Reformat python and c++ files

Change-Id: I7d7d99a2094c2a9181ed882735b55159c14db3b0
diff --git a/y2017/control_loops/python/shooter.py b/y2017/control_loops/python/shooter.py
index 1b0ff13..a825ff0 100755
--- a/y2017/control_loops/python/shooter.py
+++ b/y2017/control_loops/python/shooter.py
@@ -16,370 +16,388 @@
 
 
 def PlotDiff(list1, list2, time):
-  pylab.subplot(1, 1, 1)
-  pylab.plot(time, numpy.subtract(list1, list2), label='diff')
-  pylab.legend()
+    pylab.subplot(1, 1, 1)
+    pylab.plot(time, numpy.subtract(list1, list2), label='diff')
+    pylab.legend()
+
 
 class VelocityShooter(control_loop.HybridControlLoop):
-  def __init__(self, name='VelocityShooter'):
-    super(VelocityShooter, self).__init__(name)
-    # Number of motors
-    self.num_motors = 2.0
-    # Stall Torque in N m
-    self.stall_torque = 0.71 * self.num_motors
-    # Stall Current in Amps
-    self.stall_current = 134.0 * self.num_motors
-    # Free Speed in RPM
-    self.free_speed_rpm = 18730.0
-    # Free Speed in rotations/second.
-    self.free_speed = self.free_speed_rpm / 60.0
-    # Free Current in Amps
-    self.free_current = 0.7 * self.num_motors
-    # Moment of inertia of the shooter wheel in kg m^2
-    # 1400.6 grams/cm^2
-    # 1.407 *1e-4 kg m^2
-    self.J = 0.00120
-    # Resistance of the motor, divided by 2 to account for the 2 motors
-    self.R = 12.0 / self.stall_current
-    # Motor velocity constant
-    self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
-              (12.0 - self.R * self.free_current))
-    # Torque constant
-    self.Kt = self.stall_torque / self.stall_current
-    # Gear ratio
-    self.G = 12.0 / 36.0
-    # Control loop time step
-    self.dt = 0.00505
 
-    # State feedback matrices
-    # [angular velocity]
-    self.A_continuous = numpy.matrix(
-        [[-self.Kt / (self.Kv * self.J * self.G * self.G * self.R)]])
-    self.B_continuous = numpy.matrix(
-        [[self.Kt / (self.J * self.G * self.R)]])
-    self.C = numpy.matrix([[1]])
-    self.D = numpy.matrix([[0]])
+    def __init__(self, name='VelocityShooter'):
+        super(VelocityShooter, self).__init__(name)
+        # Number of motors
+        self.num_motors = 2.0
+        # Stall Torque in N m
+        self.stall_torque = 0.71 * self.num_motors
+        # Stall Current in Amps
+        self.stall_current = 134.0 * self.num_motors
+        # Free Speed in RPM
+        self.free_speed_rpm = 18730.0
+        # Free Speed in rotations/second.
+        self.free_speed = self.free_speed_rpm / 60.0
+        # Free Current in Amps
+        self.free_current = 0.7 * self.num_motors
+        # Moment of inertia of the shooter wheel in kg m^2
+        # 1400.6 grams/cm^2
+        # 1.407 *1e-4 kg m^2
+        self.J = 0.00120
+        # Resistance of the motor, divided by 2 to account for the 2 motors
+        self.R = 12.0 / self.stall_current
+        # Motor velocity constant
+        self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
+                   (12.0 - self.R * self.free_current))
+        # Torque constant
+        self.Kt = self.stall_torque / self.stall_current
+        # Gear ratio
+        self.G = 12.0 / 36.0
+        # Control loop time step
+        self.dt = 0.00505
 
-    # The states are [unfiltered_velocity]
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        # State feedback matrices
+        # [angular velocity]
+        self.A_continuous = numpy.matrix(
+            [[-self.Kt / (self.Kv * self.J * self.G * self.G * self.R)]])
+        self.B_continuous = numpy.matrix(
+            [[self.Kt / (self.J * self.G * self.R)]])
+        self.C = numpy.matrix([[1]])
+        self.D = numpy.matrix([[0]])
 
-    self.PlaceControllerPoles([.75])
+        # The states are [unfiltered_velocity]
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    glog.debug('K %s', repr(self.K))
-    glog.debug('System poles are %s',
-               repr(numpy.linalg.eig(self.A_continuous)[0]))
-    glog.debug('Poles are %s',
-               repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+        self.PlaceControllerPoles([.75])
 
