
+
+ const Eigen::AngleAxis<double> orientation(
+ Eigen::AngleAxis<double>(xytheta()(kTheta), Eigen::Vector3d::UnitZ()) *
+ down_estimator_.X_hat());
+ last_orientation_ = orientation;
+
+ const Eigen::Vector3d absolute_accel =
+ orientation * dt_config_.imu_transform * kG * accel;
+ abs_accel_ = absolute_accel;
+
+ VLOG(2) << "abs accel " << absolute_accel.transpose();
+ VLOG(2) << "dt " << aos::time::DurationInSeconds(dt);
+
+ // Update all the branched states.
+ const AccelInput accel_input(absolute_accel.x(), absolute_accel.y(),
+ yaw_rate);
+ const ModelInput model_input(voltage);
+
+ const Eigen::Matrix<double, kNModelStates, kNModelStates> A_continuous =
+ AModel(current_state_.model_state);
+
+ Eigen::Matrix<double, kNModelStates, kNModelStates> A_discrete;
+ Eigen::Matrix<double, kNModelStates, kNModelStates> Q_discrete;
+
+ DiscretizeQAFast(Q_continuous_model_, A_continuous, dt, &Q_discrete,
+ &A_discrete);
+
+ P_model_ = A_discrete * P_model_ * A_discrete.transpose() + Q_discrete;
+
+ Eigen::Matrix<double, kNModelOutputs, kNModelStates> H;
+ Eigen::Matrix<double, kNModelOutputs, kNModelOutputs> R;
+ {
+ H.setZero();
+ R.setZero();
+ H(0, kLeftEncoder) = 1.0;
+ H(1, kRightEncoder) = 1.0;
+ H(2, kRightVelocity) = 1.0 / diameter;
+ H(2, kLeftVelocity) = -1.0 / diameter;
+
+ R.diagonal() << 1e-9, 1e-9, 1e-13;
+ }
+
+ const Eigen::Matrix<double, kNModelOutputs, 1> Z(encoders(0), encoders(1),
+ yaw_rate);
+
+ if (branches_.empty()) {
+ VLOG(2) << "Initializing";
+ current_state_.model_state.setZero();
+ current_state_.accel_state.setZero();
+ current_state_.model_state(kLeftEncoder) = encoders(0);
+ current_state_.model_state(kRightEncoder) = encoders(1);
+ current_state_.branch_time = t;
+ branches_.Push(current_state_);
+ }
+
+ const Eigen::Matrix<double, kNModelStates, kNModelOutputs> K =
+ P_model_ * H.transpose() * (H * P_model_ * H.transpose() + R).inverse();
+ P_model_ = (Eigen::Matrix<double, kNModelStates, kNModelStates>::Identity() -
+ K * H) *
+ P_model_;
+ VLOG(2) << "K\n" << K;
+ VLOG(2) << "Z\n" << Z.transpose();
+
+ for (CombinedState &state : branches_) {
+ UpdateState(&state, K, Z, H, accel_input, model_input, dt);
+ }
+ UpdateState(¤t_state_, K, Z, H, accel_input, model_input, dt);
+
+ VLOG(2) << "oildest accel " << branches_[0].accel_state.transpose();
+ VLOG(2) << "oildest accel diff "
+ << DiffAccel(branches_[0].accel_state, accel_input).transpose();
+ VLOG(2) << "oildest model " << branches_[0].model_state.transpose();
+
+ // Determine whether to switch modes--if we are currently in model-based mode,
+ // swap to accel-based if the two states have divergeed meaningfully in the
+ // oldest branch. If we are currently in accel-based, then swap back to model
+ // if the oldest model branch matches has matched the
+ filtered_residual_accel_ +=
+ 0.01 * (accel_input.topRows<2>() - filtered_residual_accel_);
+ const double model_divergence =
+ branches_.full() ? ModelDivergence(branches_[0], accel_input,
+ filtered_residual_accel_, model_input)
+ : 0.0;
+ filtered_residual_ +=
+ (1.0 - std::exp(-aos::time::DurationInSeconds(kNominalDt) / 0.0095)) *
+ (model_divergence - filtered_residual_);
+ // TODO(james): Tune this more. Currently set to generally trust the model,
+ // perhaps a bit too much.
+ // When the residual exceeds the accel threshold, we start using the inertials
+ // alone; when it drops back below the model threshold, we go back to being
+ // model-based.
