| #ifndef FRC971_CONTROL_LOOPS_DRIVETRAIN_TRAJECTORY_H_ |
| #define FRC971_CONTROL_LOOPS_DRIVETRAIN_TRAJECTORY_H_ |
| |
| #include <chrono> |
| |
| #include "aos/flatbuffers.h" |
| #include "Eigen/Dense" |
| #include "frc971/control_loops/drivetrain/distance_spline.h" |
| #include "frc971/control_loops/drivetrain/drivetrain_config.h" |
| #include "frc971/control_loops/drivetrain/trajectory_generated.h" |
| #include "frc971/control_loops/drivetrain/spline_goal_generated.h" |
| #include "frc971/control_loops/hybrid_state_feedback_loop.h" |
| #include "frc971/control_loops/runge_kutta.h" |
| #include "frc971/control_loops/state_feedback_loop.h" |
| |
| namespace frc971 { |
| namespace control_loops { |
| namespace drivetrain { |
| |
| template <typename F> |
| double IntegrateAccelForDistance(const F &fn, double v, double x, double dx) { |
| // Use a trick from |
| // https://www.johndcook.com/blog/2012/02/21/care-and-treatment-of-singularities/ |
| const double a0 = fn(x, v); |
| |
| return (RungeKutta( |
| [&fn, &a0](double t, double y) { |
| // Since we know that a0 == a(0) and that they are asymtotically |
| // the same at 0, we know that the limit is 0 at 0. This is |
| // true because when starting from a stop, under sane |
| // accelerations, we can assume that we will start with a |
| // constant acceleration. So, hard-code it. |
| if (std::abs(y) < 1e-6) { |
| return 0.0; |
| } |
| return (fn(t, y) - a0) / y; |
| }, |
| v, x, dx) - |
| v) + |
| std::sqrt(2.0 * a0 * dx + v * v); |
| } |
| |
| class BaseTrajectory { |
| public: |
| BaseTrajectory( |
| const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints, |
| const DrivetrainConfig<double> &config); |
| |
| virtual ~BaseTrajectory() = default; |
| |
| // Returns the friction-constrained velocity limit at a given distance along |
| // the path. At the returned velocity, one or both wheels will be on the edge |
| // of slipping. |
| // There are some very disorganized thoughts on the math here and in some of |
| // the other functions in spline_math.tex. |
| double LateralVelocityCurvature(double distance) const; |
| |
| // Returns the range of allowable longitudinal accelerations for the center of |
| // the robot at a particular distance (x) along the path and velocity (v). |
| // min_accel and max_accel correspodn to the min/max accelerations that can be |
| // achieved without breaking friction limits on one or both wheels. |
| // If max_accel < min_accel, that implies that v is too high for there to be |
| // any valid acceleration. FrictionLngAccelLimits(x, |
| // LateralVelocityCurvature(x), &min_accel, &max_accel) should result in |
| // min_accel == max_accel. |
| void FrictionLngAccelLimits(double x, double v, double *min_accel, |
| double *max_accel) const; |
| |
| // Returns the forwards/backwards acceleration for a distance along the spline |
| // taking into account the lateral acceleration, longitudinal acceleration, |
| // and voltage limits. |
| double BestAcceleration(double x, double v, bool backwards) const; |
| double BackwardAcceleration(double x, double v) const { |
| return BestAcceleration(x, v, true); |
| } |
| double ForwardAcceleration(double x, double v) const { |
| return BestAcceleration(x, v, false); |
| } |
| |
| const StateFeedbackLoop<2, 2, 2, double, StateFeedbackHybridPlant<2, 2, 2>, |
| HybridKalman<2, 2, 2>> |
| &velocity_drivetrain() const { |
| return *velocity_drivetrain_; |
| } |
| |
| // Returns K1 and K2. |
| // K2 * d^x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U |
| const Eigen::Matrix<double, 2, 1> K1(double current_ddtheta) const; |
| const Eigen::Matrix<double, 2, 1> K2(double current_dtheta) const; |
| |
| // Computes K3, K4, and K5 for the provided distance. |
| // K5 a + K3 v^2 + K4 v = U |
| void K345(const double x, Eigen::Matrix<double, 2, 1> *K3, |
| Eigen::Matrix<double, 2, 1> *K4, |
| Eigen::Matrix<double, 2, 1> *K5) const; |
| |
| virtual const DistanceSpline &spline() const = 0; |
| |
| // Returns the length of the path in meters. |
| double length() const { return spline().length(); } |
