blob: 11cf856b89138af00a3ea451ad8d09e1ef1e22e9 [file] [log] [blame]
import numpy as np
from scipy import sparse
import utils.codegen_utils as cu
P = sparse.diags([1., 0.], format='csc')
q = np.array([1., -1.])
A12 = sparse.csc_matrix([[1., 1.], [1., 0.], [0., 1.]])
A34 = sparse.csc_matrix([[1., 0.], [1., 0.], [0., 1.]])
l = np.array([0., 1., 1.])
u1 = np.array([5., 3., 3.])
u2 = np.array([0., 3., 3.])
u3 = np.array([2., 3., np.inf])
u4 = np.array([0., 3., np.inf])
# Generate problem solutions
data = {'P': P,
'q': q,
'A12': A12,
'A34': A34,
'l': l,
'u1': u1,
'u2': u2,
'u3': u3,
'u4': u4,
'x1': np.array([1., 3.]),
'y1': np.array([0., -2., 1.]),
'obj_value1': -1.5,
'status1': 'optimal',
'status2': 'primal_infeasible',
'status3': 'dual_infeasible',
'status4': 'primal_infeasible'
}
# Generate problem data
cu.generate_data('primal_dual_infeasibility', data)