Reformat python and c++ files
Change-Id: I7d7d99a2094c2a9181ed882735b55159c14db3b0
diff --git a/y2017/control_loops/python/shooter.py b/y2017/control_loops/python/shooter.py
index 1b0ff13..a825ff0 100755
--- a/y2017/control_loops/python/shooter.py
+++ b/y2017/control_loops/python/shooter.py
@@ -16,370 +16,388 @@
def PlotDiff(list1, list2, time):
- pylab.subplot(1, 1, 1)
- pylab.plot(time, numpy.subtract(list1, list2), label='diff')
- pylab.legend()
+ pylab.subplot(1, 1, 1)
+ pylab.plot(time, numpy.subtract(list1, list2), label='diff')
+ pylab.legend()
+
class VelocityShooter(control_loop.HybridControlLoop):
- def __init__(self, name='VelocityShooter'):
- super(VelocityShooter, self).__init__(name)
- # Number of motors
- self.num_motors = 2.0
- # Stall Torque in N m
- self.stall_torque = 0.71 * self.num_motors
- # Stall Current in Amps
- self.stall_current = 134.0 * self.num_motors
- # Free Speed in RPM
- self.free_speed_rpm = 18730.0
- # Free Speed in rotations/second.
- self.free_speed = self.free_speed_rpm / 60.0
- # Free Current in Amps
- self.free_current = 0.7 * self.num_motors
- # Moment of inertia of the shooter wheel in kg m^2
- # 1400.6 grams/cm^2
- # 1.407 *1e-4 kg m^2
- self.J = 0.00120
- # Resistance of the motor, divided by 2 to account for the 2 motors
- self.R = 12.0 / self.stall_current
- # Motor velocity constant
- self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
- (12.0 - self.R * self.free_current))
- # Torque constant
- self.Kt = self.stall_torque / self.stall_current
- # Gear ratio
- self.G = 12.0 / 36.0
- # Control loop time step
- self.dt = 0.00505
- # State feedback matrices
- # [angular velocity]
- self.A_continuous = numpy.matrix(
- [[-self.Kt / (self.Kv * self.J * self.G * self.G * self.R)]])
- self.B_continuous = numpy.matrix(
- [[self.Kt / (self.J * self.G * self.R)]])
- self.C = numpy.matrix([[1]])
- self.D = numpy.matrix([[0]])
+ def __init__(self, name='VelocityShooter'):
+ super(VelocityShooter, self).__init__(name)
+ # Number of motors
+ self.num_motors = 2.0
+ # Stall Torque in N m
+ self.stall_torque = 0.71 * self.num_motors
+ # Stall Current in Amps
+ self.stall_current = 134.0 * self.num_motors
+ # Free Speed in RPM
+ self.free_speed_rpm = 18730.0
+ # Free Speed in rotations/second.