+ constexpr double kUseAccelThreshold = 2.0;
+ constexpr double kUseModelThreshold = 0.5;
+ constexpr size_t kShareStates = kNModelStates;
+ static_assert(kUseModelThreshold < kUseAccelThreshold);
+ if (using_model_) {
+ if (filtered_residual_ > kUseAccelThreshold) {
+ hysteresis_count_++;
+ } else {
+ hysteresis_count_ = 0;
+ }
+ if (hysteresis_count_ > 0) {
+ using_model_ = false;
+ // Grab the accel-based state from back when we started diverging.
+ // TODO(james): This creates a problematic selection bias, because
+ // we will tend to bias towards deliberately out-of-tune measurements.
+ current_state_.accel_state = branches_[0].accel_state;
+ current_state_.model_state = branches_[0].model_state;
+ current_state_.model_state = ModelStateForAccelState(
+ current_state_.accel_state, encoders, yaw_rate);
+ } else {
+ VLOG(2) << "Normal branching";
+ current_state_.accel_state =
+ AccelStateForModelState(current_state_.model_state);
+ current_state_.branch_time = t;
+ }
+ hysteresis_count_ = 0;
+ } else {
+ if (filtered_residual_ < kUseModelThreshold) {
+ hysteresis_count_++;
+ } else {
+ hysteresis_count_ = 0;
+ }
+ if (hysteresis_count_ > 100) {
+ using_model_ = true;
+ // Grab the model-based state from back when we stopped diverging.
+ current_state_.model_state.topRows<kShareStates>() =
+ ModelStateForAccelState(branches_[0].accel_state, encoders, yaw_rate)
+ .topRows<kShareStates>();
+ current_state_.accel_state =
+ AccelStateForModelState(current_state_.model_state);
+ } else {
+ // TODO(james): Why was I leaving the encoders/wheel velocities in place?
+ current_state_.model_state = ModelStateForAccelState(
+ current_state_.accel_state, encoders, yaw_rate);
+ current_state_.branch_time = t;
+ }
+ }
+
+ // Generate a new branch, with the accel state reset based on the model-based
+ // state (really, just getting rid of the lateral velocity).
+ // By resetting the accel state in the new branch, this tries to minimize the
+ // odds of runaway lateral velocities. This doesn't help with runaway
+ // longitudinal velocities, however.
+ CombinedState new_branch = current_state_;
+ new_branch.accel_state = AccelStateForModelState(new_branch.model_state);
+ new_branch.accumulated_divergence = 0.0;
+
+ ++branch_counter_;
+ if (branch_counter_ % kBranchPeriod == 0) {
+ branches_.Push(new_branch);
+ branch_counter_ = 0;
+ }
+
+ last_residual_ = model_divergence;
+
+ VLOG(2) << "Using " << (using_model_ ? "model" : "accel");
+ VLOG(2) << "Residual " << last_residual_;
+ VLOG(2) << "Filtered Residual " << filtered_residual_;
+ VLOG(2) << "buffer size " << branches_.size();
+ VLOG(2) << "Model state " << current_state_.model_state.transpose();
+ VLOG(2) << "Accel state " << current_state_.accel_state.transpose();
+ VLOG(2) << "Accel state for model "
+ << AccelStateForModelState(current_state_.model_state).transpose();
+ VLOG(2) << "Input acce " << accel.transpose();
+ VLOG(2) << "Input gyro " << gyro.transpose();
+ VLOG(2) << "Input voltage " << voltage.transpose();
+ VLOG(2) << "Input encoder " << encoders.transpose();
+ VLOG(2) << "yaw rate " << yaw_rate;
+
+ CHECK(std::isfinite(last_residual_));
+}
+
+void ModelBasedLocalizer::HandleReset(aos::monotonic_clock::time_point now,
+ const Eigen::Vector3d &xytheta) {
+ branches_.Reset();
+ t_ = now;
+ using_model_ = true;
+ current_state_.model_state << xytheta(0), xytheta(1), xytheta(2),
+ current_state_.model_state(kLeftEncoder), 0.0, 0.0,
+ current_state_.model_state(kRightEncoder), 0.0, 0.0;
+ current_state_.accel_state =
+ AccelStateForModelState(current_state_.model_state);
+ last_residual_ = 0.0;
+ filtered_residual_ = 0.0;
+ filtered_residual_accel_.setZero();
+ abs_accel_.setZero();
+}
+
+flatbuffers::Offset<AccelBasedState> ModelBasedLocalizer::BuildAccelState(
+ flatbuffers::FlatBufferBuilder *fbb, const AccelState &state) {
+ AccelBasedState::Builder accel_state_builder(*fbb);
+ accel_state_builder.add_x(state(kX));
+ accel_state_builder.add_y(state(kY));
+ accel_state_builder.add_theta(state(kTheta));
+ accel_state_builder.add_velocity_x(state(kVelocityX));
+ accel_state_builder.add_velocity_y(state(kVelocityY));
+ return accel_state_builder.Finish();
+}
+
+flatbuffers::Offset<ModelBasedState> ModelBasedLocalizer::BuildModelState(
