Actually call yolov5 inference

Signed-off-by: Filip Kujawa <filip.j.kujawa@gmail.com>
Change-Id: I693aa253d09e88f6000ee9ea5a8c68862ac47629
diff --git a/y2023/BUILD b/y2023/BUILD
index 08713b7..f85f080 100644
--- a/y2023/BUILD
+++ b/y2023/BUILD
@@ -72,6 +72,9 @@
         "//y2023/constants:constants.json",
         "//y2023/vision:image_streamer_start",
         "//y2023/www:www_files",
+        "@game_pieces_edgetpu_model//file",
+        "@libedgetpu//:arm/libedgetpu.so.1",
+        "@libtensorflowlite//:arm/libtensorflowlite.so",
     ],
     dirs = [
         "//y2023/www:www_files",
diff --git a/y2023/vision/BUILD b/y2023/vision/BUILD
index 0221aad..dfcf396 100644
--- a/y2023/vision/BUILD
+++ b/y2023/vision/BUILD
@@ -224,11 +224,13 @@
     ],
     data = [
         "//y2023:aos_config",
+        "@game_pieces_edgetpu_model//file",
     ],
     target_compatible_with = ["@platforms//os:linux"],
     visibility = ["//y2023:__subpackages__"],
     deps = [
         ":game_pieces_fbs",
+        ":yolov5_lib",
         "//aos/events:event_loop",
         "//aos/events:shm_event_loop",
         "//frc971/vision:vision_fbs",
@@ -273,6 +275,7 @@
     name = "yolov5_lib",
     srcs = ["yolov5.cc"],
     hdrs = ["yolov5.h"],
+    copts = ["-Wno-unused-parameter"],
     deps = [
         "//third_party:opencv",
         "@com_github_gflags_gflags//:gflags",
diff --git a/y2023/vision/game_pieces.cc b/y2023/vision/game_pieces.cc
index 0e2546f..68cc5b2 100644
--- a/y2023/vision/game_pieces.cc
+++ b/y2023/vision/game_pieces.cc
@@ -5,6 +5,8 @@
 #include "aos/events/event_loop.h"
 #include "aos/events/shm_event_loop.h"
 #include "frc971/vision/vision_generated.h"
+#include "y2023/vision/yolov5.h"
+#include <chrono>
 
 // The best_x and best_y are pixel (x, y) cordinates. The 'best'
 // game piece is picked on proximity to the specified cordinates.
@@ -24,18 +26,34 @@
 namespace vision {
 GamePiecesDetector::GamePiecesDetector(aos::EventLoop *event_loop)
     : game_pieces_sender_(event_loop->MakeSender<GamePieces>("/camera")) {
+    LOG(INFO) << "Before load model in constr";
+
+    model = MakeYOLOV5();
+    model->LoadModel("edgetpu_model.tflite");
+
+    LOG(INFO) << "After load model in constr";
   event_loop->MakeWatcher("/camera", [this](const CameraImage &camera_image) {
     this->ProcessImage(camera_image);
   });
 }
 
-// TODO(FILIP): Actually do inference.
-
 void GamePiecesDetector::ProcessImage(const CameraImage &image) {
-  // Param is not used for now.
-  (void)image;
+    auto start = std::chrono::high_resolution_clock::now();
+	LOG(INFO) << reinterpret_cast<const void*>(image.data()->data());
+  cv::Mat image_color_mat(cv::Size(image.cols(), image.rows()), CV_8UC2,
+                          (void *)image.data()->data());
+  std::vector<Detection> detections;
+  cv::Mat image_mat(cv::Size(image.cols(), image.rows()), CV_8UC3);
+  LOG(INFO) << reinterpret_cast<void*>(image_mat.ptr());
+  cv::cvtColor(image_color_mat, image_mat, cv::COLOR_YUV2BGR_YUYV);
+  LOG(INFO) << reinterpret_cast<void*>(image_mat.ptr());
 
-  const int detection_count = 5;
+  detections = model->ProcessImage(image_mat);
+  LOG(INFO) << reinterpret_cast<void*>(image_mat.ptr());
+  LOG(INFO) << reinterpret_cast<void*>(image_color_mat.ptr());
+
+  auto stop = std::chrono::high_resolution_clock::now();
+  LOG(INFO) << "INFERENCE TIME " << std::chrono::duration_cast<std::chrono::milliseconds>(stop - start).count();
 
   auto builder = game_pieces_sender_.MakeBuilder();
 
@@ -45,23 +63,30 @@
   int best_distance_index = 0;
   srand(time(0));
 
