blob: c0e334ddf74ef199d5e6f09e3fc4b8788613277b [file] [log] [blame]
#ifndef PARDISO_H
#define PARDISO_H
#ifdef __cplusplus
extern "C" {
#endif
#include "lin_alg.h"
#include "kkt.h"
/**
* Pardiso solver structure
*
* NB: If we use Pardiso, we suppose that EMBEDDED is not enabled
*/
typedef struct pardiso pardiso_solver;
struct pardiso {
enum linsys_solver_type type;
/**
* @name Functions
* @{
*/
c_int (*solve)(struct pardiso * self, c_float * b);
void (*free)(struct pardiso * self); ///< Free workspace (only if desktop)
c_int (*update_matrices)(struct pardiso * self, const csc *P, const csc *A); ///< Update solver matrices
c_int (*update_rho_vec)(struct pardiso * self, const c_float * rho_vec); ///< Update rho_vec parameter
c_int nthreads;
/** @} */
/**
* @name Attributes
* @{
*/
// Attributes
csc *KKT; ///< KKT matrix (in CSR format!)
c_int *KKT_i; ///< KKT column indices in 1-indexing for Pardiso
c_int *KKT_p; ///< KKT row pointers in 1-indexing for Pardiso
c_float *bp; ///< workspace memory for solves (rhs)
c_float *sol; ///< solution to the KKT system
c_float *rho_inv_vec; ///< parameter vector
c_float sigma; ///< scalar parameter
c_int polish; ///< polishing flag
c_int n; ///< number of QP variables
c_int m; ///< number of QP constraints
// Pardiso variables
void *pt[64]; ///< internal solver memory pointer pt
c_int iparm[64]; ///< Pardiso control parameters
c_int nKKT; ///< dimension of the linear system
c_int mtype; ///< matrix type (-2 for real and symmetric indefinite)
c_int nrhs; ///< number of right-hand sides (1 for our needs)
c_int maxfct; ///< maximum number of factors (1 for our needs)
c_int mnum; ///< indicates matrix for the solution phase (1 for our needs)
c_int phase; ///< control the execution phases of the solver
c_int error; ///< the error indicator (0 for no error)
c_int msglvl; ///< Message level information (0 for no output)
c_int idum; ///< dummy integer
c_float fdum; ///< dummy float
// These are required for matrix updates
c_int * Pdiag_idx, Pdiag_n; ///< index and number of diagonal elements in P
c_int * PtoKKT, * AtoKKT; ///< Index of elements from P and A to KKT matrix
c_int * rhotoKKT; ///< Index of rho places in KKT matrix
/** @} */
};
/**
* Initialize Pardiso Solver
*
* @param s Pointer to a private structure
* @param P Cost function matrix (upper triangular form)
* @param A Constraints matrix
* @param sigma Algorithm parameter. If polish, then sigma = delta.
* @param rho_vec Algorithm parameter. If polish, then rho_vec = OSQP_NULL.
* @param polish Flag whether we are initializing for polish or not
* @return Exitflag for error (0 if no errors)
*/
c_int init_linsys_solver_pardiso(pardiso_solver ** sp, const csc * P, const csc * A, c_float sigma, const c_float * rho_vec, c_int polish);
/**
* Solve linear system and store result in b
* @param s Linear system solver structure
* @param b Right-hand side
* @return Exitflag
*/
c_int solve_linsys_pardiso(pardiso_solver * s, c_float * b);
/**
* Update linear system solver matrices
* @param s Linear system solver structure
* @param P Matrix P
* @param A Matrix A
* @return Exitflag
*/
c_int update_linsys_solver_matrices_pardiso(pardiso_solver * s, const csc *P, const csc *A);
/**
* Update rho parameter in linear system solver structure
* @param s Linear system solver structure
* @param rho_vec new rho_vec value
* @return exitflag
*/
c_int update_linsys_solver_rho_vec_pardiso(pardiso_solver * s, const c_float * rho_vec);
/**
* Free linear system solver
* @param s linear system solver object
*/
void free_linsys_solver_pardiso(pardiso_solver * s);
#ifdef __cplusplus
}
#endif
#endif