blob: f775ff5a87be5c7126f2762d201d7daab63b7eda [file] [log] [blame]
#include "dma.h"
#include <algorithm>
#include <type_traits>
#include "DigitalSource.h"
#include "AnalogInput.h"
#include "Encoder.h"
// Interface to the roboRIO FPGA's DMA features.
// Like tEncoder::tOutput with the bitfields reversed.
typedef union {
struct {
unsigned Direction: 1;
signed Value: 31;
};
struct {
unsigned value: 32;
};
} t1Output;
static const uint32_t kNumHeaders = 10;
static constexpr ssize_t kChannelSize[18] = {2, 2, 4, 4, 2, 2, 4, 4, 3,
3, 2, 1, 4, 4, 4, 4, 4, 4};
enum DMAOffsetConstants {
kEnable_AI0_Low = 0,
kEnable_AI0_High = 1,
kEnable_AIAveraged0_Low = 2,
kEnable_AIAveraged0_High = 3,
kEnable_AI1_Low = 4,
kEnable_AI1_High = 5,
kEnable_AIAveraged1_Low = 6,
kEnable_AIAveraged1_High = 7,
kEnable_Accumulator0 = 8,
kEnable_Accumulator1 = 9,
kEnable_DI = 10,
kEnable_AnalogTriggers = 11,
kEnable_Counters_Low = 12,
kEnable_Counters_High = 13,
kEnable_CounterTimers_Low = 14,
kEnable_CounterTimers_High = 15,
kEnable_Encoders = 16,
kEnable_EncoderTimers = 17,
};
DMA::DMA() {
tRioStatusCode status = 0;
tdma_config_ = tDMA::create(&status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
if (status != 0) {
return;
}
SetRate(1);
SetPause(false);
}
DMA::~DMA() {
tRioStatusCode status = 0;
manager_->stop(&status);
delete tdma_config_;
}
void DMA::SetPause(bool pause) {
tRioStatusCode status = 0;
tdma_config_->writeConfig_Pause(pause, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
}
void DMA::SetRate(uint32_t cycles) {
if (cycles < 1) {
cycles = 1;
}
tRioStatusCode status = 0;
tdma_config_->writeRate(cycles, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
}
void DMA::Add(Encoder * /*encoder*/) {
tRioStatusCode status = 0;
if (manager_) {
wpi_setErrorWithContext(NiFpga_Status_InvalidParameter,
"DMA::Add() only works before DMA::Start()");
return;
}
fprintf(stderr, "DMA::Add(Encoder*) needs re-testing. aborting\n");
abort();
// TODO(austin): Encoder uses a Counter for 1x or 2x; quad for 4x...
tdma_config_->writeConfig_Enable_Encoders(true, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
}
void DMA::Add(DigitalSource * /*input*/) {
tRioStatusCode status = 0;
if (manager_) {
wpi_setErrorWithContext(NiFpga_Status_InvalidParameter,
"DMA::Add() only works before DMA::Start()");
return;
}
tdma_config_->writeConfig_Enable_DI(true, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
}
void DMA::Add(AnalogInput *input) {
tRioStatusCode status = 0;
if (manager_) {
wpi_setErrorWithContext(NiFpga_Status_InvalidParameter,
"DMA::Add() only works before DMA::Start()");
return;
}
fprintf(stderr, "DMA::Add(AnalogInput*) needs testing. aborting\n");
abort();
// TODO(brian): Figure out if this math is actually correct.
if (input->GetChannel() <= 3) {
tdma_config_->writeConfig_Enable_AI0_Low(true, &status);
} else {
tdma_config_->writeConfig_Enable_AI0_High(true, &status);
}
wpi_setErrorWithContext(status, getHALErrorMessage(status));
}
void DMA::SetExternalTrigger(DigitalSource *input, bool rising, bool falling) {
tRioStatusCode status = 0;
if (manager_) {
wpi_setErrorWithContext(NiFpga_Status_InvalidParameter,
"DMA::SetExternalTrigger() only works before DMA::Start()");
return;
}
auto index =
::std::find(trigger_channels_.begin(), trigger_channels_.end(), false);
if (index == trigger_channels_.end()) {
wpi_setErrorWithContext(NiFpga_Status_InvalidParameter,
"DMA: No channels left");
return;
}
*index = true;
const int channel_index = index - trigger_channels_.begin();
tdma_config_->writeConfig_ExternalClock(true, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
if (status != 0) {
return;
}
// Configures the trigger to be external, not off the FPGA clock.