| |
| // Returns whether a state represents a state at the end of the spline. |
| bool is_at_end(Eigen::Matrix<double, 2, 1> state) const { |
| return state(0) > length() - 1e-4; |
| } |
| |
| // Returns true if the state is invalid or unreasonable in some way. |
| bool state_is_faulted(Eigen::Matrix<double, 2, 1> state) const { |
| // Consider things faulted if the current velocity implies we are going |
| // backwards or if any infinities/NaNs have crept in. |
| return state(1) < 0 || !state.allFinite(); |
| } |
| |
| virtual float plan_velocity(size_t index) const = 0; |
| virtual size_t distance_plan_size() const = 0; |
| |
| // Sets the plan longitudinal acceleration limit |
| void set_longitudinal_acceleration(double longitudinal_acceleration) { |
| longitudinal_acceleration_ = longitudinal_acceleration; |
| } |
| // Sets the plan lateral acceleration limit |
| void set_lateral_acceleration(double lateral_acceleration) { |
| lateral_acceleration_ = lateral_acceleration; |
| } |
| // Sets the voltage limit |
| void set_voltage_limit(double voltage_limit) { |
| voltage_limit_ = voltage_limit; |
| } |
| |
| float max_lateral_accel() const { return lateral_acceleration_; } |
| |
| float max_longitudinal_accel() const { return longitudinal_acceleration_; } |
| |
| float max_voltage() const { return voltage_limit_; } |
| |
| // Return the next position, velocity, acceleration based on the current |
| // state. Updates the passed in state for the next iteration. |
| Eigen::Matrix<double, 3, 1> GetNextXVA( |
| std::chrono::nanoseconds dt, Eigen::Matrix<double, 2, 1> *state) const; |
| |
| // Returns the distance for an index in the plan. |
| double Distance(int index) const { |
| return static_cast<double>(index) * length() / |
| static_cast<double>(distance_plan_size() - 1); |
| } |
| |
| virtual fb::SegmentConstraint plan_constraint(size_t index) const = 0; |
| |
| // Returns the feed forwards position, velocity, acceleration for an explicit |
| // distance. |
| Eigen::Matrix<double, 3, 1> FFAcceleration(double distance) const; |
| |
| // Returns the feed forwards voltage for an explicit distance. |
| Eigen::Matrix<double, 2, 1> FFVoltage(double distance) const; |
| |
| // Computes alpha for a distance. |
| size_t DistanceToSegment(double distance) const { |
| return std::max( |
| static_cast<size_t>(0), |
| std::min(distance_plan_size() - 1, |
| static_cast<size_t>(std::floor(distance / length() * |
| (distance_plan_size() - 1))))); |
| } |
| |
| // Returns the goal state as a function of path distance, velocity. |
| const ::Eigen::Matrix<double, 5, 1> GoalState(double distance, |
| double velocity) const; |
| |
| protected: |
| double robot_radius_l() const { return robot_radius_l_; } |
| double robot_radius_r() const { return robot_radius_r_; } |
| |
| private: |
| static float ConstraintValue( |
| const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints, |
| ConstraintType type); |
| |
| std::unique_ptr< |
| StateFeedbackLoop<2, 2, 2, double, StateFeedbackHybridPlant<2, 2, 2>, |
| HybridKalman<2, 2, 2>>> |
| velocity_drivetrain_; |
| |
| const DrivetrainConfig<double> config_; |
| |
| // Robot radiuses. |
| const double robot_radius_l_; |
| const double robot_radius_r_; |
| float lateral_acceleration_ = 3.0; |
| float longitudinal_acceleration_ = 2.0; |
| float voltage_limit_ = 12.0; |
| }; |
| |
| // A wrapper around the Trajectory flatbuffer to allow for controlling to a |
| // spline using a pre-generated trajectory. |
| class FinishedTrajectory : public BaseTrajectory { |
| public: |
| // Note: The lifetime of the supplied buffer is assumed to be greater than |
| // that of this object. |
| explicit FinishedTrajectory(const DrivetrainConfig<double> &config, |
| const fb::Trajectory *buffer); |
| |
| virtual ~FinishedTrajectory() = default; |
| |
| // Takes the 5-element state that is [x, y, theta, v_left, v_right] and |
| // converts it to a path-relative state, using distance as a linearization |
| // point (i.e., distance should be roughly equal to the actual distance along |
| // the path). |
