| #include "y2014/control_loops/drivetrain/drivetrain.h" |
| |
| #include <stdio.h> |
| #include <sched.h> |
| #include <cmath> |
| #include <memory> |
| #include "Eigen/Dense" |
| |
| #include "aos/common/logging/logging.h" |
| #include "aos/common/controls/polytope.h" |
| #include "aos/common/commonmath.h" |
| #include "aos/common/logging/queue_logging.h" |
| #include "aos/common/logging/matrix_logging.h" |
| |
| #include "y2014/constants.h" |
| #include "frc971/control_loops/state_feedback_loop.h" |
| #include "frc971/control_loops/coerce_goal.h" |
| #include "y2014/control_loops/drivetrain/drivetrain.q.h" |
| #include "y2014/control_loops/drivetrain/drivetrain_dog_motor_plant.h" |
| #include "frc971/queues/gyro.q.h" |
| #include "frc971/shifter_hall_effect.h" |
| |
| // A consistent way to mark code that goes away without shifters. It's still |
| // here because we will have shifters again in the future. |
| #define HAVE_SHIFTERS 1 |
| |
| using frc971::sensors::gyro_reading; |
| |
| namespace frc971 { |
| namespace control_loops { |
| |
| using ::y2014::control_loops::drivetrain::kDt; |
| |
| class DrivetrainMotorsSS { |
| public: |
| class LimitedDrivetrainLoop : public StateFeedbackLoop<4, 2, 2> { |
| public: |
| LimitedDrivetrainLoop(StateFeedbackLoop<4, 2, 2> &&loop) |
| : StateFeedbackLoop<4, 2, 2>(::std::move(loop)), |
| U_Poly_((Eigen::Matrix<double, 4, 2>() << 1, 0, |
| -1, 0, |
| 0, 1, |
| 0, -1).finished(), |
| (Eigen::Matrix<double, 4, 1>() << 12.0, 12.0, |
| 12.0, 12.0).finished()) { |
| ::aos::controls::HPolytope<0>::Init(); |
| T << 1, -1, 1, 1; |
| T_inverse = T.inverse(); |
| } |
| |
| bool output_was_capped() const { |
| return output_was_capped_; |
| } |
| |
| private: |
| virtual void CapU() { |
| const Eigen::Matrix<double, 4, 1> error = R() - X_hat(); |
| |
| if (::std::abs(U(0, 0)) > 12.0 || ::std::abs(U(1, 0)) > 12.0) { |
| mutable_U() = |
| U() * 12.0 / ::std::max(::std::abs(U(0, 0)), ::std::abs(U(1, 0))); |
| LOG_MATRIX(DEBUG, "U is now", U()); |
| // TODO(Austin): Figure out why the polytope stuff wasn't working and |
| // remove this hack. |
| output_was_capped_ = true; |
| return; |
| |
| LOG_MATRIX(DEBUG, "U at start", U()); |
| LOG_MATRIX(DEBUG, "R at start", R()); |
| LOG_MATRIX(DEBUG, "Xhat at start", X_hat()); |
| |
| Eigen::Matrix<double, 2, 2> position_K; |
| position_K << K(0, 0), K(0, 2), |
| K(1, 0), K(1, 2); |
| Eigen::Matrix<double, 2, 2> velocity_K; |
| velocity_K << K(0, 1), K(0, 3), |
| K(1, 1), K(1, 3); |
| |
| Eigen::Matrix<double, 2, 1> position_error; |
| position_error << error(0, 0), error(2, 0); |
| const auto drive_error = T_inverse * position_error; |
| Eigen::Matrix<double, 2, 1> velocity_error; |
| velocity_error << error(1, 0), error(3, 0); |
| LOG_MATRIX(DEBUG, "error", error); |
| |
| const auto &poly = U_Poly_; |
| const Eigen::Matrix<double, 4, 2> pos_poly_H = |
| poly.H() * position_K * T; |
| const Eigen::Matrix<double, 4, 1> pos_poly_k = |
| poly.k() - poly.H() * velocity_K * velocity_error; |
| const ::aos::controls::HPolytope<2> pos_poly(pos_poly_H, pos_poly_k); |
| |
| Eigen::Matrix<double, 2, 1> adjusted_pos_error; |
| { |
| const auto &P = drive_error; |
| |
| Eigen::Matrix<double, 1, 2> L45; |
