| #include "frc971/control_loops/drivetrain/trajectory.h" |
| |
| #include <chrono> |
| |
| #include "Eigen/Dense" |
| |
| #include "aos/util/math.h" |
| #include "frc971/control_loops/c2d.h" |
| #include "frc971/control_loops/dlqr.h" |
| #include "frc971/control_loops/drivetrain/distance_spline.h" |
| #include "frc971/control_loops/drivetrain/drivetrain_config.h" |
| #include "frc971/control_loops/hybrid_state_feedback_loop.h" |
| #include "frc971/control_loops/state_feedback_loop.h" |
| |
| namespace frc971 { |
| namespace control_loops { |
| namespace drivetrain { |
| |
| namespace { |
| float DefaultConstraint(ConstraintType type) { |
| switch (type) { |
| case ConstraintType::LONGITUDINAL_ACCELERATION: |
| return 2.0; |
| case ConstraintType::LATERAL_ACCELERATION: |
| return 3.0; |
| case ConstraintType::VOLTAGE: |
| return 12.0; |
| case ConstraintType::VELOCITY: |
| case ConstraintType::CONSTRAINT_TYPE_UNDEFINED: |
| LOG(FATAL) << "No default constraint value for " |
| << EnumNameConstraintType(type); |
| } |
| LOG(FATAL) << "Invalid ConstraintType " << static_cast<int>(type); |
| } |
| } // namespace |
| |
| FinishedTrajectory::FinishedTrajectory( |
| const DrivetrainConfig<double> &config, const fb::Trajectory *buffer, |
| std::shared_ptr< |
| StateFeedbackLoop<2, 2, 2, double, StateFeedbackHybridPlant<2, 2, 2>, |
| HybridKalman<2, 2, 2>>> |
| velocity_drivetrain) |
| : BaseTrajectory(CHECK_NOTNULL(CHECK_NOTNULL(buffer->spline())->spline()) |
| ->constraints(), |
| config, std::move(velocity_drivetrain)), |
| buffer_(buffer), |
| spline_(*buffer_->spline()) {} |
| |
| const Eigen::Matrix<double, 2, 1> BaseTrajectory::K1( |
| double current_ddtheta) const { |
| return (Eigen::Matrix<double, 2, 1>() << -robot_radius_l_ * current_ddtheta, |
| robot_radius_r_ * current_ddtheta) |
| .finished(); |
| } |
| |
| const Eigen::Matrix<double, 2, 1> BaseTrajectory::K2( |
| double current_dtheta) const { |
| return (Eigen::Matrix<double, 2, 1>() |
| << 1.0 - robot_radius_l_ * current_dtheta, |
| 1.0 + robot_radius_r_ * current_dtheta) |
| .finished(); |
| } |
| |
| void BaseTrajectory::K345(const double x, Eigen::Matrix<double, 2, 1> *K3, |
| Eigen::Matrix<double, 2, 1> *K4, |
| Eigen::Matrix<double, 2, 1> *K5) const { |
| const double current_ddtheta = spline().DDTheta(x); |
| const double current_dtheta = spline().DTheta(x); |
| // We've now got the equation: |
| // K2 * d^x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U |
| const Eigen::Matrix<double, 2, 1> my_K2 = K2(current_dtheta); |
| |
| const Eigen::Matrix<double, 2, 2> B_inverse = |
| velocity_drivetrain_->plant().coefficients().B_continuous.inverse(); |
| |
| // Now, rephrase it as K5 a + K3 v^2 + K4 v = U |
| *K3 = B_inverse * K1(current_ddtheta); |
| *K4 = -B_inverse * velocity_drivetrain_->plant().coefficients().A_continuous * |
| my_K2; |
| *K5 = B_inverse * my_K2; |
| } |
| |
| BaseTrajectory::BaseTrajectory( |
| const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints, |
| const DrivetrainConfig<double> &config, |
| std::shared_ptr< |
| StateFeedbackLoop<2, 2, 2, double, StateFeedbackHybridPlant<2, 2, 2>, |
| HybridKalman<2, 2, 2>>> |
| velocity_drivetrain) |
| : velocity_drivetrain_(std::move(velocity_drivetrain)), |
| config_(config), |
| robot_radius_l_(config.robot_radius), |
| robot_radius_r_(config.robot_radius), |
| lateral_acceleration_( |
| ConstraintValue(constraints, ConstraintType::LATERAL_ACCELERATION)), |
| longitudinal_acceleration_(ConstraintValue( |
| constraints, ConstraintType::LONGITUDINAL_ACCELERATION)), |
| voltage_limit_(ConstraintValue(constraints, ConstraintType::VOLTAGE)) {} |
| |
| Trajectory::Trajectory(const SplineGoal &spline_goal, |
| const DrivetrainConfig<double> &config) |
| : Trajectory(DistanceSpline{spline_goal.spline()}, config, |
| spline_goal.spline()->constraints(), |
| spline_goal.spline_idx()) { |
| drive_spline_backwards_ = spline_goal.drive_spline_backwards(); |
| } |
| |
| Trajectory::Trajectory( |
| DistanceSpline &&input_spline, const DrivetrainConfig<double> &config, |
| const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints, |
| int spline_idx, double vmax, int num_distance) |
| : BaseTrajectory(constraints, config), |
| spline_idx_(spline_idx), |
| spline_(std::move(input_spline)), |
| config_(config), |
| plan_(num_distance == 0 |
| ? std::max(10000, static_cast<int>(spline_.length() / 0.0025)) |
| : num_distance, |
| vmax), |
| plan_segment_type_(plan_.size(), |
| fb::SegmentConstraint::VELOCITY_LIMITED) { |
| if (constraints != nullptr) { |
| for (const Constraint *constraint : *constraints) { |
| if (constraint->constraint_type() == ConstraintType::VELOCITY) { |
| LimitVelocity(constraint->start_distance(), constraint->end_distance(), |
| constraint->value()); |