-    self.PlaceObserverPoles([0.3])
+        glog.debug('K %s', repr(self.K))
+        glog.debug('System poles are %s',
+                   repr(numpy.linalg.eig(self.A_continuous)[0]))
+        glog.debug('Poles are %s',
+                   repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
 
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.PlaceObserverPoles([0.3])
 
-    qff_vel = 8.0
-    self.Qff = numpy.matrix([[1.0 / (qff_vel ** 2.0)]])
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
 
-    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
-    self.InitializeState()
+        qff_vel = 8.0
+        self.Qff = numpy.matrix([[1.0 / (qff_vel**2.0)]])
+
+        self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+        self.InitializeState()
+
 
 class SecondOrderVelocityShooter(VelocityShooter):
-  def __init__(self, name='SecondOrderVelocityShooter'):
-    super(SecondOrderVelocityShooter, self).__init__(name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name='SecondOrderVelocityShooter'):
+        super(SecondOrderVelocityShooter, self).__init__(name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
-    self.A_continuous[0:1, 0:1] = self.A_continuous_unaugmented
-    self.A_continuous[1, 0] = 175.0
-    self.A_continuous[1, 1] = -self.A_continuous[1, 0]
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
-    self.B_continuous[0:1, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
+        self.A_continuous[0:1, 0:1] = self.A_continuous_unaugmented
+        self.A_continuous[1, 0] = 175.0
+        self.A_continuous[1, 1] = -self.A_continuous[1, 0]
 
-    self.C = numpy.matrix([[0, 1]])
-    self.D = numpy.matrix([[0]])
+        self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
+        self.B_continuous[0:1, 0] = self.B_continuous_unaugmented
 
-    # The states are [unfiltered_velocity, velocity]
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C = numpy.matrix([[0, 1]])
+        self.D = numpy.matrix([[0]])
 
-    self.PlaceControllerPoles([.70, 0.60])
+        # The states are [unfiltered_velocity, velocity]
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    q_vel = 40.0
-    q_filteredvel = 30.0
-    self.Q = numpy.matrix([[(1.0 / (q_vel ** 2.0)), 0.0],
-                           [0.0, (1.0 / (q_filteredvel ** 2.0))]])
+        self.PlaceControllerPoles([.70, 0.60])
 
-    self.R = numpy.matrix([[(1.0 / (3.0 ** 2.0))]])
-    self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+        q_vel = 40.0
+        q_filteredvel = 30.0
+        self.Q = numpy.matrix([[(1.0 / (q_vel**2.0)), 0.0],
+                               [0.0, (1.0 / (q_filteredvel**2.0))]])
 
-    glog.debug('K %s', repr(self.K))
-    glog.debug('System poles are %s',
-               repr(numpy.linalg.eig(self.A_continuous)[0]))
-    glog.debug('Poles are %s',
-               repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+        self.R = numpy.matrix([[(1.0 / (3.0**2.0))]])
+        self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
 
-    self.PlaceObserverPoles([0.3, 0.3])
+        glog.debug('K %s', repr(self.K))
+        glog.debug('System poles are %s',
+                   repr(numpy.linalg.eig(self.A_continuous)[0]))
+        glog.debug('Poles are %s',
+                   repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
 
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.PlaceObserverPoles([0.3, 0.3])
 
-    qff_vel = 8.0
-    self.Qff = numpy.matrix([[1.0 / (qff_vel ** 2.0), 0.0],
-                             [0.0, 1.0 / (qff_vel ** 2.0)]])
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
 
-    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
-    self.InitializeState()
+        qff_vel = 8.0
+        self.Qff = numpy.matrix([[1.0 / (qff_vel**2.0), 0.0],
+                                 [0.0, 1.0 / (qff_vel**2.0)]])
+
+        self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+        self.InitializeState()
 
 
 class Shooter(SecondOrderVelocityShooter):
-  def __init__(self, name='Shooter'):
-    super(Shooter, self).__init__(name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name='Shooter'):
+        super(Shooter, self).__init__(name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.A_continuous[1:3, 1:3] = self.A_continuous_unaugmented
-    self.A_continuous[0, 2] = 1
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
-    self.B_continuous[1:3, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.A_continuous[1:3, 1:3] = self.A_continuous_unaugmented
+        self.A_continuous[0, 2] = 1
 
-    # State feedback matrices
-    # [position, unfiltered_velocity, angular velocity]
-    self.C = numpy.matrix([[1, 0, 0]])
-    self.D = numpy.matrix([[0]])
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+        self.B_continuous[1:3, 0] = self.B_continuous_unaugmented
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
-    glog.debug(repr(self.A_continuous))
-    glog.debug(repr(self.B_continuous))
+        # State feedback matrices
+        # [position, unfiltered_velocity, angular velocity]
+        self.C = numpy.matrix([[1, 0, 0]])
+        self.D = numpy.matrix([[0]])
 
