| import numpy as np |
| from scipy import sparse |
| import utils.codegen_utils as cu |
| |
| P = sparse.triu([[11., 0.], [0., 0.]], format='csc') |
| q = np.array([3., 4.]) |
| |
| A = sparse.csc_matrix(np.array([[-1., 0.], [0., -1.], [-1., 3.], |
| [2., 5.], [3., 4]])) |
| l = -np.inf * np.ones(A.shape[0]) |
| u = np.array([0., 0., -15., 100., 80.]) |
| |
| n = P.shape[0] |
| m = A.shape[0] |
| |
| # New data |
| q_new = np.array([1., 1.]) |
| u_new = np.array([-2., 0., -20., 100., 80.]) |
| |
| # Generate problem solutions |
| sols_data = {'x_test': np.array([15., -0.]), |
| 'y_test': np.array([0., 508., 168., 0., 0.]), |
| 'obj_value_test': 1282.5, |
| 'status_test': 'optimal', |
| 'q_new': q_new, |
| 'u_new': u_new, |
| 'x_test_new': np.array([20., -0.]), |
| 'y_test_new': np.array([0., 664., 221., 0., 0.]), |
| 'obj_value_test_new': 2220.0, |
| 'status_test_new': 'optimal'} |
| |
| |
| # Generate problem data |
| cu.generate_problem_data(P, q, A, l, u, 'basic_qp2', sols_data) |