| } |
| } |
| } |
| } |
| |
| void Trajectory::LateralAccelPass() { |
| for (size_t i = 0; i < plan_.size(); ++i) { |
| const double distance = Distance(i); |
| const double velocity_limit = LateralVelocityCurvature(distance); |
| if (velocity_limit < plan_[i]) { |
| plan_[i] = velocity_limit; |
| plan_segment_type_[i] = fb::SegmentConstraint::CURVATURE_LIMITED; |
| } |
| } |
| } |
| |
| void Trajectory::VoltageFeasibilityPass(VoltageLimit limit_type) { |
| for (size_t i = 0; i < plan_.size(); ++i) { |
| const double distance = Distance(i); |
| const double velocity_limit = VoltageVelocityLimit(distance, limit_type); |
| if (velocity_limit < plan_[i]) { |
| plan_[i] = velocity_limit; |
| plan_segment_type_[i] = fb::SegmentConstraint::VOLTAGE_LIMITED; |
| } |
| } |
| } |
| |
| double BaseTrajectory::BestAcceleration(double x, double v, |
| bool backwards) const { |
| Eigen::Matrix<double, 2, 1> K3; |
| Eigen::Matrix<double, 2, 1> K4; |
| Eigen::Matrix<double, 2, 1> K5; |
| K345(x, &K3, &K4, &K5); |
| |
| // Now, solve for all a's and find the best one which meets our criteria. |
| const Eigen::Matrix<double, 2, 1> C = K3 * v * v + K4 * v; |
| double min_voltage_accel = std::numeric_limits<double>::infinity(); |
| double max_voltage_accel = -min_voltage_accel; |
| for (const double a : {(max_voltage() - C(0, 0)) / K5(0, 0), |
| (max_voltage() - C(1, 0)) / K5(1, 0), |
| (-max_voltage() - C(0, 0)) / K5(0, 0), |
| (-max_voltage() - C(1, 0)) / K5(1, 0)}) { |
| const Eigen::Matrix<double, 2, 1> U = K5 * a + K3 * v * v + K4 * v; |
| if ((U.array().abs() < max_voltage() + 1e-6).all()) { |
| min_voltage_accel = std::min(a, min_voltage_accel); |
| max_voltage_accel = std::max(a, max_voltage_accel); |
| } |
| } |
| double best_accel = backwards ? min_voltage_accel : max_voltage_accel; |
| |
| double min_friction_accel, max_friction_accel; |
| FrictionLngAccelLimits(x, v, &min_friction_accel, &max_friction_accel); |
| if (backwards) { |
| best_accel = std::max(best_accel, min_friction_accel); |
| } else { |
| best_accel = std::min(best_accel, max_friction_accel); |
| } |
| |
| // Ideally, the max would never be less than the min, but due to the way that |
| // the runge kutta solver works, it sometimes ticks over the edge. |
| if (max_friction_accel < min_friction_accel) { |
| VLOG(1) << "At x " << x << " v " << v << " min fric acc " |
| << min_friction_accel << " max fric accel " << max_friction_accel; |
| } |
| if (best_accel < min_voltage_accel || best_accel > max_voltage_accel) { |
| LOG(WARNING) << "Viable friction limits and viable voltage limits do not " |
| "overlap (x: " |
| << x << ", v: " << v << ", backwards: " << backwards |
| << ") best_accel = " << best_accel << ", min voltage " |
| << min_voltage_accel << ", max voltage " << max_voltage_accel |
| << " min friction " << min_friction_accel << " max friction " |
| << max_friction_accel << "."; |
| |
| // Don't actually do anything--this will just result in attempting to drive |
| // higher voltages thatn we have available. In practice, that'll probably |
| // work out fine. |
| } |
| |
| return best_accel; |
| } |
| |
| double BaseTrajectory::LateralVelocityCurvature(double distance) const { |
| // To calculate these constraints, we first note that: |
| // wheel accels = K2 * v_robot' + K1 * v_robot^2 |
| // All that this logic does is solve for v_robot, leaving v_robot' free, |
| // assuming that the wheels are at their limits. |
| // To do this, we: |
| // |
| // 1) Determine what the wheel accels will be at the limit--since we have |
| // two free variables (v_robot, v_robot'), both wheels will be at their |
| // limits--if in a sufficiently tight turn (such that the signs of the |
| // coefficients of K2 are different), then the wheels will be accelerating |
| // in opposite directions; otherwise, they accelerate in the same direction. |
| // The magnitude of these per-wheel accelerations is a function of velocity, |
| // so it must also be solved for. |
| // |
| // 2) Eliminate that v_robot' term (since we don't care |
| // about it) by multiplying be a "K2prime" term (where K2prime * K2 = 0) on |
| // both sides of the equation. |
| // |
| // 3) Solving the relatively tractable remaining equation, which is |
| // basically just grouping all the terms together in one spot and taking the |
| // 4th root of everything. |
| const double dtheta = spline().DTheta(distance); |
| const Eigen::Matrix<double, 1, 2> K2prime = |
| K2(dtheta).transpose() * |
| (Eigen::Matrix<double, 2, 2>() << 0, 1, -1, 0).finished(); |
| // Calculate whether the wheels are spinning in opposite directions. |
| const bool opposites = K2prime(0) * K2prime(1) < 0; |
| const Eigen::Matrix<double, 2, 1> K1calc = K1(spline().DDTheta(distance)); |