-    observeability = controls.ctrb(self.A.T, self.C.T)
-    glog.debug('Rank of augmented observability matrix. %d', numpy.linalg.matrix_rank(
-            observeability))
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
+        glog.debug(repr(self.A_continuous))
+        glog.debug(repr(self.B_continuous))
 
+        observeability = controls.ctrb(self.A.T, self.C.T)
+        glog.debug('Rank of augmented observability matrix. %d',
+                   numpy.linalg.matrix_rank(observeability))
 
-    self.PlaceObserverPoles([0.9, 0.8, 0.7])
+        self.PlaceObserverPoles([0.9, 0.8, 0.7])
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 3)))
-    self.K[0, 1:3] = self.K_unaugmented
-    self.Kff_unaugmented = self.Kff
-    self.Kff = numpy.matrix(numpy.zeros((1, 3)))
-    self.Kff[0, 1:3] = self.Kff_unaugmented
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((1, 3)))
+        self.K[0, 1:3] = self.K_unaugmented
+        self.Kff_unaugmented = self.Kff
+        self.Kff = numpy.matrix(numpy.zeros((1, 3)))
+        self.Kff[0, 1:3] = self.Kff_unaugmented
 
-    self.InitializeState()
+        self.InitializeState()
 
 
 class IntegralShooter(Shooter):
-  def __init__(self, name='IntegralShooter'):
-    super(IntegralShooter, self).__init__(name=name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name='IntegralShooter'):
+        super(IntegralShooter, self).__init__(name=name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((4, 4)))
-    self.A_continuous[0:3, 0:3] = self.A_continuous_unaugmented
-    self.A_continuous[0:3, 3] = self.B_continuous_unaugmented
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((4, 1)))
-    self.B_continuous[0:3, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((4, 4)))
+        self.A_continuous[0:3, 0:3] = self.A_continuous_unaugmented
+        self.A_continuous[0:3, 3] = self.B_continuous_unaugmented
 
-    self.C_unaugmented = self.C
-    self.C = numpy.matrix(numpy.zeros((1, 4)))
-    self.C[0:1, 0:3] = self.C_unaugmented
+        self.B_continuous = numpy.matrix(numpy.zeros((4, 1)))
+        self.B_continuous[0:3, 0] = self.B_continuous_unaugmented
 
-    # The states are [position, unfiltered_velocity, velocity, torque_error]
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C_unaugmented = self.C
+        self.C = numpy.matrix(numpy.zeros((1, 4)))
+        self.C[0:1, 0:3] = self.C_unaugmented
 
-    glog.debug('A: \n%s', repr(self.A_continuous))
-    glog.debug('eig(A): \n%s', repr(scipy.linalg.eig(self.A_continuous)))
-    glog.debug('schur(A): \n%s', repr(scipy.linalg.schur(self.A_continuous)))
-    glog.debug('A_dt(A): \n%s', repr(self.A))
+        # The states are [position, unfiltered_velocity, velocity, torque_error]
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    q_pos = 0.01
-    q_vel = 5.0
-    q_velfilt = 1.5
-    q_voltage = 2.0
-    self.Q_continuous = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0],
-                                      [0.0, (q_vel ** 2.0), 0.0, 0.0],
-                                      [0.0, 0.0, (q_velfilt ** 2.0), 0.0],
-                                      [0.0, 0.0, 0.0, (q_voltage ** 2.0)]])
+        glog.debug('A: \n%s', repr(self.A_continuous))
+        glog.debug('eig(A): \n%s', repr(scipy.linalg.eig(self.A_continuous)))
+        glog.debug('schur(A): \n%s', repr(
+            scipy.linalg.schur(self.A_continuous)))
+        glog.debug('A_dt(A): \n%s', repr(self.A))
 
-    r_pos = 0.0003
-    self.R_continuous = numpy.matrix([[(r_pos ** 2.0)]])
+        q_pos = 0.01
+        q_vel = 5.0
+        q_velfilt = 1.5
+        q_voltage = 2.0
+        self.Q_continuous = numpy.matrix([[(q_pos**2.0), 0.0, 0.0, 0.0],
+                                          [0.0, (q_vel**2.0), 0.0, 0.0],
+                                          [0.0, 0.0, (q_velfilt**2.0), 0.0],
+                                          [0.0, 0.0, 0.0, (q_voltage**2.0)]])
 
