| #ifndef FRC971_CONTROL_LOOPS_DRIVETRAIN_LOCALIZATION_UTILS_H_ |
| #define FRC971_CONTROL_LOOPS_DRIVETRAIN_LOCALIZATION_UTILS_H_ |
| #include <Eigen/Dense> |
| |
| #include "aos/events/event_loop.h" |
| #include "aos/network/message_bridge_server_generated.h" |
| #include "frc971/control_loops/drivetrain/drivetrain_output_generated.h" |
| #include "frc971/control_loops/drivetrain/drivetrain_position_generated.h" |
| #include "frc971/control_loops/drivetrain/hybrid_ekf.h" |
| #include "frc971/control_loops/drivetrain/rio_localizer_inputs_generated.h" |
| #include "frc971/control_loops/pose.h" |
| #include "frc971/input/joystick_state_generated.h" |
| #include "frc971/vision/calibration_generated.h" |
| |
| namespace frc971::control_loops::drivetrain { |
| // This class provides a variety of checks that have generally proved useful for |
| // the localizer but which have no clear place to live otherwise. |
| // Specifically, it tracks: |
| // * Drivetrain voltages, including checks for whether the Output message |
| // has timed out. |
| // * Offsets between monotonic clocks on different devices. |
| // * Whether we are in autonomous mode. |
| // * Drivetrain encoder voltages, as reported by the roborio. |
| class LocalizationUtils { |
| public: |
| LocalizationUtils(aos::EventLoop *event_loop); |
| |
| // Returns the latest drivetrain output voltage, or zero if no output is |
| // available (which happens when the robot is disabled; when the robot is |
| // disabled, the voltage is functionally zero). Return value will be |
| // [left_voltage, right_voltage] |
| Eigen::Vector2d VoltageOrZero(aos::monotonic_clock::time_point now); |
| |
| // Returns the latest drivetrain encoder values (in meters), or nullopt if |
| // there has been no new encoder reading since the last call. Returns encoders |
| // as [left_position, right_position] |
| std::optional<Eigen::Vector2d> Encoders(aos::monotonic_clock::time_point now); |
| |
| // Returns true if either there is no JoystickState message available or if |
| // we are currently in autonomous mode. |
| bool MaybeInAutonomous(); |
| aos::Alliance Alliance(); |
| |
| // Returns the offset between our node and the specified node (or nullopt if |
| // no offset is available). The sign of this will be such that the time on |
| // the remote node = time on our node + ClockOffset(). |
| std::optional<aos::monotonic_clock::duration> ClockOffset( |
| std::string_view node); |
| |
| private: |
| aos::EventLoop *const event_loop_; |
| aos::Fetcher<frc971::control_loops::drivetrain::Output> output_fetcher_; |
| aos::Fetcher<frc971::control_loops::drivetrain::Position> position_fetcher_; |
| aos::Fetcher<frc971::control_loops::drivetrain::RioLocalizerInputs> |
| combined_fetcher_; |
| aos::Fetcher<aos::message_bridge::ServerStatistics> clock_offset_fetcher_; |
| aos::Fetcher<aos::JoystickState> joystick_state_fetcher_; |
| }; |
| |
| // Converts a flatbuffer TransformationMatrix to an Eigen matrix. |
| Eigen::Matrix<double, 4, 4> FlatbufferToTransformationMatrix( |
| const frc971::vision::calibration::TransformationMatrix &flatbuffer); |
| |
| // This approximates the Jacobian of a vector of [heading, distance, skew] |
| // of a target with respect to the full state of a drivetrain EKF. |
| // Note that the only nonzero values in the returned matrix will be in the |
| // columns corresponding to the X, Y, and Theta components of the state. |
| // This is suitable for use as the H matrix in the kalman updates of the EKF, |
| // although due to the approximation it should not be used to actually |
| // calculate the expected measurement. |
| // target_pose is the global pose of the target that we have identified. |
| // camera_pose is the current estimate of the global pose of |
| // the camera that can see the target. |
| template <typename Scalar> |
| Eigen::Matrix<double, 3, HybridEkf<Scalar>::kNStates> |
| HMatrixForCameraHeadingDistanceSkew(const TypedPose<Scalar> &target_pose, |
| const TypedPose<Scalar> &camera_pose) { |
| // For all of the below calculations, we will assume to a first |
| // approximation that: |
| // |
| // dcamera_theta / dtheta ~= 1 |
| // dcamera_x / dx ~= 1 |
| // dcamera_y / dy ~= 1 |
| // |
| // For cameras sufficiently far from the robot's origin, or if the robot were |
| // spinning extremely rapidly, this would not hold. |
| |
| // To calculate dheading/d{x,y,theta}: |
| // heading = arctan2(target_pos - camera_pos) - camera_theta |
| Eigen::Matrix<Scalar, 3, 1> target_pos = target_pose.abs_pos(); |
| Eigen::Matrix<Scalar, 3, 1> camera_pos = camera_pose.abs_pos(); |
| Scalar diffx = target_pos.x() - camera_pos.x(); |
| Scalar diffy = target_pos.y() - camera_pos.y(); |
| Scalar norm2 = diffx * diffx + diffy * diffy; |
| Scalar dheadingdx = diffy / norm2; |
| Scalar dheadingdy = -diffx / norm2; |
| Scalar dheadingdtheta = -1.0; |
| |
| // To calculate ddistance/d{x,y}: |
| // distance = sqrt(diffx^2 + diffy^2) |
| Scalar distance = ::std::sqrt(norm2); |
| Scalar ddistdx = -diffx / distance; |
| Scalar ddistdy = -diffy / distance; |
| |
| // Skew = target.theta - camera.theta - heading |
| // = target.theta - arctan2(target_pos - camera_pos) |
| Scalar dskewdx = -dheadingdx; |
| Scalar dskewdy = -dheadingdy; |
| Eigen::Matrix<Scalar, 3, HybridEkf<Scalar>::kNStates> H; |
| H.setZero(); |
| H(0, HybridEkf<Scalar>::kX) = dheadingdx; |
| H(0, HybridEkf<Scalar>::kY) = dheadingdy; |
| H(0, HybridEkf<Scalar>::kTheta) = dheadingdtheta; |
| H(1, HybridEkf<Scalar>::kX) = ddistdx; |
| H(1, HybridEkf<Scalar>::kY) = ddistdy; |
| H(2, HybridEkf<Scalar>::kX) = dskewdx; |
| H(2, HybridEkf<Scalar>::kY) = dskewdy; |
| return H; |
| } |
| |
| } // namespace frc971::control_loops::drivetrain |
| |
| #endif // FRC971_CONTROL_LOOPS_DRIVETRAIN_LOCALIZATION_UTILS_H_ |