| const double lat_accel_squared = std::pow(dtheta / max_lateral_accel(), 2); |
| const double curvature_change_term = |
| (K2prime * K1calc).value() / |
| (K2prime * |
| (Eigen::Matrix<double, 2, 1>() << 1.0, (opposites ? -1.0 : 1.0)) |
| .finished() * |
| max_longitudinal_accel()) |
| .value(); |
| const double vel_inv = std::sqrt( |
| std::sqrt(std::pow(curvature_change_term, 2) + lat_accel_squared)); |
| if (vel_inv == 0.0) { |
| return std::numeric_limits<double>::infinity(); |
| } |
| return 1.0 / vel_inv; |
| } |
| |
| void BaseTrajectory::FrictionLngAccelLimits(double x, double v, |
| double *min_accel, |
| double *max_accel) const { |
| // First, calculate the max longitudinal acceleration that can be achieved |
| // by either wheel given the friction elliipse that we have. |
| const double lateral_acceleration = v * v * spline().DDXY(x).norm(); |
| const double max_wheel_lng_accel_squared = |
| 1.0 - std::pow(lateral_acceleration / max_lateral_accel(), 2.0); |
| if (max_wheel_lng_accel_squared < 0.0) { |
| VLOG(1) << "Something (probably Runge-Kutta) queried invalid velocity " << v |
| << " at distance " << x; |
| // If we encounter this, it means that the Runge-Kutta has attempted to |
| // sample points a bit past the edge of the friction boundary. If so, we |
| // gradually ramp the min/max accels to be more and more incorrect (note |
| // how min_accel > max_accel if we reach this case) to avoid causing any |
| // numerical issues. |
| *min_accel = |
| std::sqrt(-max_wheel_lng_accel_squared) * max_longitudinal_accel(); |
| *max_accel = -*min_accel; |
| return; |
| } |
| *min_accel = -std::numeric_limits<double>::infinity(); |
| *max_accel = std::numeric_limits<double>::infinity(); |
| |
| // Calculate max/min accelerations by calculating what the robots overall |
| // longitudinal acceleration would be if each wheel were running at the max |
| // forwards/backwards longitudinal acceleration. |
| const double max_wheel_lng_accel = |
| max_longitudinal_accel() * std::sqrt(max_wheel_lng_accel_squared); |
| const Eigen::Matrix<double, 2, 1> K1v2 = K1(spline().DDTheta(x)) * v * v; |
| const Eigen::Matrix<double, 2, 1> K2inv = |
| K2(spline().DTheta(x)).cwiseInverse(); |
| // Store the accelerations of the robot corresponding to each wheel being at |
| // the max/min acceleration. The first coefficient in each vector |
| // corresponds to the left wheel, the second to the right wheel. |
| const Eigen::Matrix<double, 2, 1> accels1 = |
| K2inv.array() * (-K1v2.array() + max_wheel_lng_accel); |
| const Eigen::Matrix<double, 2, 1> accels2 = |
| K2inv.array() * (-K1v2.array() - max_wheel_lng_accel); |
| |
| // If either term is non-finite, that suggests that a term of K2 is zero |
| // (which is physically possible when turning such that one wheel is |
| // stationary), so just ignore that side of the drivetrain. |
| if (std::isfinite(accels1(0))) { |
| // The inner max/min in this case determines which of the two cases (+ or |
| // - acceleration on the left wheel) we care about--in a sufficiently |
| // tight turning radius, the left hweel may be accelerating backwards when |
| // the robot as a whole accelerates forwards. We then use that |
| // acceleration to bound the min/max accel. |
| *min_accel = std::max(*min_accel, std::min(accels1(0), accels2(0))); |
| *max_accel = std::min(*max_accel, std::max(accels1(0), accels2(0))); |
| } |
| // Same logic as previous if-statement, but for the right wheel. |
| if (std::isfinite(accels1(1))) { |
| *min_accel = std::max(*min_accel, std::min(accels1(1), accels2(1))); |
| *max_accel = std::min(*max_accel, std::max(accels1(1), accels2(1))); |
| } |
| } |
| |
| double Trajectory::VoltageVelocityLimit( |
| double distance, VoltageLimit limit_type, |
| Eigen::Matrix<double, 2, 1> *constraint_voltages) const { |
| // To sketch an outline of the math going on here, we start with the basic |
| // dynamics of the robot along the spline: |
| // K2 * v_robot' + K1 * v_robot^2 = A * K2 * v_robot + B * U |
| // We need to determine the maximum v_robot given constrained U and free |
| // v_robot'. |
| // Similarly to the friction constraints, we accomplish this by first |
| // multiplying by a K2prime term to eliminate the v_robot' term. |
| // As with the friction constraints, we also know that the limits will occur |
| // when both sides of the drivetrain are driven at their max magnitude |
| // voltages, although they may be driven at different signs. |
| // Once we determine whether the voltages match signs, we still have to |
| // consider both possible pairings (technically we could probably |
| // predetermine which pairing, e.g. +/- or -/+, we acre about, but we don't |
| // need to). |
| // |
| // For each pairing, we then get to solve a quadratic formula for the robot |