| L45 << ::aos::sign(P(1, 0)), -::aos::sign(P(0, 0)); |
| const double w45 = 0; |
| |
| Eigen::Matrix<double, 1, 2> LH; |
| if (::std::abs(P(0, 0)) > ::std::abs(P(1, 0))) { |
| LH << 0, 1; |
| } else { |
| LH << 1, 0; |
| } |
| const double wh = LH.dot(P); |
| |
| Eigen::Matrix<double, 2, 2> standard; |
| standard << L45, LH; |
| Eigen::Matrix<double, 2, 1> W; |
| W << w45, wh; |
| const Eigen::Matrix<double, 2, 1> intersection = |
| standard.inverse() * W; |
| |
| bool is_inside_h; |
| const auto adjusted_pos_error_h = |
| DoCoerceGoal(pos_poly, LH, wh, drive_error, &is_inside_h); |
| const auto adjusted_pos_error_45 = |
| DoCoerceGoal(pos_poly, L45, w45, intersection, nullptr); |
| if (pos_poly.IsInside(intersection)) { |
| adjusted_pos_error = adjusted_pos_error_h; |
| } else { |
| if (is_inside_h) { |
| if (adjusted_pos_error_h.norm() > adjusted_pos_error_45.norm()) { |
| adjusted_pos_error = adjusted_pos_error_h; |
| } else { |
| adjusted_pos_error = adjusted_pos_error_45; |
| } |
| } else { |
| adjusted_pos_error = adjusted_pos_error_45; |
| } |
| } |
| } |
| |
| LOG_MATRIX(DEBUG, "adjusted_pos_error", adjusted_pos_error); |
| mutable_U() = |
| velocity_K * velocity_error + position_K * T * adjusted_pos_error; |
| LOG_MATRIX(DEBUG, "U is now", U()); |
| } else { |
| output_was_capped_ = false; |
| } |
| } |
| |
| const ::aos::controls::HPolytope<2> U_Poly_; |
| Eigen::Matrix<double, 2, 2> T, T_inverse; |
| bool output_was_capped_ = false;; |
| }; |
| |
| DrivetrainMotorsSS() |
| : loop_(new LimitedDrivetrainLoop( |
| constants::GetValues().make_drivetrain_loop())), |
| filtered_offset_(0.0), |
| gyro_(0.0), |
| left_goal_(0.0), |
| right_goal_(0.0), |
| raw_left_(0.0), |
| raw_right_(0.0) { |
| // High gear on both. |
| loop_->set_controller_index(3); |
| } |
| |
| void SetGoal(double left, double left_velocity, double right, |
| double right_velocity) { |
| left_goal_ = left; |
| right_goal_ = right; |
| loop_->mutable_R() << left, left_velocity, right, right_velocity; |
| } |
| void SetRawPosition(double left, double right) { |
| raw_right_ = right; |
| raw_left_ = left; |
| Eigen::Matrix<double, 2, 1> Y; |
| Y << left + filtered_offset_, right - filtered_offset_; |
| loop_->Correct(Y); |
| } |
| void SetPosition(double left, double right, double gyro) { |
| // Decay the offset quickly because this gyro is great. |
| const double offset = |
| (right - left - gyro * constants::GetValues().turn_width) / 2.0; |
| filtered_offset_ = 0.25 * offset + 0.75 * filtered_offset_; |
| gyro_ = gyro; |
| SetRawPosition(left, right); |
| } |
| |
| void SetExternalMotors(double left_voltage, double right_voltage) { |
| loop_->mutable_U() << left_voltage, right_voltage; |
| } |
| |
| void Update(bool stop_motors, bool enable_control_loop) { |
| if (enable_control_loop) { |
| loop_->Update(stop_motors); |
| } else { |
| if (stop_motors) { |
| loop_->mutable_U().setZero(); |
| loop_->mutable_U_uncapped().setZero(); |
| } |
| loop_->UpdateObserver(); |
| } |
| ::Eigen::Matrix<double, 4, 1> E = loop_->R() - loop_->X_hat(); |
| LOG_MATRIX(DEBUG, "E", E); |
| } |
| |
| double GetEstimatedRobotSpeed() const { |
| // lets just call the average of left and right velocities close enough |
