| Setup and solve |
| =============== |
| |
| |
| Consider the following QP |
| |
| |
| .. math:: |
| \begin{array}{ll} |
| \mbox{minimize} & \frac{1}{2} x^T \begin{bmatrix}4 & 1\\ 1 & 2 \end{bmatrix} x + \begin{bmatrix}1 \\ 1\end{bmatrix}^T x \\ |
| \mbox{subject to} & \begin{bmatrix}1 \\ 0 \\ 0\end{bmatrix} \leq \begin{bmatrix} 1 & 1\\ 1 & 0\\ 0 & 1\end{bmatrix} x \leq \begin{bmatrix}1 \\ 0.7 \\ 0.7\end{bmatrix} |
| \end{array} |
| |
| |
| |
| We show below how to solve the problem in Python, Matlab, Julia and C. |
| |
| |
| |
| Python |
| ------ |
| |
| .. code:: python |
| |
| import osqp |
| import numpy as np |
| from scipy import sparse |
| |
| # Define problem data |
| P = sparse.csc_matrix([[4, 1], [1, 2]]) |
| q = np.array([1, 1]) |
| A = sparse.csc_matrix([[1, 1], [1, 0], [0, 1]]) |
| l = np.array([1, 0, 0]) |
| u = np.array([1, 0.7, 0.7]) |
| |
| # Create an OSQP object |
| prob = osqp.OSQP() |
| |
| # Setup workspace and change alpha parameter |
| prob.setup(P, q, A, l, u, alpha=1.0) |
| |
| # Solve problem |
| res = prob.solve() |
| |
| |
| |
| Matlab |
| ------ |
| |
| .. code:: matlab |
| |
| % Define problem data |
| P = sparse([4, 1; 1, 2]); |
| q = [1; 1]; |
| A = sparse([1, 1; 1, 0; 0, 1]); |
| l = [1; 0; 0]; |
| u = [1; 0.7; 0.7]; |
| |
| % Create an OSQP object |
| prob = osqp; |
| |
| % Setup workspace and change alpha parameter |
| prob.setup(P, q, A, l, u, 'alpha', 1); |
| |
| % Solve problem |
| res = prob.solve(); |
| |
| |
| |
| Julia |
| ------ |
| |
| .. code:: julia |
| |
| using OSQP |
| using Compat.SparseArrays |
| |
| # Define problem data |
| P = sparse([4. 1.; 1. 2.]) |
| q = [1.; 1.] |
| A = sparse([1. 1.; 1. 0.; 0. 1.]) |
| l = [1.; 0.; 0.] |
| u = [1.; 0.7; 0.7] |
| |
| # Crate OSQP object |
| prob = OSQP.Model() |
| |
| # Setup workspace and change alpha parameter |
| OSQP.setup!(prob; P=P, q=q, A=A, l=l, u=u, alpha=1) |
| |
| # Solve problem |
| results = OSQP.solve!(prob) |
| |
| |
| |
| R |
| - |
| |
| .. code:: r |
| |
| library(osqp) |
| library(Matrix) |
| |
| # Define problem data |
| P <- Matrix(c(4., 1., |
| 1., 2.), 2, 2, sparse = TRUE) |
| q <- c(1., 1.) |
| A <- Matrix(c(1., 1., 0., |
| 1., 0., 1.), 3, 2, sparse = TRUE) |
| l <- c(1., 0., 0.) |
| u <- c(1., 0.7, 0.7) |
| |
| # Change alpha parameter and setup workspace |
| settings <- osqpSettings(alpha = 1.0) |
| model <- osqp(P, q, A, l, u, settings) |
| |
| # Solve problem |
| res <- model$Solve() |
| |
| |
| |
| C |
| - |
| |
| .. code:: c |
| |
| #include "osqp.h" |
| |
| int main(int argc, char **argv) { |
| // Load problem data |
| c_float P_x[3] = {4.0, 1.0, 2.0, }; |
| c_int P_nnz = 3; |
| c_int P_i[3] = {0, 0, 1, }; |
| c_int P_p[3] = {0, 1, 3, }; |
| c_float q[2] = {1.0, 1.0, }; |
| c_float A_x[4] = {1.0, 1.0, 1.0, 1.0, }; |
| c_int A_nnz = 4; |
| c_int A_i[4] = {0, 1, 0, 2, }; |
| c_int A_p[3] = {0, 2, 4, }; |
| c_float l[3] = {1.0, 0.0, 0.0, }; |
| c_float u[3] = {1.0, 0.7, 0.7, }; |
| c_int n = 2; |
| c_int m = 3; |
| |
| // Exitflag |
| c_int exitflag = 0; |
| |
| // Workspace structures |
| OSQPWorkspace *work; |
| OSQPSettings *settings = (OSQPSettings *)c_malloc(sizeof(OSQPSettings)); |
| OSQPData *data = (OSQPData *)c_malloc(sizeof(OSQPData)); |
| |
| // Populate data |
| if (data) { |
| data->n = n; |
| data->m = m; |
| data->P = csc_matrix(data->n, data->n, P_nnz, P_x, P_i, P_p); |
| data->q = q; |
| data->A = csc_matrix(data->m, data->n, A_nnz, A_x, A_i, A_p); |
| data->l = l; |
| data->u = u; |
| } |
| |
| // Define solver settings as default |
| if (settings) { |
| osqp_set_default_settings(settings); |
| settings->alpha = 1.0; // Change alpha parameter |
| } |
| |
| // Setup workspace |
| exitflag = osqp_setup(&work, data, settings); |
| |
| // Solve Problem |
| osqp_solve(work); |
| |
| // Cleanup |
| osqp_cleanup(work); |
| if (data) { |
| if (data->A) c_free(data->A); |
| if (data->P) c_free(data->P); |
| c_free(data); |
| } |
| if (settings) c_free(settings); |
| |
| return exitflag; |
| }; |