| // velocity at those voltages. This gives us up to 4 solutions, of which |
| // up to 3 will give us positive velocities; each solution velocity |
| // corresponds to a transition from feasibility to infeasibility, where a |
| // velocity of zero is always feasible, and there will always be 0, 1, or 3 |
| // positive solutions. Among the positive solutions, we take both the min |
| // and the max--the min will be the highest velocity such that all |
| // velocities between zero and that velocity are valid; the max will be |
| // the highest feasible velocity. Which we return depends on what the |
| // limit_type is. |
| // |
| // Sketching the actual math: |
| // K2 * v_robot' + K1 * v_robot^2 = A * K2 * v_robot +/- B * U_max |
| // K2prime * K1 * v_robot^2 = K2prime * (A * K2 * v_robot +/- B * U_max) |
| // a v_robot^2 + b v_robot +/- c = 0 |
| const Eigen::Matrix<double, 2, 2> B = |
| velocity_drivetrain().plant().coefficients().B_continuous; |
| const double dtheta = spline().DTheta(distance); |
| const Eigen::Matrix<double, 2, 1> BinvK2 = B.inverse() * K2(dtheta); |
| // Because voltages can actually impact *both* wheels, in order to determine |
| // whether the voltages will have opposite signs, we need to use B^-1 * K2. |
| const bool opposite_voltages = BinvK2(0) * BinvK2(1) > 0.0; |
| const Eigen::Matrix<double, 1, 2> K2prime = |
| K2(dtheta).transpose() * |
| (Eigen::Matrix<double, 2, 2>() << 0, 1, -1, 0).finished(); |
| const double a = K2prime * K1(spline().DDTheta(distance)); |
| const double b = -K2prime * |
| velocity_drivetrain().plant().coefficients().A_continuous * |
| K2(dtheta); |
| const Eigen::Matrix<double, 1, 2> c_coeff = -K2prime * B; |
| // Calculate the "positive" version of the voltage limits we will use. |
| const Eigen::Matrix<double, 2, 1> abs_volts = |
| max_voltage() * |
| (Eigen::Matrix<double, 2, 1>() << 1.0, (opposite_voltages ? -1.0 : 1.0)) |
| .finished(); |
| |
| double min_valid_vel = std::numeric_limits<double>::infinity(); |
| if (limit_type == VoltageLimit::kAggressive) { |
| min_valid_vel = 0.0; |
| } |
| // Iterate over both possibilites for +/- voltage, and solve the quadratic |
| // formula. For every positive solution, adjust the velocity limit |
| // appropriately. |
| for (const double sign : {1.0, -1.0}) { |
| const Eigen::Matrix<double, 2, 1> U = sign * abs_volts; |
| const double prev_vel = min_valid_vel; |
| const double c = c_coeff * U; |
| const double determinant = b * b - 4 * a * c; |
| if (a == 0) { |
| // If a == 0, that implies we are on a constant curvature path, in which |
| // case we just have b * v + c = 0. |
| // Note that if -b * c > 0.0, then vel will be greater than zero and b |
| // will be non-zero. |
| if (-b * c > 0.0) { |
| const double vel = -c / b; |
| if (limit_type == VoltageLimit::kConservative) { |
| min_valid_vel = std::min(min_valid_vel, vel); |
| } else { |
| min_valid_vel = std::max(min_valid_vel, vel); |
| } |
| } else if (b == 0) { |
| // If a and b are zero, then we are travelling in a straight line and |
| // have no voltage-based velocity constraints. |
| min_valid_vel = std::numeric_limits<double>::infinity(); |
| } |
| } else if (determinant > 0) { |
| const double sqrt_determinant = std::sqrt(determinant); |
| const double high_vel = (-b + sqrt_determinant) / (2.0 * a); |
| const double low_vel = (-b - sqrt_determinant) / (2.0 * a); |
| if (low_vel > 0) { |
| if (limit_type == VoltageLimit::kConservative) { |
| min_valid_vel = std::min(min_valid_vel, low_vel); |
| } else { |
| min_valid_vel = std::max(min_valid_vel, low_vel); |
| } |
| } |
| if (high_vel > 0) { |
| if (limit_type == VoltageLimit::kConservative) { |
| min_valid_vel = std::min(min_valid_vel, high_vel); |
| } else { |
| min_valid_vel = std::max(min_valid_vel, high_vel); |
| } |
| } |
| } else if (determinant == 0 && -b * a > 0) { |
| const double vel = -b / (2.0 * a); |
| if (vel > 0.0) { |
| if (limit_type == VoltageLimit::kConservative) { |
| min_valid_vel = std::min(min_valid_vel, vel); |
| } else { |
| min_valid_vel = std::max(min_valid_vel, vel); |
| } |
| } |
| } |
| if (constraint_voltages != nullptr && prev_vel != min_valid_vel) { |
| *constraint_voltages = U; |
| } |
| } |
| return min_valid_vel; |
| } |
| |
| void Trajectory::ForwardPass() { |
| plan_[0] = 0.0; |
| const double delta_distance = Distance(1) - Distance(0); |
| for (size_t i = 0; i < plan_.size() - 1; ++i) { |
| const double distance = Distance(i); |
| |
| // Integrate our acceleration forward one step. |
| const double new_plan_velocity = IntegrateAccelForDistance( |
| [this](double x, double v) { return ForwardAcceleration(x, v); }, |
| plan_[i], distance, delta_distance); |
| |
| if (new_plan_velocity <= plan_[i + 1]) { |
| plan_[i + 1] = new_plan_velocity; |
