| import numpy as np |
| from scipy import sparse |
| import utils.codegen_utils as cu |
| |
| P = sparse.diags([1., 0.], format='csc') |
| q = np.array([1., -1.]) |
| |
| A12 = sparse.csc_matrix([[1., 1.], [1., 0.], [0., 1.]]) |
| A34 = sparse.csc_matrix([[1., 0.], [1., 0.], [0., 1.]]) |
| l = np.array([0., 1., 1.]) |
| u1 = np.array([5., 3., 3.]) |
| u2 = np.array([0., 3., 3.]) |
| u3 = np.array([2., 3., np.inf]) |
| u4 = np.array([0., 3., np.inf]) |
| |
| # Generate problem solutions |
| data = {'P': P, |
| 'q': q, |
| 'A12': A12, |
| 'A34': A34, |
| 'l': l, |
| 'u1': u1, |
| 'u2': u2, |
| 'u3': u3, |
| 'u4': u4, |
| 'x1': np.array([1., 3.]), |
| 'y1': np.array([0., -2., 1.]), |
| 'obj_value1': -1.5, |
| 'status1': 'optimal', |
| 'status2': 'primal_infeasible', |
| 'status3': 'dual_infeasible', |
| 'status4': 'primal_infeasible' |
| } |
| |
| # Generate problem data |
| cu.generate_data('primal_dual_infeasibility', data) |