| #ifndef PARDISO_H |
| #define PARDISO_H |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #include "lin_alg.h" |
| #include "kkt.h" |
| |
| /** |
| * Pardiso solver structure |
| * |
| * NB: If we use Pardiso, we suppose that EMBEDDED is not enabled |
| */ |
| typedef struct pardiso pardiso_solver; |
| |
| struct pardiso { |
| enum linsys_solver_type type; |
| |
| /** |
| * @name Functions |
| * @{ |
| */ |
| c_int (*solve)(struct pardiso * self, c_float * b); |
| |
| void (*free)(struct pardiso * self); ///< Free workspace (only if desktop) |
| |
| c_int (*update_matrices)(struct pardiso * self, const csc *P, const csc *A); ///< Update solver matrices |
| c_int (*update_rho_vec)(struct pardiso * self, const c_float * rho_vec); ///< Update rho_vec parameter |
| |
| c_int nthreads; |
| /** @} */ |
| |
| |
| /** |
| * @name Attributes |
| * @{ |
| */ |
| // Attributes |
| csc *KKT; ///< KKT matrix (in CSR format!) |
| c_int *KKT_i; ///< KKT column indices in 1-indexing for Pardiso |
| c_int *KKT_p; ///< KKT row pointers in 1-indexing for Pardiso |
| c_float *bp; ///< workspace memory for solves (rhs) |
| c_float *sol; ///< solution to the KKT system |
| c_float *rho_inv_vec; ///< parameter vector |
| c_float sigma; ///< scalar parameter |
| c_int polish; ///< polishing flag |
| c_int n; ///< number of QP variables |
| c_int m; ///< number of QP constraints |
| |
| // Pardiso variables |
| void *pt[64]; ///< internal solver memory pointer pt |
| c_int iparm[64]; ///< Pardiso control parameters |
| c_int nKKT; ///< dimension of the linear system |
| c_int mtype; ///< matrix type (-2 for real and symmetric indefinite) |
| c_int nrhs; ///< number of right-hand sides (1 for our needs) |
| c_int maxfct; ///< maximum number of factors (1 for our needs) |
| c_int mnum; ///< indicates matrix for the solution phase (1 for our needs) |
| c_int phase; ///< control the execution phases of the solver |
| c_int error; ///< the error indicator (0 for no error) |
| c_int msglvl; ///< Message level information (0 for no output) |
| c_int idum; ///< dummy integer |
| c_float fdum; ///< dummy float |
| |
| // These are required for matrix updates |
| c_int * Pdiag_idx, Pdiag_n; ///< index and number of diagonal elements in P |
| c_int * PtoKKT, * AtoKKT; ///< Index of elements from P and A to KKT matrix |
| c_int * rhotoKKT; ///< Index of rho places in KKT matrix |
| |
| /** @} */ |
| }; |
| |
| |
| /** |
| * Initialize Pardiso Solver |
| * |
| * @param s Pointer to a private structure |
| * @param P Cost function matrix (upper triangular form) |
| * @param A Constraints matrix |
| * @param sigma Algorithm parameter. If polish, then sigma = delta. |
| * @param rho_vec Algorithm parameter. If polish, then rho_vec = OSQP_NULL. |
| * @param polish Flag whether we are initializing for polish or not |
| * @return Exitflag for error (0 if no errors) |
| */ |
| c_int init_linsys_solver_pardiso(pardiso_solver ** sp, const csc * P, const csc * A, c_float sigma, const c_float * rho_vec, c_int polish); |
| |
| |
| /** |
| * Solve linear system and store result in b |
| * @param s Linear system solver structure |
| * @param b Right-hand side |
| * @return Exitflag |
| */ |
| c_int solve_linsys_pardiso(pardiso_solver * s, c_float * b); |
| |
| |
| /** |
| * Update linear system solver matrices |
| * @param s Linear system solver structure |
| * @param P Matrix P |
| * @param A Matrix A |
| * @return Exitflag |
| */ |
| c_int update_linsys_solver_matrices_pardiso(pardiso_solver * s, const csc *P, const csc *A); |
| |
| |
| /** |
| * Update rho parameter in linear system solver structure |
| * @param s Linear system solver structure |
| * @param rho_vec new rho_vec value |
| * @return exitflag |
| */ |
| c_int update_linsys_solver_rho_vec_pardiso(pardiso_solver * s, const c_float * rho_vec); |
| |
| |
| /** |
| * Free linear system solver |
| * @param s linear system solver object |
| */ |
| void free_linsys_solver_pardiso(pardiso_solver * s); |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #endif |