+ self.free_speed = self.free_speed_rpm / 60.0
+ # Free Current in Amps
+ self.free_current = 0.7 * self.num_motors
+ # Moment of inertia of the shooter wheel in kg m^2
+ # 1400.6 grams/cm^2
+ # 1.407 *1e-4 kg m^2
+ self.J = 0.00120
+ # Resistance of the motor, divided by 2 to account for the 2 motors
+ self.R = 12.0 / self.stall_current
+ # Motor velocity constant
+ self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
+ (12.0 - self.R * self.free_current))
+ # Torque constant
+ self.Kt = self.stall_torque / self.stall_current
+ # Gear ratio
+ self.G = 12.0 / 36.0
+ # Control loop time step
+ self.dt = 0.00505
- # The states are [unfiltered_velocity]
- self.A, self.B = self.ContinuousToDiscrete(
- self.A_continuous, self.B_continuous, self.dt)
+ # State feedback matrices
+ # [angular velocity]
+ self.A_continuous = numpy.matrix(
+ [[-self.Kt / (self.Kv * self.J * self.G * self.G * self.R)]])
+ self.B_continuous = numpy.matrix(
+ [[self.Kt / (self.J * self.G * self.R)]])
+ self.C = numpy.matrix([[1]])
+ self.D = numpy.matrix([[0]])
- self.PlaceControllerPoles([.75])
+ # The states are [unfiltered_velocity]
+ self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+ self.B_continuous, self.dt)
- glog.debug('K %s', repr(self.K))
- glog.debug('System poles are %s',
- repr(numpy.linalg.eig(self.A_continuous)[0]))
- glog.debug('Poles are %s',
- repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+ self.PlaceControllerPoles([.75])
- self.PlaceObserverPoles([0.3])
+ glog.debug('K %s', repr(self.K))
+ glog.debug('System poles are %s',
+ repr(numpy.linalg.eig(self.A_continuous)[0]))
+ glog.debug('Poles are %s',
+ repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
- self.U_max = numpy.matrix([[12.0]])
- self.U_min = numpy.matrix([[-12.0]])
+ self.PlaceObserverPoles([0.3])
- qff_vel = 8.0
- self.Qff = numpy.matrix([[1.0 / (qff_vel ** 2.0)]])
+ self.U_max = numpy.matrix([[12.0]])
+ self.U_min = numpy.matrix([[-12.0]])
- self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
- self.InitializeState()
+ qff_vel = 8.0
+ self.Qff = numpy.matrix([[1.0 / (qff_vel**2.0)]])
+
+ self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+ self.InitializeState()
+
class SecondOrderVelocityShooter(VelocityShooter):
- def __init__(self, name='SecondOrderVelocityShooter'):
- super(SecondOrderVelocityShooter, self).__init__(name)
- self.A_continuous_unaugmented = self.A_continuous
- self.B_continuous_unaugmented = self.B_continuous
+ def __init__(self, name='SecondOrderVelocityShooter'):
+ super(SecondOrderVelocityShooter, self).__init__(name)
- self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
- self.A_continuous[0:1, 0:1] = self.A_continuous_unaugmented
- self.A_continuous[1, 0] = 175.0
- self.A_continuous[1, 1] = -self.A_continuous[1, 0]
+ self.A_continuous_unaugmented = self.A_continuous
+ self.B_continuous_unaugmented = self.B_continuous
- self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
- self.B_continuous[0:1, 0] = self.B_continuous_unaugmented
+ self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
+ self.A_continuous[0:1, 0:1] = self.A_continuous_unaugmented
+ self.A_continuous[1, 0] = 175.0
+ self.A_continuous[1, 1] = -self.A_continuous[1, 0]
- self.C = numpy.matrix([[0, 1]])
- self.D = numpy.matrix([[0]])
+ self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