| return (loop_->X_hat(1, 0) + loop_->X_hat(3, 0)) / 2; |
| } |
| |
| double GetEstimatedLeftEncoder() const { |
| return loop_->X_hat(0, 0); |
| } |
| |
| double GetEstimatedRightEncoder() const { |
| return loop_->X_hat(2, 0); |
| } |
| |
| bool OutputWasCapped() const { |
| return loop_->output_was_capped(); |
| } |
| |
| void SendMotors(DrivetrainQueue::Output *output) const { |
| if (output) { |
| output->left_voltage = loop_->U(0, 0); |
| output->right_voltage = loop_->U(1, 0); |
| output->left_high = true; |
| output->right_high = true; |
| } |
| } |
| |
| const LimitedDrivetrainLoop &loop() const { return *loop_; } |
| |
| private: |
| ::std::unique_ptr<LimitedDrivetrainLoop> loop_; |
| |
| double filtered_offset_; |
| double gyro_; |
| double left_goal_; |
| double right_goal_; |
| double raw_left_; |
| double raw_right_; |
| }; |
| |
| class PolyDrivetrain { |
| public: |
| |
| enum Gear { |
| HIGH, |
| LOW, |
| SHIFTING_UP, |
| SHIFTING_DOWN |
| }; |
| // Stall Torque in N m |
| static constexpr double kStallTorque = 2.42; |
| // Stall Current in Amps |
| static constexpr double kStallCurrent = 133.0; |
| // Free Speed in RPM. Used number from last year. |
| static constexpr double kFreeSpeed = 4650.0; |
| // Free Current in Amps |
| static constexpr double kFreeCurrent = 2.7; |
| // Moment of inertia of the drivetrain in kg m^2 |
| // Just borrowed from last year. |
| static constexpr double J = 6.4; |
| // Mass of the robot, in kg. |
| static constexpr double m = 68.0; |
| // Radius of the robot, in meters (from last year). |
| static constexpr double rb = 0.617998644 / 2.0; |
| static constexpr double kWheelRadius = 0.04445; |
| // Resistance of the motor, divided by the number of motors. |
| static constexpr double kR = (12.0 / kStallCurrent / 4 + 0.03) / (0.93 * 0.93); |
| // Motor velocity constant |
| static constexpr double Kv = |
| ((kFreeSpeed / 60.0 * 2.0 * M_PI) / (12.0 - kR * kFreeCurrent)); |
| // Torque constant |
| static constexpr double Kt = kStallTorque / kStallCurrent; |
| |
| PolyDrivetrain() |
| : U_Poly_((Eigen::Matrix<double, 4, 2>() << /*[[*/ 1, 0 /*]*/, |
| /*[*/ -1, 0 /*]*/, |
| /*[*/ 0, 1 /*]*/, |
| /*[*/ 0, -1 /*]]*/).finished(), |
| (Eigen::Matrix<double, 4, 1>() << /*[[*/ 12 /*]*/, |
| /*[*/ 12 /*]*/, |
| /*[*/ 12 /*]*/, |
| /*[*/ 12 /*]]*/).finished()), |
| loop_(new StateFeedbackLoop<2, 2, 2>( |
| constants::GetValues().make_v_drivetrain_loop())), |
| ttrust_(1.1), |
| wheel_(0.0), |
| throttle_(0.0), |
| quickturn_(false), |
| stale_count_(0), |
| position_time_delta_(kDt), |
| left_gear_(LOW), |
| right_gear_(LOW), |
| counter_(0) { |
| |
| last_position_.Zero(); |
| position_.Zero(); |
| } |
| static bool IsInGear(Gear gear) { return gear == LOW || gear == HIGH; } |
| |
| static double MotorSpeed(const constants::ShifterHallEffect &hall_effect, |
| double shifter_position, double velocity) { |
| // TODO(austin): G_high, G_low and kWheelRadius |
| const double avg_hall_effect = |
| (hall_effect.clear_high + hall_effect.clear_low) / 2.0; |
| |
| if (shifter_position > avg_hall_effect) { |
| return velocity / constants::GetValues().high_gear_ratio / kWheelRadius; |
| } else { |