| Eigen::Matrix<double, 5, 1> StateToPathRelativeState( |
| double distance, const Eigen::Matrix<double, 5, 1> &state, |
| bool drive_backwards) const; |
| |
| // Retrieves the gain matrix K for a given distance along the path. |
| Eigen::Matrix<double, 2, 5> GainForDistance(double distance) const; |
| |
| size_t distance_plan_size() const override; |
| float plan_velocity(size_t index) const override; |
| fb::SegmentConstraint plan_constraint(size_t index) const override; |
| |
| bool drive_spline_backwards() const { |
| return trajectory().drive_spline_backwards(); |
| } |
| |
| int spline_handle() const { return trajectory().handle(); } |
| const fb::Trajectory &trajectory() const { return *buffer_; } |
| |
| private: |
| const DistanceSpline &spline() const override { return spline_; } |
| const fb::Trajectory *buffer_; |
| const DistanceSpline spline_; |
| }; |
| |
| // Class to handle plannign a trajectory and producing a flatbuffer containing |
| // all the information required to create a FinishedTrajectory; |
| class Trajectory : public BaseTrajectory { |
| public: |
| Trajectory(const SplineGoal &spline_goal, |
| const DrivetrainConfig<double> &config); |
| Trajectory( |
| DistanceSpline &&spline, const DrivetrainConfig<double> &config, |
| const flatbuffers::Vector<flatbuffers::Offset<Constraint>> *constraints, |
| int spline_idx = 0, double vmax = 10.0, int num_distance = 0); |
| |
| virtual ~Trajectory() = default; |
| |
| std::vector<Eigen::Matrix<double, 3, 1>> PlanXVA( |
| std::chrono::nanoseconds dt); |
| |
| enum class VoltageLimit { |
| kConservative, |
| kAggressive, |
| }; |
| |
| // Calculates the maximum voltage at which we *can* track the path. In some |
| // cases there will be two ranges of feasible velocities for traversing the |
| // path--in such a situation, from zero to velocity A we will be able to track |
| // the path, from velocity A to B we can't, from B to C we can and above C we |
| // can't. If limit_type = kConservative, we return A; if limit_type = |
| // kAggressive, we return C. We currently just use the kConservative limit |
| // because that way we can guarantee that all velocities between zero and A |
| // are allowable and don't have to handle a more complicated planning problem. |
| // constraint_voltages will be populated by the only wheel voltages that are |
| // valid at the returned limit. |
| double VoltageVelocityLimit( |
| double distance, VoltageLimit limit_type, |
| Eigen::Matrix<double, 2, 1> *constraint_voltages = nullptr) const; |
| |
| // Limits the velocity in the specified segment to the max velocity. |
| void LimitVelocity(double starting_distance, double ending_distance, |
| double max_velocity); |
| |
| // Runs the lateral acceleration (curvature) pass on the plan. |
| void LateralAccelPass(); |
| void VoltageFeasibilityPass(VoltageLimit limit_type); |
| |
| // Runs the forwards pass, setting the starting velocity to 0 m/s |
| void ForwardPass(); |
| |
| // Runs the forwards pass, setting the ending velocity to 0 m/s |
| void BackwardPass(); |
| |
| // Runs all the planning passes. |
| void Plan() { |
| VoltageFeasibilityPass(VoltageLimit::kConservative); |
| LateralAccelPass(); |
| ForwardPass(); |
| BackwardPass(); |
| CalculatePathGains(); |
| } |
| |
| // Returns a list of the distances. Mostly useful for plotting. |
| const std::vector<double> Distances() const; |
| // Returns the distance for an index in the plan. |
| double Distance(int index) const { |
| return static_cast<double>(index) * length() / |
| static_cast<double>(plan_.size() - 1); |
| } |
| |
| const std::vector<fb::SegmentConstraint> &plan_segment_type() const { |
| return plan_segment_type_; |
| } |
| |
| // The controller represented by these functions uses a discrete-time, |
| // finite-horizon LQR with states that are relative to the predicted path |
| // of the robot to produce a gain to be used on the error. |
| // The controller does not currently account for saturation, but is defined |
| // in a way that would make accounting for saturation feasible. |
| // This controller uses a state of: |