+ self.B_continuous[0:1, 0] = self.B_continuous_unaugmented
- # The states are [unfiltered_velocity, velocity]
- self.A, self.B = self.ContinuousToDiscrete(
- self.A_continuous, self.B_continuous, self.dt)
+ self.C = numpy.matrix([[0, 1]])
+ self.D = numpy.matrix([[0]])
- self.PlaceControllerPoles([.70, 0.60])
+ # The states are [unfiltered_velocity, velocity]
+ self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+ self.B_continuous, self.dt)
- q_vel = 40.0
- q_filteredvel = 30.0
- self.Q = numpy.matrix([[(1.0 / (q_vel ** 2.0)), 0.0],
- [0.0, (1.0 / (q_filteredvel ** 2.0))]])
+ self.PlaceControllerPoles([.70, 0.60])
- self.R = numpy.matrix([[(1.0 / (3.0 ** 2.0))]])
- self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+ q_vel = 40.0
+ q_filteredvel = 30.0
+ self.Q = numpy.matrix([[(1.0 / (q_vel**2.0)), 0.0],
+ [0.0, (1.0 / (q_filteredvel**2.0))]])
- glog.debug('K %s', repr(self.K))
- glog.debug('System poles are %s',
- repr(numpy.linalg.eig(self.A_continuous)[0]))
- glog.debug('Poles are %s',
- repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+ self.R = numpy.matrix([[(1.0 / (3.0**2.0))]])
+ self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
- self.PlaceObserverPoles([0.3, 0.3])
+ glog.debug('K %s', repr(self.K))
+ glog.debug('System poles are %s',
+ repr(numpy.linalg.eig(self.A_continuous)[0]))
+ glog.debug('Poles are %s',
+ repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
- self.U_max = numpy.matrix([[12.0]])
- self.U_min = numpy.matrix([[-12.0]])
+ self.PlaceObserverPoles([0.3, 0.3])
- qff_vel = 8.0
- self.Qff = numpy.matrix([[1.0 / (qff_vel ** 2.0), 0.0],
- [0.0, 1.0 / (qff_vel ** 2.0)]])
+ self.U_max = numpy.matrix([[12.0]])
+ self.U_min = numpy.matrix([[-12.0]])
- self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
- self.InitializeState()
+ qff_vel = 8.0
+ self.Qff = numpy.matrix([[1.0 / (qff_vel**2.0), 0.0],
+ [0.0, 1.0 / (qff_vel**2.0)]])
+
+ self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+ self.InitializeState()
class Shooter(SecondOrderVelocityShooter):
- def __init__(self, name='Shooter'):
- super(Shooter, self).__init__(name)
- self.A_continuous_unaugmented = self.A_continuous
- self.B_continuous_unaugmented = self.B_continuous
+ def __init__(self, name='Shooter'):
+ super(Shooter, self).__init__(name)
- self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
- self.A_continuous[1:3, 1:3] = self.A_continuous_unaugmented
- self.A_continuous[0, 2] = 1
+ self.A_continuous_unaugmented = self.A_continuous
+ self.B_continuous_unaugmented = self.B_continuous
- self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
- self.B_continuous[1:3, 0] = self.B_continuous_unaugmented
+ self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+ self.A_continuous[1:3, 1:3] = self.A_continuous_unaugmented
+ self.A_continuous[0, 2] = 1
- # State feedback matrices
- # [position, unfiltered_velocity, angular velocity]
- self.C = numpy.matrix([[1, 0, 0]])
- self.D = numpy.matrix([[0]])
+ self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+ self.B_continuous[1:3, 0] = self.B_continuous_unaugmented
- self.A, self.B = self.ContinuousToDiscrete(
- self.A_continuous, self.B_continuous, self.dt)
- glog.debug(repr(self.A_continuous))
- glog.debug(repr(self.B_continuous))
+ # State feedback matrices
