| import numpy as np |
| from scipy import sparse |
| import utils.codegen_utils as cu |
| |
| P = sparse.triu([[4., 1.], [1., 2.]], format='csc') |
| q = np.ones(2) |
| |
| A = sparse.csc_matrix(np.array([[1., 1.], [1., 0.], [0., 1.], [0., 1.]])) |
| l = np.array([1., 0., 0., -np.inf]) |
| u = np.array([1., 0.7, 0.7, np.inf]) |
| |
| n = P.shape[0] |
| m = A.shape[0] |
| |
| # New data |
| q_new = np.array([2.5, 3.2]) |
| l_new = np.array([0.8, -3.4, -np.inf, 0.5]) |
| u_new = np.array([1.6, 1.0, np.inf, 0.5]) |
| |
| # Generate problem solutions |
| sols_data = {'x_test': np.array([0.3, 0.7]), |
| 'y_test': np.array([-2.9, 0.0, 0.2, 0.0]), |
| 'obj_value_test': 1.88, |
| 'status_test': 'optimal', |
| 'q_new': q_new, |
| 'l_new': l_new, |
| 'u_new': u_new} |
| |
| # Generate problem data |
| cu.generate_problem_data(P, q, A, l, u, 'basic_qp', sols_data) |