| // distance along path |
| // distance lateral to path (positive when robot is to the left of the path). |
| // heading relative to path (positive if robot pointed to left). |
| // v_left (speed of left side of robot) |
| // v_right (speed of right side of robot). |
| |
| // Retrieve the continuous-time A/B matrices for the path-relative system |
| // at the given distance along the path. Performs all linearizations about |
| // the nominal velocity that the robot should be following at that point |
| // along the path. |
| void PathRelativeContinuousSystem(double distance, |
| Eigen::Matrix<double, 5, 5> *A, |
| Eigen::Matrix<double, 5, 2> *B); |
| // Retrieve the continuous-time A/B matrices for the path-relative system |
| // given the current path-relative state, as defined above. |
| void PathRelativeContinuousSystem(const Eigen::Matrix<double, 5, 1> &X, |
| Eigen::Matrix<double, 5, 5> *A, |
| Eigen::Matrix<double, 5, 2> *B); |
| |
| // Takes the 5-element state that is [x, y, theta, v_left, v_right] and |
| // converts it to a path-relative state, using distance as a linearization |
| // point (i.e., distance should be roughly equal to the actual distance along |
| // the path). |
| Eigen::Matrix<double, 5, 1> StateToPathRelativeState( |
| double distance, const Eigen::Matrix<double, 5, 1> &state); |
| |
| // Estimates the current distance along the path, given the current expected |
| // distance and the [x, y, theta, v_left, v_right] state. |
| double EstimateDistanceAlongPath(double nominal_distance, |
| const Eigen::Matrix<double, 5, 1> &state); |
| |
| // Calculates all the gains for each point along the planned trajectory. |
| // Only called directly in tests; this is normally a part of the planning |
| // phase, and is a relatively expensive operation. |
| void CalculatePathGains(); |
| |
| flatbuffers::Offset<fb::Trajectory> Serialize( |
| flatbuffers::FlatBufferBuilder *fbb) const; |
| |
| const std::vector<double> plan() const { return plan_; } |
| |
| const DistanceSpline &spline() const override { return spline_; } |
| |
| private: |
| |
| float plan_velocity(size_t index) const override { |
| return plan_[index]; |
| } |
| size_t distance_plan_size() const override { return plan_.size(); } |
| |
| fb::SegmentConstraint plan_constraint(size_t index) const override { |
| return plan_segment_type_[index]; |
| } |
| |
| const int spline_idx_; |
| |
| // The spline we are planning for. |
| const DistanceSpline spline_; |
| |
| const DrivetrainConfig<double> config_; |
| |
| // Velocities in the plan (distance for each index is defined by Distance()) |
| std::vector<double> plan_; |
| // Gain matrices to use for the path-relative state error at each stage in the |
| // plan Individual elements of the plan_gains_ vector are separated by |
| // config_.dt in time. |
| // The first value in the pair is the distance along the path corresponding to |
| // the gain matrix; the second value is the gain itself. |
| std::vector<std::pair<double, Eigen::Matrix<float, 2, 5>>> plan_gains_; |
| std::vector<fb::SegmentConstraint> plan_segment_type_; |
| |
| bool drive_spline_backwards_ = false; |
| }; |
| |
| // Returns the continuous time dynamics given the [x, y, theta, vl, vr] state |
| // and the [vl, vr] input voltage. |
| inline Eigen::Matrix<double, 5, 1> ContinuousDynamics( |
| const StateFeedbackHybridPlant<2, 2, 2> &velocity_drivetrain, |
| const Eigen::Matrix<double, 2, 2> &Tlr_to_la, |
| const Eigen::Matrix<double, 5, 1> X, |
| const Eigen::Matrix<double, 2, 1> U) { |
| const auto &velocity = X.block<2, 1>(3, 0); |
| const double theta = X(2); |
| Eigen::Matrix<double, 2, 1> la = Tlr_to_la * velocity; |
| return (Eigen::Matrix<double, 5, 1>() << std::cos(theta) * la(0), |
| std::sin(theta) * la(0), la(1), |
| (velocity_drivetrain.coefficients().A_continuous * velocity + |
| velocity_drivetrain.coefficients().B_continuous * U)) |
| .finished(); |
| } |
| |
| } // namespace drivetrain |
| } // namespace control_loops |
| } // namespace frc971 |
| |
| #endif // FRC971_CONTROL_LOOPS_DRIVETRAIN_TRAJECTORY_H_ |