+ # [position, unfiltered_velocity, angular velocity]
+ self.C = numpy.matrix([[1, 0, 0]])
+ self.D = numpy.matrix([[0]])
- observeability = controls.ctrb(self.A.T, self.C.T)
- glog.debug('Rank of augmented observability matrix. %d', numpy.linalg.matrix_rank(
- observeability))
+ self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+ self.B_continuous, self.dt)
+ glog.debug(repr(self.A_continuous))
+ glog.debug(repr(self.B_continuous))
+ observeability = controls.ctrb(self.A.T, self.C.T)
+ glog.debug('Rank of augmented observability matrix. %d',
+ numpy.linalg.matrix_rank(observeability))
- self.PlaceObserverPoles([0.9, 0.8, 0.7])
+ self.PlaceObserverPoles([0.9, 0.8, 0.7])
- self.K_unaugmented = self.K
- self.K = numpy.matrix(numpy.zeros((1, 3)))
- self.K[0, 1:3] = self.K_unaugmented
- self.Kff_unaugmented = self.Kff
- self.Kff = numpy.matrix(numpy.zeros((1, 3)))
- self.Kff[0, 1:3] = self.Kff_unaugmented
+ self.K_unaugmented = self.K
+ self.K = numpy.matrix(numpy.zeros((1, 3)))
+ self.K[0, 1:3] = self.K_unaugmented
+ self.Kff_unaugmented = self.Kff
+ self.Kff = numpy.matrix(numpy.zeros((1, 3)))
+ self.Kff[0, 1:3] = self.Kff_unaugmented
- self.InitializeState()
+ self.InitializeState()
class IntegralShooter(Shooter):
- def __init__(self, name='IntegralShooter'):
- super(IntegralShooter, self).__init__(name=name)
- self.A_continuous_unaugmented = self.A_continuous
- self.B_continuous_unaugmented = self.B_continuous
+ def __init__(self, name='IntegralShooter'):
+ super(IntegralShooter, self).__init__(name=name)
- self.A_continuous = numpy.matrix(numpy.zeros((4, 4)))
- self.A_continuous[0:3, 0:3] = self.A_continuous_unaugmented
- self.A_continuous[0:3, 3] = self.B_continuous_unaugmented
+ self.A_continuous_unaugmented = self.A_continuous
+ self.B_continuous_unaugmented = self.B_continuous
- self.B_continuous = numpy.matrix(numpy.zeros((4, 1)))
- self.B_continuous[0:3, 0] = self.B_continuous_unaugmented
+ self.A_continuous = numpy.matrix(numpy.zeros((4, 4)))
+ self.A_continuous[0:3, 0:3] = self.A_continuous_unaugmented
+ self.A_continuous[0:3, 3] = self.B_continuous_unaugmented
- self.C_unaugmented = self.C
- self.C = numpy.matrix(numpy.zeros((1, 4)))
- self.C[0:1, 0:3] = self.C_unaugmented
+ self.B_continuous = numpy.matrix(numpy.zeros((4, 1)))
+ self.B_continuous[0:3, 0] = self.B_continuous_unaugmented
- # The states are [position, unfiltered_velocity, velocity, torque_error]
- self.A, self.B = self.ContinuousToDiscrete(
- self.A_continuous, self.B_continuous, self.dt)
+ self.C_unaugmented = self.C
+ self.C = numpy.matrix(numpy.zeros((1, 4)))
+ self.C[0:1, 0:3] = self.C_unaugmented
- glog.debug('A: \n%s', repr(self.A_continuous))
- glog.debug('eig(A): \n%s', repr(scipy.linalg.eig(self.A_continuous)))
- glog.debug('schur(A): \n%s', repr(scipy.linalg.schur(self.A_continuous)))
- glog.debug('A_dt(A): \n%s', repr(self.A))
+ # The states are [position, unfiltered_velocity, velocity, torque_error]
+ self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+ self.B_continuous, self.dt)
- q_pos = 0.01
- q_vel = 5.0
- q_velfilt = 1.5
- q_voltage = 2.0
- self.Q_continuous = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0],
- [0.0, (q_vel ** 2.0), 0.0, 0.0],
- [0.0, 0.0, (q_velfilt ** 2.0), 0.0],
- [0.0, 0.0, 0.0, (q_voltage ** 2.0)]])