tdma_config_->writeExternalTriggers_ExternalClockSource_Channel(
channel_index, input->GetChannelForRouting(), &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
if (status != 0) {
return;
}
tdma_config_->writeExternalTriggers_ExternalClockSource_Module(
channel_index, input->GetModuleForRouting(), &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
if (status != 0) {
return;
}
tdma_config_->writeExternalTriggers_ExternalClockSource_AnalogTrigger(
channel_index, input->GetAnalogTriggerForRouting(), &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
if (status != 0) {
return;
}
tdma_config_->writeExternalTriggers_RisingEdge(channel_index, rising,
&status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
if (status != 0) {
return;
}
tdma_config_->writeExternalTriggers_FallingEdge(channel_index, falling,
&status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
if (status != 0) {
return;
}
}
DMA::ReadStatus DMA::Read(DMASample *sample, uint32_t timeout_ms,
size_t *remaining_out) {
tRioStatusCode status = 0;
size_t remainingBytes = 0;
*remaining_out = 0;
if (!manager_.get()) {
wpi_setErrorWithContext(NiFpga_Status_InvalidParameter,
"DMA::Read() only works after DMA::Start()");
return STATUS_ERROR;
}
sample->dma_ = this;
// memset(&sample->read_buffer_, 0, sizeof(read_buffer_));
manager_->read(sample->read_buffer_, capture_size_, timeout_ms,
&remainingBytes, &status);
if (0) { // DEBUG
printf("buf[] = ");
for (size_t i = 0;
i < sizeof(sample->read_buffer_) / sizeof(sample->read_buffer_[0]);
++i) {
if (i != 0) {
printf(" ");
}
printf("0x%.8x", sample->read_buffer_[i]);
}
printf("\n");
}
// TODO(jerry): Do this only if status == 0?
*remaining_out = remainingBytes / capture_size_;
if (0) { // DEBUG
printf("Remaining samples = %d\n", *remaining_out);
}
// TODO(austin): Check that *remainingBytes % capture_size_ == 0 and deal
// with it if it isn't. Probably meant that we overflowed?
if (status == 0) {
return STATUS_OK;
} else if (status == NiFpga_Status_FifoTimeout) {
return STATUS_TIMEOUT;
} else {
wpi_setErrorWithContext(status, getHALErrorMessage(status));
return STATUS_ERROR;
}
}
const char *DMA::NameOfReadStatus(ReadStatus s) {
switch (s) {
case STATUS_OK: return "OK";
case STATUS_TIMEOUT: return "TIMEOUT";
case STATUS_ERROR: return "ERROR";
default: return "(bad ReadStatus code)";
}
}
void DMA::Start(size_t queue_depth) {
tRioStatusCode status = 0;
tconfig_ = tdma_config_->readConfig(&status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
if (status != 0) {
return;
}
{
size_t accum_size = 0;
#define SET_SIZE(bit) \
if (tconfig_.bit) { \
channel_offsets_[k##bit] = accum_size; \
accum_size += kChannelSize[k##bit]; \
} else { \
channel_offsets_[k##bit] = -1; \
}
SET_SIZE(Enable_AI0_Low);
SET_SIZE(Enable_AI0_High);
SET_SIZE(Enable_AIAveraged0_Low);
SET_SIZE(Enable_AIAveraged0_High);
SET_SIZE(Enable_AI1_Low);
SET_SIZE(Enable_AI1_High);
SET_SIZE(Enable_AIAveraged1_Low);
SET_SIZE(Enable_AIAveraged1_High);
SET_SIZE(Enable_Accumulator0);
SET_SIZE(Enable_Accumulator1);
SET_SIZE(Enable_DI);
SET_SIZE(Enable_AnalogTriggers);
SET_SIZE(Enable_Counters_Low);
SET_SIZE(Enable_Counters_High);
SET_SIZE(Enable_CounterTimers_Low);
SET_SIZE(Enable_CounterTimers_High);
SET_SIZE(Enable_Encoders);
SET_SIZE(Enable_EncoderTimers);
#undef SET_SIZE
capture_size_ = accum_size + 1;
}
manager_.reset(new nFPGA::tDMAManager(0, queue_depth * capture_size_, &status));
wpi_setErrorWithContext(status, getHALErrorMessage(status));
if (status != 0) {
return;
}
// Start, stop, start to clear the buffer.