| plan_segment_type_[i] = fb::SegmentConstraint::ACCELERATION_LIMITED; |
| } |
| } |
| } |
| |
| void Trajectory::BackwardPass() { |
| const double delta_distance = Distance(0) - Distance(1); |
| plan_.back() = 0.0; |
| for (size_t i = plan_.size() - 1; i > 0; --i) { |
| const double distance = Distance(i); |
| |
| // Integrate our deceleration back one step. |
| const double new_plan_velocity = IntegrateAccelForDistance( |
| [this](double x, double v) { return BackwardAcceleration(x, v); }, |
| plan_[i], distance, delta_distance); |
| |
| if (new_plan_velocity <= plan_[i - 1]) { |
| plan_[i - 1] = new_plan_velocity; |
| plan_segment_type_[i - 1] = fb::SegmentConstraint::DECELERATION_LIMITED; |
| } |
| } |
| } |
| |
| Eigen::Matrix<double, 3, 1> BaseTrajectory::FFAcceleration( |
| double distance) const { |
| if (distance < 0.0) { |
| // Make sure we don't end up off the beginning of the curve. |
| distance = 0.0; |
| } else if (distance > length()) { |
| // Make sure we don't end up off the end of the curve. |
| distance = length(); |
| } |
| const size_t before_index = DistanceToSegment(distance); |
| const size_t after_index = |
| std::min(before_index + 1, distance_plan_size() - 1); |
| |
| const double before_distance = Distance(before_index); |
| const double after_distance = Distance(after_index); |
| |
| // And then also make sure we aren't curvature limited. |
| const double vcurvature = LateralVelocityCurvature(distance); |
| |
| double acceleration; |
| double velocity; |
| // TODO(james): While technically correct for sufficiently small segment |
| // steps, this method of switching between limits has a tendency to produce |
| // sudden jumps in acceelrations, which is undesirable. |
| switch (plan_constraint(DistanceToSegment(distance))) { |
| case fb::SegmentConstraint::VELOCITY_LIMITED: |
| acceleration = 0.0; |
| velocity = |
| (plan_velocity(before_index) + plan_velocity(after_index)) / 2.0; |
| // TODO(austin): Accelerate or decelerate until we hit the limit in the |
| // time slice. Otherwise our acceleration will be lying for this slice. |
| // Do note, we've got small slices so the effect will be small. |
| break; |
| case fb::SegmentConstraint::CURVATURE_LIMITED: |
| velocity = vcurvature; |
| FrictionLngAccelLimits(distance, velocity, &acceleration, &acceleration); |
| break; |
| case fb::SegmentConstraint::VOLTAGE_LIMITED: |
| // Normally, we expect that voltage limited plans will all get dominated |
| // by the acceleration/deceleration limits. This may not always be true; |
| // if we ever encounter this error, we just need to back out what the |
| // accelerations would be in this case. |
| LOG(FATAL) << "Unexpectedly got VOLTAGE_LIMITED plan."; |
| break; |
| case fb::SegmentConstraint::ACCELERATION_LIMITED: |
| // TODO(james): The integration done here and in the DECELERATION_LIMITED |
| // can technically cause us to violate friction constraints. We currently |
| // don't do anything about it to avoid causing sudden jumps in voltage, |
| // but we probably *should* at some point. |
| velocity = IntegrateAccelForDistance( |
| [this](double x, double v) { return ForwardAcceleration(x, v); }, |
| plan_velocity(before_index), before_distance, |
| distance - before_distance); |
| acceleration = ForwardAcceleration(distance, velocity); |
| break; |
| case fb::SegmentConstraint::DECELERATION_LIMITED: |
| velocity = IntegrateAccelForDistance( |
| [this](double x, double v) { return BackwardAcceleration(x, v); }, |
| plan_velocity(after_index), after_distance, |
| distance - after_distance); |
| acceleration = BackwardAcceleration(distance, velocity); |
| break; |
| default: |
| AOS_LOG(FATAL, "Unknown segment type %d\n", |
| static_cast<int>(plan_constraint(DistanceToSegment(distance)))); |
| break; |
| } |
| |
| return (Eigen::Matrix<double, 3, 1>() << distance, velocity, acceleration) |
| .finished(); |
| } |
| |
| size_t FinishedTrajectory::distance_plan_size() const { |
| return trajectory().has_distance_based_plan() |
| ? trajectory().distance_based_plan()->size() |
| : 0u; |
| } |
| |
| fb::SegmentConstraint FinishedTrajectory::plan_constraint(size_t index) const { |
| CHECK_LT(index, distance_plan_size()); |
| return trajectory().distance_based_plan()->Get(index)->segment_constraint(); |
| } |
| |
| float FinishedTrajectory::plan_velocity(size_t index) const { |
| CHECK_LT(index, distance_plan_size()); |
| return trajectory().distance_based_plan()->Get(index)->velocity(); |
| } |
| |
| Eigen::Matrix<double, 2, 1> BaseTrajectory::FFVoltage(double distance) const { |
| const Eigen::Matrix<double, 3, 1> xva = FFAcceleration(distance); |
| const double velocity = xva(1); |
| const double acceleration = xva(2); |
| |
| Eigen::Matrix<double, 2, 1> K3; |
| Eigen::Matrix<double, 2, 1> K4; |