+ glog.debug('A: \n%s', repr(self.A_continuous))
+ glog.debug('eig(A): \n%s', repr(scipy.linalg.eig(self.A_continuous)))
+ glog.debug('schur(A): \n%s', repr(
+ scipy.linalg.schur(self.A_continuous)))
+ glog.debug('A_dt(A): \n%s', repr(self.A))
- r_pos = 0.0003
- self.R_continuous = numpy.matrix([[(r_pos ** 2.0)]])
+ q_pos = 0.01
+ q_vel = 5.0
+ q_velfilt = 1.5
+ q_voltage = 2.0
+ self.Q_continuous = numpy.matrix([[(q_pos**2.0), 0.0, 0.0, 0.0],
+ [0.0, (q_vel**2.0), 0.0, 0.0],
+ [0.0, 0.0, (q_velfilt**2.0), 0.0],
+ [0.0, 0.0, 0.0, (q_voltage**2.0)]])
- _, _, self.Q, self.R = controls.kalmd(
- A_continuous=self.A_continuous, B_continuous=self.B_continuous,
- Q_continuous=self.Q_continuous, R_continuous=self.R_continuous,
- dt=self.dt)
+ r_pos = 0.0003
+ self.R_continuous = numpy.matrix([[(r_pos**2.0)]])
- self.KalmanGain, self.P_steady_state = controls.kalman(
- A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
- self.L = self.A * self.KalmanGain
+ _, _, self.Q, self.R = controls.kalmd(
+ A_continuous=self.A_continuous,
+ B_continuous=self.B_continuous,
+ Q_continuous=self.Q_continuous,
+ R_continuous=self.R_continuous,
+ dt=self.dt)
- self.K_unaugmented = self.K
- self.K = numpy.matrix(numpy.zeros((1, 4)))
- self.K[0, 0:3] = self.K_unaugmented
- self.K[0, 3] = 1
- self.Kff_unaugmented = self.Kff
- self.Kff = numpy.matrix(numpy.zeros((1, 4)))
- self.Kff[0, 0:3] = self.Kff_unaugmented
+ self.KalmanGain, self.P_steady_state = controls.kalman(
+ A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+ self.L = self.A * self.KalmanGain
- self.InitializeState()
+ self.K_unaugmented = self.K
+ self.K = numpy.matrix(numpy.zeros((1, 4)))
+ self.K[0, 0:3] = self.K_unaugmented
+ self.K[0, 3] = 1
+ self.Kff_unaugmented = self.Kff
+ self.Kff = numpy.matrix(numpy.zeros((1, 4)))
+ self.Kff[0, 0:3] = self.Kff_unaugmented
+
+ self.InitializeState()
class ScenarioPlotter(object):
- def __init__(self):
- # Various lists for graphing things.
- self.t = []
- self.x = []
- self.v = []
- self.a = []
- self.x_hat = []
- self.u = []
- self.offset = []
- self.diff = []
- def run_test(self, shooter, goal, iterations=200, controller_shooter=None,
- observer_shooter=None, hybrid_obs = False):
- """Runs the shooter plant with an initial condition and goal.
+ def __init__(self):
+ # Various lists for graphing things.
+ self.t = []
+ self.x = []
+ self.v = []
+ self.a = []
+ self.x_hat = []
+ self.u = []
+ self.offset = []
+ self.diff = []
- Args:
- shooter: Shooter object to use.
- goal: goal state.
- iterations: Number of timesteps to run the model for.
- controller_shooter: Shooter object to get K from, or None if we should
- use shooter.
- observer_shooter: Shooter object to use for the observer, or None if we
- should use the actual state.
- """
+ def run_test(self,
+ shooter,
+ goal,
+ iterations=200,
+ controller_shooter=None,
+ observer_shooter=None,
+ hybrid_obs=False):
+ """Runs the shooter plant with an initial condition and goal.
- if controller_shooter is None:
- controller_shooter = shooter
+ Args:
+ shooter: Shooter object to use.
+ goal: goal state.
+ iterations: Number of timesteps to run the model for.
+ controller_shooter: Shooter object to get K from, or None if we should
+ use shooter.
+ observer_shooter: Shooter object to use for the observer, or None if we
+ should use the actual state.