+ flatbuffers::FlatBufferBuilder *fbb, const ModelState &state) {
+ ModelBasedState::Builder model_state_builder(*fbb);
+ model_state_builder.add_x(state(kX));
+ model_state_builder.add_y(state(kY));
+ model_state_builder.add_theta(state(kTheta));
+ model_state_builder.add_left_encoder(state(kLeftEncoder));
+ model_state_builder.add_left_velocity(state(kLeftVelocity));
+ model_state_builder.add_left_voltage_error(state(kLeftVoltageError));
+ model_state_builder.add_right_encoder(state(kRightEncoder));
+ model_state_builder.add_right_velocity(state(kRightVelocity));
+ model_state_builder.add_right_voltage_error(state(kRightVoltageError));
+ return model_state_builder.Finish();
+}
+
+flatbuffers::Offset<ModelBasedStatus> ModelBasedLocalizer::PopulateStatus(
+ flatbuffers::FlatBufferBuilder *fbb) {
+ const flatbuffers::Offset<control_loops::drivetrain::DownEstimatorState>
+ down_estimator_offset = down_estimator_.PopulateStatus(fbb, t_);
+
+ const CombinedState &state = current_state_;
+
+ const flatbuffers::Offset<ModelBasedState> model_state_offset =
+ BuildModelState(fbb, state.model_state);
+
+ const flatbuffers::Offset<AccelBasedState> accel_state_offset =
+ BuildAccelState(fbb, state.accel_state);
+
+ const flatbuffers::Offset<AccelBasedState> oldest_accel_state_offset =
+ branches_.empty() ? flatbuffers::Offset<AccelBasedState>()
+ : BuildAccelState(fbb, branches_[0].accel_state);
+
+ const flatbuffers::Offset<ModelBasedState> oldest_model_state_offset =
+ branches_.empty() ? flatbuffers::Offset<ModelBasedState>()
+ : BuildModelState(fbb, branches_[0].model_state);
+
+ ModelBasedStatus::Builder builder(*fbb);
+ builder.add_accel_state(accel_state_offset);
+ builder.add_oldest_accel_state(oldest_accel_state_offset);
+ builder.add_oldest_model_state(oldest_model_state_offset);
+ builder.add_model_state(model_state_offset);
+ builder.add_using_model(using_model_);
+ builder.add_residual(last_residual_);
+ builder.add_filtered_residual(filtered_residual_);
+ builder.add_velocity_residual(velocity_residual_);
+ builder.add_accel_residual(accel_residual_);
+ builder.add_theta_rate_residual(theta_rate_residual_);
+ builder.add_down_estimator(down_estimator_offset);
+ builder.add_x(xytheta()(0));
+ builder.add_y(xytheta()(1));
+ builder.add_theta(xytheta()(2));
+ builder.add_implied_accel_x(abs_accel_(0));
+ builder.add_implied_accel_y(abs_accel_(1));
+ builder.add_implied_accel_z(abs_accel_(2));
+ builder.add_clock_resets(clock_resets_);
+ return builder.Finish();
+}
+
+namespace {
+// Period at which the encoder readings from the IMU board wrap.
+static double DrivetrainWrapPeriod() {
+ return y2022::constants::Values::DrivetrainEncoderToMeters(1 << 16);
+}
+}
+
+EventLoopLocalizer::EventLoopLocalizer(
+ aos::EventLoop *event_loop,
+ const control_loops::drivetrain::DrivetrainConfig<double> &dt_config)
+ : event_loop_(event_loop),
+ model_based_(dt_config),
+ status_sender_(event_loop_->MakeSender<LocalizerStatus>("/localizer")),
+ output_sender_(event_loop_->MakeSender<LocalizerOutput>("/localizer")),
+ output_fetcher_(
+ event_loop_->MakeFetcher<frc971::control_loops::drivetrain::Output>(
+ "/drivetrain")),
+ left_encoder_(-DrivetrainWrapPeriod() / 2.0, DrivetrainWrapPeriod()),
+ right_encoder_(-DrivetrainWrapPeriod() / 2.0, DrivetrainWrapPeriod()) {
+ event_loop_->MakeWatcher(
+ "/drivetrain",
+ [this](
+ const frc971::control_loops::drivetrain::LocalizerControl &control) {
+ const double theta = control.keep_current_theta()
+ ? model_based_.xytheta()(2)
+ : control.theta();
+ model_based_.HandleReset(event_loop_->monotonic_now(),
+ {control.x(), control.y(), theta});
+ });
+ event_loop_->MakeWatcher(
+ "/localizer", [this](const frc971::IMUValuesBatch &values) {
+ CHECK(values.has_readings());
+ output_fetcher_.Fetch();
+ for (const IMUValues *value : *values.readings()) {
+ zeroer_.InsertAndProcessMeasurement(*value);
+ const Eigen::Vector2d encoders{
+ left_encoder_.Unwrap(value->left_encoder()),
+ right_encoder_.Unwrap(value->right_encoder())};
+ if (zeroer_.Zeroed()) {
+ const aos::monotonic_clock::time_point pico_timestamp{
+ std::chrono::microseconds(value->pico_timestamp_us())};
+ // TODO(james): If we get large enough drift off of the pico,
+ // actually do something about it.