| Eigen::Matrix<double, 2, 1> K5; |
| K345(distance, &K3, &K4, &K5); |
| |
| return K5 * acceleration + K3 * velocity * velocity + K4 * velocity; |
| } |
| |
| const std::vector<double> Trajectory::Distances() const { |
| std::vector<double> d; |
| d.reserve(plan_.size()); |
| for (size_t i = 0; i < plan_.size(); ++i) { |
| d.push_back(Distance(i)); |
| } |
| return d; |
| } |
| |
| Eigen::Matrix<double, 3, 1> BaseTrajectory::GetNextXVA( |
| std::chrono::nanoseconds dt, Eigen::Matrix<double, 2, 1> *state) const { |
| double dt_float = ::aos::time::DurationInSeconds(dt); |
| |
| const double last_distance = (*state)(0); |
| // TODO(austin): This feels like something that should be pulled out into |
| // a library for re-use. |
| *state = RungeKutta( |
| [this](const Eigen::Matrix<double, 2, 1> x) { |
| Eigen::Matrix<double, 3, 1> xva = FFAcceleration(x(0)); |
| return (Eigen::Matrix<double, 2, 1>() << x(1), xva(2)).finished(); |
| }, |
| *state, dt_float); |
| // Force the distance to move forwards, to guarantee that we actually finish |
| // the planning. |
| constexpr double kMinDistanceIncrease = 1e-7; |
| if ((*state)(0) < last_distance + kMinDistanceIncrease) { |
| (*state)(0) = last_distance + kMinDistanceIncrease; |
| } |
| |
| Eigen::Matrix<double, 3, 1> result = FFAcceleration((*state)(0)); |
| (*state)(1) = result(1); |
| return result; |
| } |
| |
| std::vector<Eigen::Matrix<double, 3, 1>> Trajectory::PlanXVA( |
| std::chrono::nanoseconds dt) { |
| Eigen::Matrix<double, 2, 1> state = Eigen::Matrix<double, 2, 1>::Zero(); |
| std::vector<Eigen::Matrix<double, 3, 1>> result; |
| result.emplace_back(FFAcceleration(0)); |
| result.back()(1) = 0.0; |
| |
| while (!is_at_end(state)) { |
| if (state_is_faulted(state)) { |
| LOG(WARNING) |
| << "Found invalid state in generating spline and aborting. This is " |
| "likely due to a spline with extremely high jerk/changes in " |
| "curvature with an insufficiently small step size."; |
| return {}; |
| } |
| result.emplace_back(GetNextXVA(dt, &state)); |
| } |
| return result; |
| } |
| |
| void Trajectory::LimitVelocity(double starting_distance, double ending_distance, |
| const double max_velocity) { |
| const double segment_length = ending_distance - starting_distance; |
| |
| const double min_length = length() / static_cast<double>(plan_.size() - 1); |
| if (starting_distance > ending_distance) { |
| AOS_LOG(FATAL, "End before start: %f > %f\n", starting_distance, |
| ending_distance); |
| } |
| starting_distance = std::min(length(), std::max(0.0, starting_distance)); |
| ending_distance = std::min(length(), std::max(0.0, ending_distance)); |
| if (segment_length < min_length) { |
| const size_t plan_index = static_cast<size_t>( |
| std::round((starting_distance + ending_distance) / 2.0 / min_length)); |
| if (max_velocity < plan_[plan_index]) { |
| plan_[plan_index] = max_velocity; |
| } |
| } else { |
| for (size_t i = DistanceToSegment(starting_distance) + 1; |
| i < DistanceToSegment(ending_distance) + 1; ++i) { |
| if (max_velocity < plan_[i]) { |
| plan_[i] = max_velocity; |
| if (i < DistanceToSegment(ending_distance)) { |
| plan_segment_type_[i] = fb::SegmentConstraint::VELOCITY_LIMITED; |
| } |
| } |
| } |
| } |
| } |
| |
| void Trajectory::PathRelativeContinuousSystem(double distance, |
| Eigen::Matrix<double, 5, 5> *A, |
| Eigen::Matrix<double, 5, 2> *B) { |
| const double nominal_velocity = FFAcceleration(distance)(1); |
| const double dtheta_dt = spline().DThetaDt(distance, nominal_velocity); |
| // Calculate the "path-relative" coordinates, which are: |
| // [[distance along the path], |
| // [lateral position along path], |
| // [theta], |
| // [left wheel velocity], |
| // [right wheel velocity]] |
| Eigen::Matrix<double, 5, 1> nominal_X; |
| nominal_X << distance, 0.0, 0.0, |
| nominal_velocity - dtheta_dt * robot_radius_l(), |
| nominal_velocity + dtheta_dt * robot_radius_r(); |
| PathRelativeContinuousSystem(nominal_X, A, B); |
| } |
| |
| void Trajectory::PathRelativeContinuousSystem( |
| const Eigen::Matrix<double, 5, 1> &X, Eigen::Matrix<double, 5, 5> *A, |
| Eigen::Matrix<double, 5, 2> *B) { |
| A->setZero(); |
| B->setZero(); |
| const double theta = X(2); |
| const double ctheta = std::cos(theta); |
| const double stheta = std::sin(theta); |
| const double curvature = spline().DTheta(X(0)); |
| const double longitudinal_velocity = (X(3) + X(4)) / 2.0; |
| const double diameter = robot_radius_l() + robot_radius_r(); |
| // d_dpath / dt = (v_left + v_right) / 2.0 * cos(theta) |
| // (d_dpath / dt) / dv_left = cos(theta) / 2.0 |
| (*A)(0, 3) = ctheta / 2.0; |
| // (d_dpath / dt) / dv_right = cos(theta) / 2.0 |
| (*A)(0, 4) = ctheta / 2.0; |
| // (d_dpath / dt) / dtheta = -(v_left + v_right) / 2.0 * sin(theta) |