| return velocity / constants::GetValues().low_gear_ratio / kWheelRadius; |
| } |
| } |
| |
| Gear ComputeGear(const constants::ShifterHallEffect &hall_effect, |
| double velocity, Gear current) { |
| const double low_omega = MotorSpeed(hall_effect, 0.0, ::std::abs(velocity)); |
| const double high_omega = |
| MotorSpeed(hall_effect, 1.0, ::std::abs(velocity)); |
| |
| double high_torque = ((12.0 - high_omega / Kv) * Kt / kR); |
| double low_torque = ((12.0 - low_omega / Kv) * Kt / kR); |
| double high_power = high_torque * high_omega; |
| double low_power = low_torque * low_omega; |
| |
| // TODO(aschuh): Do this right! |
| if ((current == HIGH || high_power > low_power + 160) && |
| ::std::abs(velocity) > 0.14) { |
| return HIGH; |
| } else { |
| return LOW; |
| } |
| } |
| |
| void SetGoal(double wheel, double throttle, bool quickturn, bool highgear) { |
| const double kWheelNonLinearity = 0.3; |
| // Apply a sin function that's scaled to make it feel better. |
| const double angular_range = M_PI_2 * kWheelNonLinearity; |
| |
| wheel_ = sin(angular_range * wheel) / sin(angular_range); |
| wheel_ = sin(angular_range * wheel_) / sin(angular_range); |
| quickturn_ = quickturn; |
| |
| static const double kThrottleDeadband = 0.05; |
| if (::std::abs(throttle) < kThrottleDeadband) { |
| throttle_ = 0; |
| } else { |
| throttle_ = copysign((::std::abs(throttle) - kThrottleDeadband) / |
| (1.0 - kThrottleDeadband), throttle); |
| } |
| |
| // TODO(austin): Fix the upshift logic to include states. |
| Gear requested_gear; |
| if (false) { |
| const auto &values = constants::GetValues(); |
| const double current_left_velocity = |
| (position_.left_encoder - last_position_.left_encoder) / |
| position_time_delta_; |
| const double current_right_velocity = |
| (position_.right_encoder - last_position_.right_encoder) / |
| position_time_delta_; |
| |
| Gear left_requested = |
| ComputeGear(values.left_drive, current_left_velocity, left_gear_); |
| Gear right_requested = |
| ComputeGear(values.right_drive, current_right_velocity, right_gear_); |
| requested_gear = |
| (left_requested == HIGH || right_requested == HIGH) ? HIGH : LOW; |
| } else { |
| requested_gear = highgear ? HIGH : LOW; |
| } |
| |
| const Gear shift_up = |
| constants::GetValues().clutch_transmission ? HIGH : SHIFTING_UP; |
| const Gear shift_down = |
| constants::GetValues().clutch_transmission ? LOW : SHIFTING_DOWN; |
| |
| if (left_gear_ != requested_gear) { |
| if (IsInGear(left_gear_)) { |
| if (requested_gear == HIGH) { |
| left_gear_ = shift_up; |
| } else { |
| left_gear_ = shift_down; |
| } |
| } else { |
| if (requested_gear == HIGH && left_gear_ == SHIFTING_DOWN) { |
| left_gear_ = SHIFTING_UP; |
| } else if (requested_gear == LOW && left_gear_ == SHIFTING_UP) { |
| left_gear_ = SHIFTING_DOWN; |
| } |
| } |
| } |
| if (right_gear_ != requested_gear) { |
| if (IsInGear(right_gear_)) { |
| if (requested_gear == HIGH) { |
| right_gear_ = shift_up; |
| } else { |
| right_gear_ = shift_down; |
| } |
| } else { |
| if (requested_gear == HIGH && right_gear_ == SHIFTING_DOWN) { |
| right_gear_ = SHIFTING_UP; |
| } else if (requested_gear == LOW && right_gear_ == SHIFTING_UP) { |
| right_gear_ = SHIFTING_DOWN; |
| } |