-  for (int i = 0; i < detection_count; i++) {
-    int h = rand() % 1000;
-    int w = rand() % 1000;
-    int x = rand() % 250;
-    int y = rand() % 250;
-
+  for (size_t i = 0; i < detections.size(); i++) {
     auto box_builder = builder.MakeBuilder<Box>();
-    box_builder.add_h(h);
-    box_builder.add_w(w);
-    box_builder.add_x(x);
-    box_builder.add_y(y);
+    box_builder.add_h(detections[i].box.height);
+    box_builder.add_w(detections[i].box.width);
+    box_builder.add_x(detections[i].box.x);
+    box_builder.add_y(detections[i].box.y);
     auto box_offset = box_builder.Finish();
 
     auto game_piece_builder = builder.MakeBuilder<GamePiece>();
-    game_piece_builder.add_piece_class(y2023::vision::Class::CONE_DOWN);
+    switch (detections[i].class_id) {
+      case 0:
+        game_piece_builder.add_piece_class(Class::CONE_DOWN);
+        break;
+      case 1:
+        game_piece_builder.add_piece_class(Class::CONE_UP);
+        break;
+      case 2:
+        game_piece_builder.add_piece_class(Class::CUBE);
+        break;
+      default:
+        game_piece_builder.add_piece_class(Class::CONE_DOWN);
+    }
     game_piece_builder.add_box(box_offset);
-    game_piece_builder.add_confidence(0.9);
+    game_piece_builder.add_confidence(detections[i].confidence);
     auto game_piece = game_piece_builder.Finish();
     game_pieces_offsets.push_back(game_piece);
 
@@ -69,8 +94,8 @@
     // Inference returns the top left corner of the bounding box
     // but we want the center of the box for this.
 
-    const int center_x = x + w / 2;
-    const int center_y = y + h / 2;
+    const int center_x = detections[i].box.x + detections[i].box.width / 2;
+    const int center_y = detections[i].box.y + detections[i].box.height / 2;
 
     // Find difference between target x, y and the x, y
     // of the bounding box using Euclidean distance.
@@ -85,8 +110,7 @@
     }
   };
 
-  flatbuffers::FlatBufferBuilder fbb;
-  auto game_pieces_vector = fbb.CreateVector(game_pieces_offsets);
+  auto game_pieces_vector = builder.fbb()->CreateVector(game_pieces_offsets);
 
   auto game_pieces_builder = builder.MakeBuilder<GamePieces>();
   game_pieces_builder.add_game_pieces(game_pieces_vector);
@@ -96,4 +120,4 @@
 }
 
 }  // namespace vision
-}  // namespace y2023
\ No newline at end of file
+}  // namespace y2023
diff --git a/y2023/vision/game_pieces.h b/y2023/vision/game_pieces.h
index a41d52a..a99a99b 100644
--- a/y2023/vision/game_pieces.h
+++ b/y2023/vision/game_pieces.h
@@ -5,6 +5,8 @@
 #include "frc971/vision/vision_generated.h"
 #include "y2023/vision/game_pieces_generated.h"
 
+#include "y2023/vision/yolov5.h"
+
 namespace y2023 {
 namespace vision {
 
@@ -20,6 +22,7 @@
 
  private:
   aos::Sender<GamePieces> game_pieces_sender_;
+  std::unique_ptr<YOLOV5> model;
 };
 }  // namespace vision
 }  // namespace y2023
diff --git a/y2023/vision/yolov5.cc b/y2023/vision/yolov5.cc
index 7f5aa2a..17d4ad5 100644
--- a/y2023/vision/yolov5.cc
+++ b/y2023/vision/yolov5.cc
@@ -1,11 +1,13 @@
 #include "yolov5.h"
 
+#include <tensorflow/lite/c/common.h>
 #include <tensorflow/lite/interpreter.h>
 #include <tensorflow/lite/kernels/register.h>
 #include <tensorflow/lite/model.h>
+#include <tflite/public/edgetpu.h>
 #include <tflite/public/edgetpu_c.h>
 
-#include <opencv2/core.hpp>
+#include <opencv2/dnn.hpp>
 
 #include "gflags/gflags.h"
 #include "glog/logging.h"
@@ -36,7 +38,7 @@
  private:
   // Convert an OpenCV Mat object to a tensor input
   // that can be fed to the TensorFlow Lite model.
-  void ConvertCVMatToTensor(const cv::Mat &src, uint8_t *in);
+  void ConvertCVMatToTensor(cv::Mat src, uint8_t *in);
 
   // Resizes, converts color space, and converts
   // image data type before inference.
@@ -75,54 +77,100 @@
   static constexpr int kClassIdOffset = 5;
 };
 