| (*A)(0, 2) = -longitudinal_velocity * stheta; |
| // d_dlat / dt = (v_left + v_right) / 2.0 * sin(theta) |
| // (d_dlat / dt) / dv_left = sin(theta) / 2.0 |
| (*A)(1, 3) = stheta / 2.0; |
| // (d_dlat / dt) / dv_right = sin(theta) / 2.0 |
| (*A)(1, 4) = stheta / 2.0; |
| // (d_dlat / dt) / dtheta = (v_left + v_right) / 2.0 * cos(theta) |
| (*A)(1, 2) = longitudinal_velocity * ctheta; |
| // dtheta / dt = (v_right - v_left) / diameter - curvature * (v_left + |
| // v_right) / 2.0 |
| // (dtheta / dt) / dv_left = -1.0 / diameter - curvature / 2.0 |
| (*A)(2, 3) = -1.0 / diameter - curvature / 2.0; |
| // (dtheta / dt) / dv_right = 1.0 / diameter - curvature / 2.0 |
| (*A)(2, 4) = 1.0 / diameter - curvature / 2.0; |
| // v_{left,right} / dt = the normal LTI system. |
| A->block<2, 2>(3, 3) = |
| velocity_drivetrain().plant().coefficients().A_continuous; |
| B->block<2, 2>(3, 0) = |
| velocity_drivetrain().plant().coefficients().B_continuous; |
| } |
| |
| double Trajectory::EstimateDistanceAlongPath( |
| double nominal_distance, const Eigen::Matrix<double, 5, 1> &state) { |
| const double nominal_theta = spline().Theta(nominal_distance); |
| const Eigen::Matrix<double, 2, 1> xy_err = |
| state.block<2, 1>(0, 0) - spline().XY(nominal_distance); |
| return nominal_distance + xy_err.x() * std::cos(nominal_theta) + |
| xy_err.y() * std::sin(nominal_theta); |
| } |
| |
| Eigen::Matrix<double, 5, 1> FinishedTrajectory::StateToPathRelativeState( |
| double distance, const Eigen::Matrix<double, 5, 1> &state, |
| bool drive_backwards) const { |
| const double nominal_theta = spline().Theta(distance); |
| const Eigen::Matrix<double, 2, 1> nominal_xy = spline().XY(distance); |
| const Eigen::Matrix<double, 2, 1> xy_err = |
| state.block<2, 1>(0, 0) - nominal_xy; |
| const double ctheta = std::cos(nominal_theta); |
| const double stheta = std::sin(nominal_theta); |
| Eigen::Matrix<double, 5, 1> path_state; |
| path_state(0) = distance + xy_err.x() * ctheta + xy_err.y() * stheta; |
| path_state(1) = -xy_err.x() * stheta + xy_err.y() * ctheta; |
| path_state(2) = aos::math::NormalizeAngle(state(2) - nominal_theta + |
| (drive_backwards ? M_PI : 0.0)); |
| path_state(2) = aos::math::NormalizeAngle(state(2) - nominal_theta); |
| path_state(3) = state(3); |
| path_state(4) = state(4); |
| if (drive_backwards) { |
| std::swap(path_state(3), path_state(4)); |
| path_state(3) *= -1.0; |
| path_state(4) *= -1.0; |
| } |
| return path_state; |
| } |
| |
| // Path-relative controller method: |
| // For the path relative controller, we use a non-standard version of LQR to |
| // perform the control. Essentially, we first transform the system into |
| // a set of path-relative coordinates (where the reference that we use is the |
| // desired path reference). This gives us a system that is linear and |
| // time-varying, i.e. the system is a set of A_k, B_k matrices for each |
| // timestep k. |
| // In order to control this, we use a discrete-time finite-horizon LQR, using |
| // the appropraite [AB]_k for the given timestep. Note that the finite-horizon |
| // LQR requires choosing a terminal cost (i.e., what the cost should be |
| // for if we have not precisely reached the goal at the end of the time-period). |
| // For this, I approximate the infinite-horizon LQR solution by extending the |
| // finite-horizon much longer (albeit with the extension just using the |
| // linearization for the infal point). |
| void Trajectory::CalculatePathGains() { |
| const std::vector<Eigen::Matrix<double, 3, 1>> xva_plan = PlanXVA(config_.dt); |
| if (xva_plan.empty()) { |
| LOG(ERROR) << "Plan is empty--unable to plan trajectory."; |
| return; |
| } |
| plan_gains_.resize(xva_plan.size()); |
| |
| // Set up reasonable gain matrices. Current choices of gains are arbitrary |
| // and just setup to work well enough for the simulation tests. |
| // TODO(james): Tune this on a real robot. |
| // TODO(james): Pull these out into a config. |
| Eigen::Matrix<double, 5, 5> Q; |
| Q.setIdentity(); |
| Q.diagonal() << 30.0, 30.0, 20.0, 15.0, 15.0; |
| Q *= 2.0; |
| Q = (Q * Q).eval(); |
| |
| Eigen::Matrix<double, 2, 2> R; |
| R.setIdentity(); |
| R *= 5.0; |
| |
| Eigen::Matrix<double, 5, 5> P = Q; |
| |
| CHECK_LT(0u, xva_plan.size()); |
| const int max_index = static_cast<int>(xva_plan.size()) - 1; |
| for (int i = max_index; i >= 0; --i) { |
| const double distance = xva_plan[i](0); |
| Eigen::Matrix<double, 5, 5> A_continuous; |
| Eigen::Matrix<double, 5, 2> B_continuous; |
| PathRelativeContinuousSystem(distance, &A_continuous, &B_continuous); |
| Eigen::Matrix<double, 5, 5> A_discrete; |
| Eigen::Matrix<double, 5, 2> B_discrete; |
| controls::C2D(A_continuous, B_continuous, config_.dt, &A_discrete, |
| &B_discrete); |
| |
| if (i == max_index) { |