-    _, _, self.Q, self.R = controls.kalmd(
-        A_continuous=self.A_continuous, B_continuous=self.B_continuous,
-        Q_continuous=self.Q_continuous, R_continuous=self.R_continuous,
-        dt=self.dt)
+        r_pos = 0.0003
+        self.R_continuous = numpy.matrix([[(r_pos**2.0)]])
 
-    self.KalmanGain, self.P_steady_state = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        _, _, self.Q, self.R = controls.kalmd(
+            A_continuous=self.A_continuous,
+            B_continuous=self.B_continuous,
+            Q_continuous=self.Q_continuous,
+            R_continuous=self.R_continuous,
+            dt=self.dt)
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 4)))
-    self.K[0, 0:3] = self.K_unaugmented
-    self.K[0, 3] = 1
-    self.Kff_unaugmented = self.Kff
-    self.Kff = numpy.matrix(numpy.zeros((1, 4)))
-    self.Kff[0, 0:3] = self.Kff_unaugmented
+        self.KalmanGain, self.P_steady_state = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.L = self.A * self.KalmanGain
 
-    self.InitializeState()
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((1, 4)))
+        self.K[0, 0:3] = self.K_unaugmented
+        self.K[0, 3] = 1
+        self.Kff_unaugmented = self.Kff
+        self.Kff = numpy.matrix(numpy.zeros((1, 4)))
+        self.Kff[0, 0:3] = self.Kff_unaugmented
+
+        self.InitializeState()
 
 
 class ScenarioPlotter(object):
-  def __init__(self):
-    # Various lists for graphing things.
-    self.t = []
-    self.x = []
-    self.v = []
-    self.a = []
-    self.x_hat = []
-    self.u = []
-    self.offset = []
-    self.diff = []
 
-  def run_test(self, shooter, goal, iterations=200, controller_shooter=None,
-             observer_shooter=None, hybrid_obs = False):
-    """Runs the shooter plant with an initial condition and goal.
+    def __init__(self):
+        # Various lists for graphing things.
+        self.t = []
+        self.x = []
+        self.v = []
+        self.a = []
+        self.x_hat = []
+        self.u = []
+        self.offset = []
+        self.diff = []
 
-      Args:
-        shooter: Shooter object to use.
-        goal: goal state.
-        iterations: Number of timesteps to run the model for.
-        controller_shooter: Shooter object to get K from, or None if we should
-            use shooter.
-        observer_shooter: Shooter object to use for the observer, or None if we
-            should use the actual state.
-    """
+    def run_test(self,
+                 shooter,
+                 goal,
+                 iterations=200,
+                 controller_shooter=None,
+                 observer_shooter=None,
+                 hybrid_obs=False):
+        """Runs the shooter plant with an initial condition and goal.
 
-    if controller_shooter is None:
-      controller_shooter = shooter
+        Args:
+            shooter: Shooter object to use.
+            goal: goal state.
+            iterations: Number of timesteps to run the model for.
+            controller_shooter: Shooter object to get K from, or None if we should
+                use shooter.
+            observer_shooter: Shooter object to use for the observer, or None if we
+                should use the actual state.
+        """
 
-    vbat = 12.0
+        if controller_shooter is None:
+            controller_shooter = shooter
 
-    if self.t:
-      initial_t = self.t[-1] + shooter.dt
-    else:
-      initial_t = 0
+        vbat = 12.0
 
-    last_U = numpy.matrix([[0.0]])
-    for i in xrange(iterations):
-      X_hat = shooter.X
-
-      if observer_shooter is not None:
-        X_hat = observer_shooter.X_hat
-        self.x_hat.append(observer_shooter.X_hat[2, 0])
-
-      ff_U = controller_shooter.Kff * (goal - observer_shooter.A * goal)
-
-      U = controller_shooter.K * (goal - X_hat) + ff_U
-      U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
-      self.x.append(shooter.X[0, 0])
-
-      self.diff.append(shooter.X[2, 0] - observer_shooter.X_hat[2, 0])
-
-      if self.v:
-        last_v = self.v[-1]
-      else:
-        last_v = 0
-
-      self.v.append(shooter.X[2, 0])
-      self.a.append((self.v[-1] - last_v) / shooter.dt)
-
-      if observer_shooter is not None:
-        if i != 0:
-          observer_shooter.Y = shooter.Y
-          observer_shooter.CorrectObserver(U)
-        self.offset.append(observer_shooter.X_hat[3, 0])
-
-      applied_U = last_U.copy()
-      if i > 60:
-        applied_U += 2
-      shooter.Update(applied_U)
-
-      if observer_shooter is not None:
-        if hybrid_obs:
-          observer_shooter.PredictHybridObserver(last_U, shooter.dt)
+        if self.t:
+            initial_t = self.t[-1] + shooter.dt
         else:
-          observer_shooter.PredictObserver(last_U)
-      last_U = U.copy()
+            initial_t = 0
 