| } |
| } |
| } |
| void SetPosition(const DrivetrainQueue::Position *position) { |
| const auto &values = constants::GetValues(); |
| if (position == NULL) { |
| ++stale_count_; |
| } else { |
| last_position_ = position_; |
| position_ = *position; |
| position_time_delta_ = (stale_count_ + 1) * kDt; |
| stale_count_ = 0; |
| } |
| |
| #if HAVE_SHIFTERS |
| if (position) { |
| GearLogging gear_logging; |
| // Switch to the correct controller. |
| const double left_middle_shifter_position = |
| (values.left_drive.clear_high + values.left_drive.clear_low) / 2.0; |
| const double right_middle_shifter_position = |
| (values.right_drive.clear_high + values.right_drive.clear_low) / 2.0; |
| |
| if (position->left_shifter_position < left_middle_shifter_position || |
| left_gear_ == LOW) { |
| if (position->right_shifter_position < right_middle_shifter_position || |
| right_gear_ == LOW) { |
| gear_logging.left_loop_high = false; |
| gear_logging.right_loop_high = false; |
| loop_->set_controller_index(gear_logging.controller_index = 0); |
| } else { |
| gear_logging.left_loop_high = false; |
| gear_logging.right_loop_high = true; |
| loop_->set_controller_index(gear_logging.controller_index = 1); |
| } |
| } else { |
| if (position->right_shifter_position < right_middle_shifter_position || |
| right_gear_ == LOW) { |
| gear_logging.left_loop_high = true; |
| gear_logging.right_loop_high = false; |
| loop_->set_controller_index(gear_logging.controller_index = 2); |
| } else { |
| gear_logging.left_loop_high = true; |
| gear_logging.right_loop_high = true; |
| loop_->set_controller_index(gear_logging.controller_index = 3); |
| } |
| } |
| |
| // TODO(austin): Constants. |
| if (position->left_shifter_position > values.left_drive.clear_high && left_gear_ == SHIFTING_UP) { |
| left_gear_ = HIGH; |
| } |
| if (position->left_shifter_position < values.left_drive.clear_low && left_gear_ == SHIFTING_DOWN) { |
| left_gear_ = LOW; |
| } |
| if (position->right_shifter_position > values.right_drive.clear_high && right_gear_ == SHIFTING_UP) { |
| right_gear_ = HIGH; |
| } |
| if (position->right_shifter_position < values.right_drive.clear_low && right_gear_ == SHIFTING_DOWN) { |
| right_gear_ = LOW; |
| } |
| |
| gear_logging.left_state = left_gear_; |
| gear_logging.right_state = right_gear_; |
| LOG_STRUCT(DEBUG, "state", gear_logging); |
| } |
| #else |
| (void) values; |
| #endif |
| } |
| |
| double FilterVelocity(double throttle) { |
| const Eigen::Matrix<double, 2, 2> FF = |
| loop_->B().inverse() * |
| (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A()); |
| |
| constexpr int kHighGearController = 3; |
| const Eigen::Matrix<double, 2, 2> FF_high = |
| loop_->controller(kHighGearController).plant.B().inverse() * |
| (Eigen::Matrix<double, 2, 2>::Identity() - |
| loop_->controller(kHighGearController).plant.A()); |
| |
| ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum(); |
| int min_FF_sum_index; |
| const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index); |
| const double min_K_sum = loop_->K().col(min_FF_sum_index).sum(); |
| const double high_min_FF_sum = FF_high.col(0).sum(); |
| |
| const double adjusted_ff_voltage = ::aos::Clip( |
| throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0); |
| return (adjusted_ff_voltage + |
| ttrust_ * min_K_sum * (loop_->X_hat(0, 0) + loop_->X_hat(1, 0)) / |
| 2.0) / |
| (ttrust_ * min_K_sum + min_FF_sum); |
| } |
| |
| double MaxVelocity() { |
| const Eigen::Matrix<double, 2, 2> FF = |
| loop_->B().inverse() * |
| (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A()); |
| |
| constexpr int kHighGearController = 3; |
| const Eigen::Matrix<double, 2, 2> FF_high = |
| loop_->controller(kHighGearController).plant.B().inverse() * |
| (Eigen::Matrix<double, 2, 2>::Identity() - |
| loop_->controller(kHighGearController).plant.A()); |
| |
| ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum(); |
| int min_FF_sum_index; |
| const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index); |
| //const double min_K_sum = loop_->K().col(min_FF_sum_index).sum(); |
| const double high_min_FF_sum = FF_high.col(0).sum(); |
| |
| const double adjusted_ff_voltage = ::aos::Clip( |
| 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0); |
| return adjusted_ff_voltage / min_FF_sum; |
| } |
| |
| void Update() { |
| const auto &values = constants::GetValues(); |
| // TODO(austin): Observer for the current velocity instead of difference |
| // calculations. |
| ++counter_; |
| #if HAVE_SHIFTERS |
| const double current_left_velocity = |
| (position_.left_encoder - last_position_.left_encoder) / |
| position_time_delta_; |
| const double current_right_velocity = |
| (position_.right_encoder - last_position_.right_encoder) / |
| position_time_delta_; |
| const double left_motor_speed = |
| MotorSpeed(values.left_drive, position_.left_shifter_position, |
| current_left_velocity); |
| const double right_motor_speed = |
| MotorSpeed(values.right_drive, position_.right_shifter_position, |
| current_right_velocity); |
| |
| { |
| CIMLogging logging; |
| |
| // Reset the CIM model to the current conditions to be ready for when we |
| // shift. |
| if (IsInGear(left_gear_)) { |
| logging.left_in_gear = true; |
| } else { |
| logging.left_in_gear = false; |
| } |
| logging.left_motor_speed = left_motor_speed; |
| logging.left_velocity = current_left_velocity; |
| if (IsInGear(right_gear_)) { |
| logging.right_in_gear = true; |
| } else { |
| logging.right_in_gear = false; |
| } |
| logging.right_motor_speed = right_motor_speed; |
| logging.right_velocity = current_right_velocity; |
| |
| LOG_STRUCT(DEBUG, "currently", logging); |
| } |
| #else |
| (void) values; |
| #endif |
| |
| #if HAVE_SHIFTERS |
| if (IsInGear(left_gear_) && IsInGear(right_gear_)) { |
| #else |
| { |
| #endif |
| // FF * X = U (steady state) |
| const Eigen::Matrix<double, 2, 2> FF = |
| loop_->B().inverse() * |
| (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A()); |
| |
| // Invert the plant to figure out how the velocity filter would have to |
| // work |
| // out in order to filter out the forwards negative inertia. |
| // This math assumes that the left and right power and velocity are |
| // equals, |
| // and that the plant is the same on the left and right. |
| const double fvel = FilterVelocity(throttle_); |
| |
| const double sign_svel = wheel_ * ((fvel > 0.0) ? 1.0 : -1.0); |