| // At the final timestep, approximate P by iterating a bunch of times. |
| // This is terminal cost mentioned in function-level comments. |
| // This does a very loose job of solving the DARE. Ideally, we would |
| // actually use a DARE solver directly, but based on some initial testing, |
| // this method is a bit more robust (or, at least, it is a bit more robust |
| // if we don't want to spend more time handling the potential error |
| // cases the DARE solver can encounter). |
| constexpr int kExtraIters = 100; |
| for (int jj = 0; jj < kExtraIters; ++jj) { |
| const Eigen::Matrix<double, 5, 5> AP = A_discrete.transpose() * P; |
| const Eigen::Matrix<double, 5, 2> APB = AP * B_discrete; |
| const Eigen::Matrix<double, 2, 2> RBPBinv = |
| (R + B_discrete.transpose() * P * B_discrete).inverse(); |
| P = AP * A_discrete - APB * RBPBinv * APB.transpose() + Q; |
| } |
| } |
| |
| const Eigen::Matrix<double, 5, 5> AP = A_discrete.transpose() * P; |
| const Eigen::Matrix<double, 5, 2> APB = AP * B_discrete; |
| const Eigen::Matrix<double, 2, 2> RBPBinv = |
| (R + B_discrete.transpose() * P * B_discrete).inverse(); |
| plan_gains_[i].first = distance; |
| const Eigen::Matrix<double, 2, 5> K = RBPBinv * APB.transpose(); |
| plan_gains_[i].second = K.cast<float>(); |
| P = AP * A_discrete - APB * K + Q; |
| } |
| } |
| |
| Eigen::Matrix<double, 2, 5> FinishedTrajectory::GainForDistance( |
| double distance) const { |
| const flatbuffers::Vector<flatbuffers::Offset<fb::GainPoint>> &gains = |
| *CHECK_NOTNULL(trajectory().gains()); |
| CHECK_LT(0u, gains.size()); |
| size_t index = 0; |
| for (index = 0; index < gains.size() - 1; ++index) { |
| if (gains[index + 1]->distance() > distance) { |
| break; |
| } |
| } |
| // ColMajor is the default storage order, but call it out explicitly here. |
| return Eigen::Matrix<float, 2, 5, Eigen::ColMajor>{ |
| gains[index]->gains()->data()} |
| .cast<double>(); |
| } |
| |
| namespace { |
| flatbuffers::Offset<Constraint> MakeWholeLengthConstraint( |
| flatbuffers::FlatBufferBuilder *fbb, ConstraintType constraint_type, |
| float value) { |
| Constraint::Builder builder(*fbb); |
| builder.add_constraint_type(constraint_type); |
| builder.add_value(value); |
| return builder.Finish(); |
| } |
| } // namespace |
| |
| flatbuffers::Offset<fb::Trajectory> Trajectory::Serialize( |
| flatbuffers::FlatBufferBuilder *fbb) const { |
| std::array<flatbuffers::Offset<Constraint>, 3> constraints_offsets = { |
| MakeWholeLengthConstraint(fbb, ConstraintType::LONGITUDINAL_ACCELERATION, |
| max_longitudinal_accel()), |
| MakeWholeLengthConstraint(fbb, ConstraintType::LATERAL_ACCELERATION, |
| max_lateral_accel()), |
| MakeWholeLengthConstraint(fbb, ConstraintType::VOLTAGE, max_voltage())}; |
| const auto constraints = fbb->CreateVector<Constraint>( |
| constraints_offsets.data(), constraints_offsets.size()); |
| const flatbuffers::Offset<fb::DistanceSpline> spline_offset = |
| spline().Serialize(fbb, constraints); |
| |
| std::vector<flatbuffers::Offset<fb::PlanPoint>> plan_points; |
| for (size_t ii = 0; ii < distance_plan_size(); ++ii) { |
| plan_points.push_back(fb::CreatePlanPoint( |
| *fbb, Distance(ii), plan_velocity(ii), plan_constraint(ii))); |
| } |
| |
| // TODO(james): What is an appropriate cap? |
| CHECK_LT(plan_gains_.size(), 5000u); |
| CHECK_LT(0u, plan_gains_.size()); |
| std::vector<flatbuffers::Offset<fb::GainPoint>> gain_points; |
| const size_t matrix_size = plan_gains_[0].second.size(); |
| for (size_t ii = 0; ii < plan_gains_.size(); ++ii) { |
| gain_points.push_back(fb::CreateGainPoint( |
| *fbb, plan_gains_[ii].first, |
| fbb->CreateVector(plan_gains_[ii].second.data(), matrix_size))); |
| } |
| |
| return fb::CreateTrajectory(*fbb, spline_idx_, fbb->CreateVector(plan_points), |
| fbb->CreateVector(gain_points), spline_offset, |
| drive_spline_backwards_); |
| } |
| |
| float BaseTrajectory::ConstraintValue( |
| const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints, |
| ConstraintType type) { |
| if (constraints != nullptr) { |
| for (const Constraint *constraint : *constraints) { |
| if (constraint->constraint_type() == type) { |
| return constraint->value(); |
| } |
| } |
| } |
| return DefaultConstraint(type); |
| } |
| |
| const Eigen::Matrix<double, 5, 1> BaseTrajectory::GoalState( |
| double distance, double velocity) const { |
| Eigen::Matrix<double, 5, 1> result; |
| result.block<2, 1>(0, 0) = spline().XY(distance); |
| result(2, 0) = spline().Theta(distance); |
| |
| result.block<2, 1>(3, 0) = |
| config_.Tla_to_lr() * (Eigen::Matrix<double, 2, 1>() << velocity, |
| spline().DThetaDt(distance, velocity)) |
| .finished(); |
| return result; |
| } |
| |
| } // namespace drivetrain |
| } // namespace control_loops |
| } // namespace frc971 |