manager_->start(&status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
if (status != 0) {
return;
}
manager_->stop(&status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
if (status != 0) {
return;
}
manager_->start(&status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
if (status != 0) {
return;
}
}
static_assert(::std::is_pod<DMASample>::value, "DMASample needs to be POD");
ssize_t DMASample::offset(int index) const { return dma_->channel_offsets_[index]; }
double DMASample::GetTimestamp() const {
return static_cast<double>(read_buffer_[dma_->capture_size_ - 1]) * 0.000001;
}
bool DMASample::Get(DigitalSource *input) const {
if (offset(kEnable_DI) == -1) {
wpi_setStaticErrorWithContext(dma_,
NiFpga_Status_ResourceNotFound,
getHALErrorMessage(NiFpga_Status_ResourceNotFound));
return false;
}
if (input->GetChannelForRouting() < kNumHeaders) {
return (read_buffer_[offset(kEnable_DI)] >>
input->GetChannelForRouting()) &
0x1;
} else {
return (read_buffer_[offset(kEnable_DI)] >>
(input->GetChannelForRouting() + 6)) &
0x1;
}
}
int32_t DMASample::GetRaw(Encoder *input) const {
if (offset(kEnable_Encoders) == -1) {
wpi_setStaticErrorWithContext(dma_,
NiFpga_Status_ResourceNotFound,
getHALErrorMessage(NiFpga_Status_ResourceNotFound));
return -1;
}
uint32_t dmaWord =
read_buffer_[offset(kEnable_Encoders) + input->GetFPGAIndex()];
int32_t result = 0;
if (1) {
// Extract the 31-bit signed tEncoder::tOutput Value using a struct with the
// reverse packed field order of tOutput. This gets Value from the high
// order 31 bits of output on little-endian ARM using gcc. This works
// even though C/C++ doesn't guarantee bitfield order.
t1Output output;
output.value = dmaWord;
result = output.Value;
} else if (1) {
// Extract the 31-bit signed tEncoder::tOutput Value using right-shift.
// This works even though C/C++ doesn't guarantee whether signed >> does
// arithmetic or logical shift. (dmaWord / 2) would fix that but it rounds.
result = static_cast<int32_t>(dmaWord) >> 1;
}
#if 0 // This approach was recommended but it doesn't return the right value.
else {
// Byte-reverse the DMA word (big-endian value from the FPGA) then extract
// the 31-bit tEncoder::tOutput. This does not return the right Value.
tEncoder::tOutput encoderData;
encoderData.value = __builtin_bswap32(dmaWord);
result = encoderData.Value;
}
#endif
return result;
}
int32_t DMASample::Get(Encoder *input) const {
int32_t raw = GetRaw(input);
return raw / input->GetEncodingScale();
}
int16_t DMASample::GetValue(AnalogInput *input) const {
if (offset(kEnable_Encoders) == -1) {
wpi_setStaticErrorWithContext(dma_,
NiFpga_Status_ResourceNotFound,
getHALErrorMessage(NiFpga_Status_ResourceNotFound));
return -1;
}
uint32_t dmaWord;
// TODO(brian): Figure out if this math is actually correct.
if (input->GetChannel() <= 3) {
dmaWord = read_buffer_[offset(kEnable_AI0_Low) + input->GetChannel()];
} else {
dmaWord = read_buffer_[offset(kEnable_AI0_High) + input->GetChannel() - 4];
}
// TODO(brian): Verify that this is correct.
return static_cast<int16_t>(dmaWord);
}
float DMASample::GetVoltage(AnalogInput *input) const {
int16_t value = GetValue(input);
if (value == -1) return 0.0;
uint32_t lsb_weight = input->GetLSBWeight();
int32_t offset = input->GetOffset();
float voltage = lsb_weight * 1.0e-9 * value - offset * 1.0e-9;
return voltage;
}