+ """
- vbat = 12.0
+ if controller_shooter is None:
+ controller_shooter = shooter
- if self.t:
- initial_t = self.t[-1] + shooter.dt
- else:
- initial_t = 0
+ vbat = 12.0
- last_U = numpy.matrix([[0.0]])
- for i in xrange(iterations):
- X_hat = shooter.X
-
- if observer_shooter is not None:
- X_hat = observer_shooter.X_hat
- self.x_hat.append(observer_shooter.X_hat[2, 0])
-
- ff_U = controller_shooter.Kff * (goal - observer_shooter.A * goal)
-
- U = controller_shooter.K * (goal - X_hat) + ff_U
- U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
- self.x.append(shooter.X[0, 0])
-
- self.diff.append(shooter.X[2, 0] - observer_shooter.X_hat[2, 0])
-
- if self.v:
- last_v = self.v[-1]
- else:
- last_v = 0
-
- self.v.append(shooter.X[2, 0])
- self.a.append((self.v[-1] - last_v) / shooter.dt)
-
- if observer_shooter is not None:
- if i != 0:
- observer_shooter.Y = shooter.Y
- observer_shooter.CorrectObserver(U)
- self.offset.append(observer_shooter.X_hat[3, 0])
-
- applied_U = last_U.copy()
- if i > 60:
- applied_U += 2
- shooter.Update(applied_U)
-
- if observer_shooter is not None:
- if hybrid_obs:
- observer_shooter.PredictHybridObserver(last_U, shooter.dt)
+ if self.t:
+ initial_t = self.t[-1] + shooter.dt
else:
- observer_shooter.PredictObserver(last_U)
- last_U = U.copy()
+ initial_t = 0
+ last_U = numpy.matrix([[0.0]])
+ for i in xrange(iterations):
+ X_hat = shooter.X
- self.t.append(initial_t + i * shooter.dt)
- self.u.append(U[0, 0])
+ if observer_shooter is not None:
+ X_hat = observer_shooter.X_hat
+ self.x_hat.append(observer_shooter.X_hat[2, 0])
- def Plot(self):
- pylab.figure()
- pylab.subplot(3, 1, 1)
- pylab.plot(self.t, self.v, label='x')
- pylab.plot(self.t, self.x_hat, label='x_hat')
- pylab.legend()
+ ff_U = controller_shooter.Kff * (goal - observer_shooter.A * goal)
- pylab.subplot(3, 1, 2)
- pylab.plot(self.t, self.u, label='u')
- pylab.plot(self.t, self.offset, label='voltage_offset')
- pylab.legend()
+ U = controller_shooter.K * (goal - X_hat) + ff_U
+ U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+ self.x.append(shooter.X[0, 0])
- pylab.subplot(3, 1, 3)
- pylab.plot(self.t, self.a, label='a')
- pylab.legend()
+ self.diff.append(shooter.X[2, 0] - observer_shooter.X_hat[2, 0])
- pylab.draw()
+ if self.v:
+ last_v = self.v[-1]
+ else:
+ last_v = 0
+
+ self.v.append(shooter.X[2, 0])
+ self.a.append((self.v[-1] - last_v) / shooter.dt)
+
+ if observer_shooter is not None:
+ if i != 0:
+ observer_shooter.Y = shooter.Y
+ observer_shooter.CorrectObserver(U)
+ self.offset.append(observer_shooter.X_hat[3, 0])
+
+ applied_U = last_U.copy()
+ if i > 60:
+ applied_U += 2
+ shooter.Update(applied_U)
+
+ if observer_shooter is not None:
+ if hybrid_obs:
+ observer_shooter.PredictHybridObserver(last_U, shooter.dt)
+ else:
+ observer_shooter.PredictObserver(last_U)
+ last_U = U.copy()
+
+ self.t.append(initial_t + i * shooter.dt)
+ self.u.append(U[0, 0])
+
+ def Plot(self):
+ pylab.figure()
+ pylab.subplot(3, 1, 1)
+ pylab.plot(self.t, self.v, label='x')
+ pylab.plot(self.t, self.x_hat, label='x_hat')
+ pylab.legend()
+