-std::unique_ptr<YOLOV5> MakeYOLOV5() {
-  YOLOV5Impl *yolo = new YOLOV5Impl();
-  return std::unique_ptr<YOLOV5>(yolo);
-}
+std::unique_ptr<YOLOV5> MakeYOLOV5() { return std::make_unique<YOLOV5Impl>(); }
 
 void YOLOV5Impl::LoadModel(const std::string path) {
-  model_ = tflite::FlatBufferModel::BuildFromFile(path.c_str());
+  LOG(INFO) << "Load model: start";
+
+
+  tflite::ops::builtin::BuiltinOpResolver resolver;
+
+  model_ = tflite::FlatBufferModel::VerifyAndBuildFromFile(path.c_str());
+
+  /*
+  auto model_impl = model_->GetModel();
+  model_impl->subgraphs();
+  LOG(INFO) << model_impl;
+  LOG(INFO) << model_impl->subgraphs();
+  auto subgraphs = model_impl->subgraphs();
+  LOG(INFO) << subgraphs->size();
+  LOG(INFO) << subgraphs->Get(0)->inputs()->size();
+  LOG(INFO) << subgraphs->Get(0)->inputs()->Get(0);
+  (void)subgraphs;
+  */
+
+  LOG(INFO) << "Load model: Build Model from file";
+
   CHECK(model_);
+  CHECK(model_->initialized());
+  CHECK_EQ(tflite::InterpreterBuilder(*model_, resolver)(&interpreter_),
+           kTfLiteOk);
+  LOG(INFO) << "Load model: Interpreter builder done";
+  /*
+  LOG(INFO) << &interpreter_->primary_subgraph();
+  LOG(INFO) << interpreter_->subgraph(0);
+  LOG(INFO) << interpreter_->subgraphs_size();
+  LOG(INFO) << interpreter_->subgraph(0)->inputs().size();
+  LOG(INFO) << interpreter_->inputs().size();
+  */
+
+  //interpreter_->SetExternalContext(kTfLiteEdgeTpuContext, edgetpu_context.get());
+  // LOG(INFO) << "After set external context";
+
   size_t num_devices;
   std::unique_ptr<edgetpu_device, decltype(&edgetpu_free_devices)> devices(
       edgetpu_list_devices(&num_devices), &edgetpu_free_devices);
-  const auto &device = devices.get()[0];
-  CHECK_EQ(num_devices, 1ul);
-  tflite::ops::builtin::BuiltinOpResolver resolver;
-  CHECK_EQ(tflite::InterpreterBuilder(*model_, resolver)(&interpreter_),
-           kTfLiteOk);
 
-  auto *delegate =
-      edgetpu_create_delegate(device.type, device.path, nullptr, 0);
+  //const auto &available_tpus =
+    // edgetpu::EdgeTpuManager::GetSingleton()->EnumerateEdgeTpu();
+  //LOG(INFO) << "Available tpus: " << available_tpus.size();
+
+  LOG(INFO) << "Load model: Getting devices";
+  CHECK_EQ(num_devices, 1ul);
+  const auto &device = devices.get()[0];
+  (void )device;
+  LOG(INFO) << "Load model: Got Device";
+
+  auto *delegate = edgetpu_create_delegate(device.type, device.path, nullptr, 0);
+
   interpreter_->ModifyGraphWithDelegate(delegate);
 
-  TfLiteStatus status = interpreter_->AllocateTensors();
-  CHECK(status == kTfLiteOk);
 
+  TfLiteStatus status = interpreter_->AllocateTensors();
+  CHECK_EQ(status, kTfLiteOk);
+  CHECK(interpreter_);
+
+  LOG(INFO) << "Load model: Allocate tensors success";
   input_ = interpreter_->inputs()[0];
+  LOG(INFO) << "After set inputs";
+  LOG(INFO) << input_;
   TfLiteIntArray *dims = interpreter_->tensor(input_)->dims;
   in_height_ = dims->data[1];
   in_width_ = dims->data[2];
   in_channels_ = dims->data[3];
   in_type_ = interpreter_->tensor(input_)->type;
   input_8_ = interpreter_->typed_tensor<uint8_t>(input_);
+  
 
   interpreter_->SetNumThreads(FLAGS_nthreads);
+
+  LOG(INFO) << "End of load";
 }
 
-void YOLOV5Impl::Preprocess(cv::Mat image) {
-  cv::resize(image, image, cv::Size(in_height_, in_width_), cv::INTER_CUBIC);
-  cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
-  image.convertTo(image, CV_8U);
-}
-
-void YOLOV5Impl::ConvertCVMatToTensor(const cv::Mat &src, uint8_t *in) {
+void YOLOV5Impl::ConvertCVMatToTensor(cv::Mat src, uint8_t *in) {
   CHECK(src.type() == CV_8UC3);
   int n = 0, nc = src.channels(), ne = src.elemSize();
-  for (int y = 0; y < src.rows; ++y)
-    for (int x = 0; x < src.cols; ++x)
-      for (int c = 0; c < nc; ++c)
+  LOG(INFO) << "ConvertCVMatToTensor - Rows " << src.rows;
+  LOG(INFO) << "ConvertCVMatToTensor - Cols " << src.cols;
+  for (int y = 0; y < src.rows; ++y) {
+    for (int x = 0; x < src.cols; ++x) {
+      for (int c = 0; c < nc; ++c) {
+	      (void)ne;
+	      (void)n;
         in[n++] = src.data[y * src.step + x * ne + c];
+      }
+    }
+  }
 }
 