| double steering_velocity; |
| if (quickturn_) { |
| steering_velocity = wheel_ * MaxVelocity(); |
| } else { |
| steering_velocity = ::std::abs(fvel) * wheel_; |
| } |
| const double left_velocity = fvel - steering_velocity; |
| const double right_velocity = fvel + steering_velocity; |
| |
| // Integrate velocity to get the position. |
| // This position is used to get integral control. |
| loop_->mutable_R() << left_velocity, right_velocity; |
| |
| if (!quickturn_) { |
| // K * R = w |
| Eigen::Matrix<double, 1, 2> equality_k; |
| equality_k << 1 + sign_svel, -(1 - sign_svel); |
| const double equality_w = 0.0; |
| |
| // Construct a constraint on R by manipulating the constraint on U |
| ::aos::controls::HPolytope<2> R_poly = ::aos::controls::HPolytope<2>( |
| U_Poly_.H() * (loop_->K() + FF), |
| U_Poly_.k() + U_Poly_.H() * loop_->K() * loop_->X_hat()); |
| |
| // Limit R back inside the box. |
| loop_->mutable_R() = |
| CoerceGoal(R_poly, equality_k, equality_w, loop_->R()); |
| } |
| |
| const Eigen::Matrix<double, 2, 1> FF_volts = FF * loop_->R(); |
| const Eigen::Matrix<double, 2, 1> U_ideal = |
| loop_->K() * (loop_->R() - loop_->X_hat()) + FF_volts; |
| |
| for (int i = 0; i < 2; i++) { |
| loop_->mutable_U()[i] = ::aos::Clip(U_ideal[i], -12, 12); |
| } |
| |
| // TODO(austin): Model this better. |
| // TODO(austin): Feed back? |
| loop_->mutable_X_hat() = |
| loop_->A() * loop_->X_hat() + loop_->B() * loop_->U(); |
| #if HAVE_SHIFTERS |
| } else { |
| // Any motor is not in gear. Speed match. |
| ::Eigen::Matrix<double, 1, 1> R_left; |
| ::Eigen::Matrix<double, 1, 1> R_right; |
| R_left(0, 0) = left_motor_speed; |
| R_right(0, 0) = right_motor_speed; |
| |
| const double wiggle = |
| (static_cast<double>((counter_ % 20) / 10) - 0.5) * 5.0; |
| |
| loop_->mutable_U(0, 0) = ::aos::Clip( |
| (R_left / Kv)(0, 0) + (IsInGear(left_gear_) ? 0 : wiggle), |
| -12.0, 12.0); |
| loop_->mutable_U(1, 0) = ::aos::Clip( |
| (R_right / Kv)(0, 0) + (IsInGear(right_gear_) ? 0 : wiggle), |
| -12.0, 12.0); |
| loop_->mutable_U() *= 12.0 / ::aos::robot_state->voltage_battery; |
| #endif |
| } |
| } |
| |
| void SendMotors(DrivetrainQueue::Output *output) { |
| if (output != NULL) { |
| output->left_voltage = loop_->U(0, 0); |
| output->right_voltage = loop_->U(1, 0); |
| output->left_high = left_gear_ == HIGH || left_gear_ == SHIFTING_UP; |
| output->right_high = right_gear_ == HIGH || right_gear_ == SHIFTING_UP; |
| } |
| } |
| |
| private: |
| const ::aos::controls::HPolytope<2> U_Poly_; |
| |
| ::std::unique_ptr<StateFeedbackLoop<2, 2, 2>> loop_; |
| |
| const double ttrust_; |
| double wheel_; |
| double throttle_; |
| bool quickturn_; |
| int stale_count_; |
| double position_time_delta_; |
| Gear left_gear_; |
| Gear right_gear_; |
| DrivetrainQueue::Position last_position_; |
| DrivetrainQueue::Position position_; |
| int counter_; |
| }; |
| constexpr double PolyDrivetrain::kStallTorque; |
| constexpr double PolyDrivetrain::kStallCurrent; |
| constexpr double PolyDrivetrain::kFreeSpeed; |
| constexpr double PolyDrivetrain::kFreeCurrent; |
| constexpr double PolyDrivetrain::J; |
| constexpr double PolyDrivetrain::m; |
| constexpr double PolyDrivetrain::rb; |