+ pylab.subplot(3, 1, 2)
+ pylab.plot(self.t, self.u, label='u')
+ pylab.plot(self.t, self.offset, label='voltage_offset')
+ pylab.legend()
+
+ pylab.subplot(3, 1, 3)
+ pylab.plot(self.t, self.a, label='a')
+ pylab.legend()
+
+ pylab.draw()
def main(argv):
- scenario_plotter = ScenarioPlotter()
+ scenario_plotter = ScenarioPlotter()
- if FLAGS.plot:
- iterations = 200
+ if FLAGS.plot:
+ iterations = 200
- initial_X = numpy.matrix([[0.0], [0.0], [0.0]])
- R = numpy.matrix([[0.0], [100.0], [100.0], [0.0]])
+ initial_X = numpy.matrix([[0.0], [0.0], [0.0]])
+ R = numpy.matrix([[0.0], [100.0], [100.0], [0.0]])
- scenario_plotter_int = ScenarioPlotter()
+ scenario_plotter_int = ScenarioPlotter()
- shooter = Shooter()
- shooter_controller = IntegralShooter()
- observer_shooter_hybrid = IntegralShooter()
+ shooter = Shooter()
+ shooter_controller = IntegralShooter()
+ observer_shooter_hybrid = IntegralShooter()
- scenario_plotter_int.run_test(shooter, goal=R, controller_shooter=shooter_controller,
- observer_shooter=observer_shooter_hybrid, iterations=iterations,
- hybrid_obs = True)
+ scenario_plotter_int.run_test(
+ shooter,
+ goal=R,
+ controller_shooter=shooter_controller,
+ observer_shooter=observer_shooter_hybrid,
+ iterations=iterations,
+ hybrid_obs=True)
- scenario_plotter_int.Plot()
+ scenario_plotter_int.Plot()
- pylab.show()
+ pylab.show()
- if len(argv) != 5:
- glog.fatal('Expected .h file name and .cc file name')
- else:
- namespaces = ['y2017', 'control_loops', 'superstructure', 'shooter']
- shooter = Shooter('Shooter')
- loop_writer = control_loop.ControlLoopWriter('Shooter', [shooter],
- namespaces=namespaces)
- loop_writer.AddConstant(control_loop.Constant(
- 'kFreeSpeed', '%f', shooter.free_speed))
- loop_writer.AddConstant(control_loop.Constant(
- 'kOutputRatio', '%f', shooter.G))
- loop_writer.Write(argv[1], argv[2])
+ if len(argv) != 5:
+ glog.fatal('Expected .h file name and .cc file name')
+ else:
+ namespaces = ['y2017', 'control_loops', 'superstructure', 'shooter']
+ shooter = Shooter('Shooter')
+ loop_writer = control_loop.ControlLoopWriter(
+ 'Shooter', [shooter], namespaces=namespaces)
+ loop_writer.AddConstant(
+ control_loop.Constant('kFreeSpeed', '%f', shooter.free_speed))
+ loop_writer.AddConstant(
+ control_loop.Constant('kOutputRatio', '%f', shooter.G))
+ loop_writer.Write(argv[1], argv[2])
- integral_shooter = IntegralShooter('IntegralShooter')
- integral_loop_writer = control_loop.ControlLoopWriter(
- 'IntegralShooter', [integral_shooter], namespaces=namespaces,
- plant_type='StateFeedbackHybridPlant',
- observer_type='HybridKalman')
- integral_loop_writer.Write(argv[3], argv[4])
+ integral_shooter = IntegralShooter('IntegralShooter')
+ integral_loop_writer = control_loop.ControlLoopWriter(
+ 'IntegralShooter', [integral_shooter],
+ namespaces=namespaces,
+ plant_type='StateFeedbackHybridPlant',
+ observer_type='HybridKalman')
+ integral_loop_writer.Write(argv[3], argv[4])
if __name__ == '__main__':
- argv = FLAGS(sys.argv)
- glog.init()
- sys.exit(main(argv))
+ argv = FLAGS(sys.argv)
+ glog.init()
+ sys.exit(main(argv))