 std::vector<std::vector<float>> YOLOV5Impl::TensorToVector2D(
@@ -182,36 +230,55 @@
     confidences.push_back(d.confidence);
   }
 
-  cv::dnn::NMSBoxes(boxes, confidences, FLAGS_conf_threshold,
-                    FLAGS_nms_threshold, *indices);
+  (void)indices;
+  // TODO(FILIP): Fix linker error.
+  // cv::dnn::NMSBoxes(boxes, confidences, FLAGS_conf_threshold,
+                  // FLAGS_nms_threshold, *indices);
 }
 
 std::vector<Detection> YOLOV5Impl::ProcessImage(cv::Mat frame) {
   img_height_ = frame.rows;
   img_width_ = frame.cols;
 
-  Preprocess(frame);
+  //Preprocess;
+  cv::resize(frame, frame, cv::Size(in_height_, in_width_), cv::INTER_CUBIC);
+  cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB);
+  frame.convertTo(frame, CV_8U);
+
+  LOG(INFO) << "After preprocess - Before convert to tensor";
   ConvertCVMatToTensor(frame, input_8_);
 
   // Inference
+  LOG(INFO) << "Before Invoke";
   TfLiteStatus status = interpreter_->Invoke();
   CHECK_EQ(status, kTfLiteOk);
 
+  LOG(INFO) << "After invoke, status checked";
+
   int output_tensor_index = interpreter_->outputs()[0];
   TfLiteIntArray *out_dims = interpreter_->tensor(output_tensor_index)->dims;
   int num_rows = out_dims->data[1];
   int num_columns = out_dims->data[2];
 
   TfLiteTensor *src_tensor = interpreter_->tensor(interpreter_->outputs()[0]);
+
   std::vector<std::vector<float>> orig_preds =
       TensorToVector2D(src_tensor, num_rows, num_columns);
+  LOG(INFO) << "After tensor to vector 2D";
 
   std::vector<int> indices;
   std::vector<Detection> detections;
 
   NonMaximumSupression(orig_preds, num_rows, num_columns, &detections,
                        &indices);
-
+  LOG(INFO) << "After NMS";
+  for (size_t i = 0; i < interpreter_->outputs().size(); i++) {
+        LOG(INFO) << "Detection #" << i << " | " << interpreter_->outputs()[i];
+  }
+  if (detections.size() > 0) {
+    LOG(INFO) << "Detection ID: " <<  detections[0].class_id;
+    LOG(INFO) << "Confidence" << detections[0].confidence;
+  }
   return detections;
 };
 
diff --git a/y2023/vision/yolov5.h b/y2023/vision/yolov5.h
index ad04350..7e2a521 100644
--- a/y2023/vision/yolov5.h
+++ b/y2023/vision/yolov5.h
@@ -7,7 +7,6 @@
 #include <fstream>
 #include <iostream>
 #include <opencv2/core.hpp>
-#include <opencv2/dnn.hpp>
 #include <opencv2/highgui/highgui.hpp>
 #include <opencv2/imgcodecs.hpp>
 #include <opencv2/imgproc.hpp>
@@ -24,14 +23,14 @@
 
 class YOLOV5 {
  public:
-  virtual ~YOLOV5();
+  virtual ~YOLOV5() {}
 
   // Takes a model path as string and loads a pre-trained
   // YOLOv5 model from the specified path.
-  virtual void LoadModel(const std::string path);
+  virtual void LoadModel(const std::string path) = 0;
 
   // Takes an image and returns a Detection.
-  virtual std::vector<Detection> ProcessImage(cv::Mat image);
+  virtual std::vector<Detection> ProcessImage(cv::Mat image) = 0;
 };
 
 std::unique_ptr<YOLOV5> MakeYOLOV5();
diff --git a/y2023/y2023_logger.json b/y2023/y2023_logger.json
index df3a55b..829fa12 100644
--- a/y2023/y2023_logger.json
+++ b/y2023/y2023_logger.json
@@ -450,6 +450,7 @@
     {
       "name": "game_piece_detector",
       "executable_name": "game_piece_detector",
+      "user": "pi",
       "nodes": [
         "logger"
       ]