blob: e5a8217f7a7a188b68780d69620b17517b1a1345 [file] [log] [blame]
#!/usr/bin/python
import control_loop
import numpy
import sys
from matplotlib import pylab
class Drivetrain(control_loop.ControlLoop):
def __init__(self):
super(Drivetrain, self).__init__("Drivetrain")
# Stall Torque in N m
self.stall_torque = 2.42
# Stall Current in Amps
self.stall_current = 133
# Free Speed in RPM. Used number from last year.
self.free_speed = 4650.0
# Free Current in Amps
self.free_current = 2.7
# Moment of inertia of the drivetrain in kg m^2
# Just borrowed from last year.
self.J = 7.0
# Mass of the robot, in kg.
self.m = 68
# Radius of the robot, in meters (from last year).
self.rb = 0.617998644 / 2.0
# Radius of the wheels, in meters.
self.r = .04445
# Resistance of the motor, divided by the number of motors.
self.R = 12.0 / self.stall_current / 6
# Motor velocity constant
self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
(12.0 - self.R * self.free_current))
# Torque constant
self.Kt = self.stall_torque / self.stall_current
# Gear ratios
self.G_low = 16.0 / 60.0 * 19.0 / 50.0
self.G_high = 28.0 / 48.0 * 19.0 / 50.0
self.G = self.G_low
# Control loop time step
self.dt = 0.01
# These describe the way that a given side of a robot will be influenced
# by the other side. Units of 1 / kg.
self.msp = 1.0 / self.m + self.rb * self.rb / self.J
self.msn = 1.0 / self.m - self.rb * self.rb / self.J
# The calculations which we will need for A and B.
self.tc = -self.Kt / self.Kv / (self.G * self.G * self.R * self.r * self.r)
self.mp = self.Kt / (self.G * self.R * self.r)
# State feedback matrices
# X will be of the format
# [[position1], [velocity1], [position2], velocity2]]
self.A_continuous = numpy.matrix(
[[0, 1, 0, 0],
[0, self.msp * self.tc, 0, self.msn * self.tc],
[0, 0, 0, 1],
[0, self.msn * self.tc, 0, self.msp * self.tc]])
self.B_continuous = numpy.matrix(
[[0, 0],
[self.msp * self.mp, self.msn * self.mp],
[0, 0],
[self.msn * self.mp, self.msp * self.mp]])
self.C = numpy.matrix([[1, 0, 0, 0],
[0, 0, 1, 0]])
self.D = numpy.matrix([[0, 0],
[0, 0]])
self.ContinuousToDiscrete(self.A_continuous, self.B_continuous,
self.dt, self.C)
# Poles from last year.
self.hp = 0.8
self.lp = 0.85
self.PlaceControllerPoles([self.hp, self.hp, self.lp, self.lp])
print self.K
self.hlp = 0.07
self.llp = 0.09
self.PlaceObserverPoles([self.hlp, self.hlp, self.llp, self.llp])
self.U_max = numpy.matrix([[12.0], [12.0]])
self.U_min = numpy.matrix([[-12.0], [-12.0]])
def main(argv):
# Simulate the response of the system to a step input.
drivetrain = Drivetrain()
simulated_left = []
simulated_right = []
for _ in xrange(100):
drivetrain.Update(numpy.matrix([[12.0], [12.0]]))
simulated_left.append(drivetrain.X[0, 0])
simulated_right.append(drivetrain.X[2, 0])
pylab.plot(range(100), simulated_left)
pylab.plot(range(100), simulated_right)
pylab.show()
# Simulate forwards motion.
drivetrain = Drivetrain()
close_loop_left = []
close_loop_right = []
R = numpy.matrix([[1.0], [0.0], [1.0], [0.0]])
for _ in xrange(100):
U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
drivetrain.U_min, drivetrain.U_max)
drivetrain.UpdateObserver(U)
drivetrain.Update(U)
close_loop_left.append(drivetrain.X[0, 0])
close_loop_right.append(drivetrain.X[2, 0])
pylab.plot(range(100), close_loop_left)
pylab.plot(range(100), close_loop_right)
pylab.show()
# Try turning in place
drivetrain = Drivetrain()
close_loop_left = []
close_loop_right = []
R = numpy.matrix([[-1.0], [0.0], [1.0], [0.0]])
for _ in xrange(100):
U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
drivetrain.U_min, drivetrain.U_max)
drivetrain.UpdateObserver(U)
drivetrain.Update(U)
close_loop_left.append(drivetrain.X[0, 0])
close_loop_right.append(drivetrain.X[2, 0])
pylab.plot(range(100), close_loop_left)
pylab.plot(range(100), close_loop_right)
pylab.show()
# Try turning just one side.
drivetrain = Drivetrain()
close_loop_left = []
close_loop_right = []
R = numpy.matrix([[0.0], [0.0], [1.0], [0.0]])
for _ in xrange(100):
U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
drivetrain.U_min, drivetrain.U_max)
drivetrain.UpdateObserver(U)
drivetrain.Update(U)
close_loop_left.append(drivetrain.X[0, 0])
close_loop_right.append(drivetrain.X[2, 0])
pylab.plot(range(100), close_loop_left)
pylab.plot(range(100), close_loop_right)
pylab.show()
# Write the generated constants out to a file.
if len(argv) != 3:
print "Expected .h file name and .cc file name"
else:
if argv[1][-3:] == '.cc':
print '.cc file is second'
else:
drivetrain.DumpHeaderFile(argv[1])
drivetrain.DumpCppFile(argv[2], argv[1])
if __name__ == '__main__':
sys.exit(main(sys.argv))