+ if (!pico_offset_.has_value()) {
+ pico_offset_ =
+ event_loop_->context().monotonic_event_time - pico_timestamp;
+ last_pico_timestamp_ = pico_timestamp;
+ }
+ if (pico_timestamp < last_pico_timestamp_) {
+ pico_offset_.value() += std::chrono::microseconds(1ULL << 32);
+ }
+ const aos::monotonic_clock::time_point sample_timestamp =
+ pico_offset_.value() + pico_timestamp;
+ pico_offset_error_ =
+ event_loop_->context().monotonic_event_time - sample_timestamp;
+ const bool disabled =
+ (output_fetcher_.get() == nullptr) ||
+ (output_fetcher_.context().monotonic_event_time +
+ std::chrono::milliseconds(10) <
+ event_loop_->context().monotonic_event_time);
+ model_based_.HandleImu(
+ sample_timestamp,
+ zeroer_.ZeroedGyro(), zeroer_.ZeroedAccel(), encoders,
+ disabled ? Eigen::Vector2d::Zero()
+ : Eigen::Vector2d{output_fetcher_->left_voltage(),
+ output_fetcher_->right_voltage()});
+ last_pico_timestamp_ = pico_timestamp;
+ }
+ {
+ auto builder = status_sender_.MakeBuilder();
+ const flatbuffers::Offset<ModelBasedStatus> model_based_status =
+ model_based_.PopulateStatus(builder.fbb());
+ const flatbuffers::Offset<control_loops::drivetrain::ImuZeroerState>
+ zeroer_status = zeroer_.PopulateStatus(builder.fbb());
+ LocalizerStatus::Builder status_builder =
+ builder.MakeBuilder<LocalizerStatus>();
+ status_builder.add_model_based(model_based_status);
+ status_builder.add_zeroed(zeroer_.Zeroed());
+ status_builder.add_faulted_zero(zeroer_.Faulted());
+ status_builder.add_zeroing(zeroer_status);
+ status_builder.add_left_encoder(encoders(0));
+ status_builder.add_right_encoder(encoders(1));
+ if (pico_offset_.has_value()) {
+ status_builder.add_pico_offset_ns(pico_offset_.value().count());
+ status_builder.add_pico_offset_error_ns(
+ pico_offset_error_.count());
+ }
+ builder.CheckOk(builder.Send(status_builder.Finish()));
+ }
+ if (last_output_send_ + std::chrono::milliseconds(5) <
+ event_loop_->context().monotonic_event_time) {
+ auto builder = output_sender_.MakeBuilder();
+ LocalizerOutput::Builder output_builder =
+ builder.MakeBuilder<LocalizerOutput>();
+ // TODO(james): Should we bother to try to estimate time offsets for
+ // the pico?
+ output_builder.add_monotonic_timestamp_ns(
+ value->monotonic_timestamp_ns());
+ output_builder.add_x(model_based_.xytheta()(0));
+ output_builder.add_y(model_based_.xytheta()(1));
+ output_builder.add_theta(model_based_.xytheta()(2));
+ const Eigen::Quaterniond &orientation = model_based_.orientation();
+ Quaternion quaternion;
+ quaternion.mutate_x(orientation.x());
+ quaternion.mutate_y(orientation.y());
+ quaternion.mutate_z(orientation.z());
+ quaternion.mutate_w(orientation.w());
+ output_builder.add_orientation(&quaternion);
+ builder.CheckOk(builder.Send(output_builder.Finish()));
+ last_output_send_ = event_loop_->monotonic_now();
+ }
+ }
+ });
+}
+
+} // namespace frc971::controls