| constexpr double PolyDrivetrain::kWheelRadius; |
| constexpr double PolyDrivetrain::kR; |
| constexpr double PolyDrivetrain::Kv; |
| constexpr double PolyDrivetrain::Kt; |
| |
| |
| void DrivetrainLoop::RunIteration(const DrivetrainQueue::Goal *goal, |
| const DrivetrainQueue::Position *position, |
| DrivetrainQueue::Output *output, |
| DrivetrainQueue::Status * status) { |
| // TODO(aschuh): These should be members of the class. |
| static DrivetrainMotorsSS dt_closedloop; |
| static PolyDrivetrain dt_openloop; |
| |
| bool bad_pos = false; |
| if (position == nullptr) { |
| LOG_INTERVAL(no_position_); |
| bad_pos = true; |
| } |
| no_position_.Print(); |
| |
| bool control_loop_driving = false; |
| if (goal) { |
| double wheel = goal->steering; |
| double throttle = goal->throttle; |
| bool quickturn = goal->quickturn; |
| #if HAVE_SHIFTERS |
| bool highgear = goal->highgear; |
| #endif |
| |
| control_loop_driving = goal->control_loop_driving; |
| double left_goal = goal->left_goal; |
| double right_goal = goal->right_goal; |
| |
| dt_closedloop.SetGoal(left_goal, goal->left_velocity_goal, right_goal, |
| goal->right_velocity_goal); |
| #if HAVE_SHIFTERS |
| dt_openloop.SetGoal(wheel, throttle, quickturn, highgear); |
| #else |
| dt_openloop.SetGoal(wheel, throttle, quickturn, false); |
| #endif |
| } |
| |
| if (!bad_pos) { |
| const double left_encoder = position->left_encoder; |
| const double right_encoder = position->right_encoder; |
| if (gyro_reading.FetchLatest()) { |
| LOG_STRUCT(DEBUG, "using", *gyro_reading.get()); |
| dt_closedloop.SetPosition(left_encoder, right_encoder, |
| gyro_reading->angle); |
| } else { |
| dt_closedloop.SetRawPosition(left_encoder, right_encoder); |
| } |
| } |
| dt_openloop.SetPosition(position); |
| dt_openloop.Update(); |
| |
| if (control_loop_driving) { |
| dt_closedloop.Update(output == NULL, true); |
| dt_closedloop.SendMotors(output); |
| } else { |
| dt_openloop.SendMotors(output); |
| if (output) { |
| dt_closedloop.SetExternalMotors(output->left_voltage, |
| output->right_voltage); |
| } |
| dt_closedloop.Update(output == NULL, false); |
| } |
| |
| // set the output status of the control loop state |
| if (status) { |
| bool done = false; |
| if (goal) { |
| done = ((::std::abs(goal->left_goal - |
| dt_closedloop.GetEstimatedLeftEncoder()) < |
| constants::GetValues().drivetrain_done_distance) && |
| (::std::abs(goal->right_goal - |
| dt_closedloop.GetEstimatedRightEncoder()) < |
| constants::GetValues().drivetrain_done_distance)); |
| } |
| status->is_done = done; |
| status->robot_speed = dt_closedloop.GetEstimatedRobotSpeed(); |
| status->filtered_left_position = dt_closedloop.GetEstimatedLeftEncoder(); |
| status->filtered_right_position = dt_closedloop.GetEstimatedRightEncoder(); |
| |
| status->filtered_left_velocity = dt_closedloop.loop().X_hat(1, 0); |
| status->filtered_right_velocity = dt_closedloop.loop().X_hat(3, 0); |
| status->output_was_capped = dt_closedloop.OutputWasCapped(); |
| status->uncapped_left_voltage = dt_closedloop.loop().U_uncapped(0, 0); |
| status->uncapped_right_voltage = dt_closedloop.loop().U_uncapped(1, 0); |
| } |
| } |
| |
| } // namespace control_loops |
| } // namespace frc971 |