+        last_U = numpy.matrix([[0.0]])
+        for i in xrange(iterations):
+            X_hat = shooter.X
 
-      self.t.append(initial_t + i * shooter.dt)
-      self.u.append(U[0, 0])
+            if observer_shooter is not None:
+                X_hat = observer_shooter.X_hat
+                self.x_hat.append(observer_shooter.X_hat[2, 0])
 
-  def Plot(self):
-    pylab.figure()
-    pylab.subplot(3, 1, 1)
-    pylab.plot(self.t, self.v, label='x')
-    pylab.plot(self.t, self.x_hat, label='x_hat')
-    pylab.legend()
+            ff_U = controller_shooter.Kff * (goal - observer_shooter.A * goal)
 
-    pylab.subplot(3, 1, 2)
-    pylab.plot(self.t, self.u, label='u')
-    pylab.plot(self.t, self.offset, label='voltage_offset')
-    pylab.legend()
+            U = controller_shooter.K * (goal - X_hat) + ff_U
+            U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+            self.x.append(shooter.X[0, 0])
 
-    pylab.subplot(3, 1, 3)
-    pylab.plot(self.t, self.a, label='a')
-    pylab.legend()
+            self.diff.append(shooter.X[2, 0] - observer_shooter.X_hat[2, 0])
 
-    pylab.draw()
+            if self.v:
+                last_v = self.v[-1]
+            else:
+                last_v = 0
+
+            self.v.append(shooter.X[2, 0])
+            self.a.append((self.v[-1] - last_v) / shooter.dt)
+
+            if observer_shooter is not None:
+                if i != 0:
+                    observer_shooter.Y = shooter.Y
+                    observer_shooter.CorrectObserver(U)
+                self.offset.append(observer_shooter.X_hat[3, 0])
+
+            applied_U = last_U.copy()
+            if i > 60:
+                applied_U += 2
+            shooter.Update(applied_U)
+
+            if observer_shooter is not None:
+                if hybrid_obs:
+                    observer_shooter.PredictHybridObserver(last_U, shooter.dt)
+                else:
+                    observer_shooter.PredictObserver(last_U)
+            last_U = U.copy()
+
+            self.t.append(initial_t + i * shooter.dt)
+            self.u.append(U[0, 0])
+
+    def Plot(self):
+        pylab.figure()
+        pylab.subplot(3, 1, 1)
+        pylab.plot(self.t, self.v, label='x')
+        pylab.plot(self.t, self.x_hat, label='x_hat')
+        pylab.legend()
+
+        pylab.subplot(3, 1, 2)
+        pylab.plot(self.t, self.u, label='u')
+        pylab.plot(self.t, self.offset, label='voltage_offset')
+        pylab.legend()
+
+        pylab.subplot(3, 1, 3)
+        pylab.plot(self.t, self.a, label='a')
+        pylab.legend()
+
+        pylab.draw()
 
 
 def main(argv):
-  scenario_plotter = ScenarioPlotter()
+    scenario_plotter = ScenarioPlotter()
 
-  if FLAGS.plot:
-    iterations = 200
+    if FLAGS.plot:
+        iterations = 200
 
-    initial_X = numpy.matrix([[0.0], [0.0], [0.0]])
-    R = numpy.matrix([[0.0], [100.0], [100.0], [0.0]])
+        initial_X = numpy.matrix([[0.0], [0.0], [0.0]])
+        R = numpy.matrix([[0.0], [100.0], [100.0], [0.0]])
 
-    scenario_plotter_int = ScenarioPlotter()
+        scenario_plotter_int = ScenarioPlotter()
 
-    shooter = Shooter()
-    shooter_controller = IntegralShooter()
-    observer_shooter_hybrid = IntegralShooter()
+        shooter = Shooter()
+        shooter_controller = IntegralShooter()
+        observer_shooter_hybrid = IntegralShooter()
 
-    scenario_plotter_int.run_test(shooter, goal=R, controller_shooter=shooter_controller,
-      observer_shooter=observer_shooter_hybrid, iterations=iterations,
-      hybrid_obs = True)
+        scenario_plotter_int.run_test(
+            shooter,
+            goal=R,
+            controller_shooter=shooter_controller,
+            observer_shooter=observer_shooter_hybrid,
+            iterations=iterations,
+            hybrid_obs=True)
 
-    scenario_plotter_int.Plot()
+        scenario_plotter_int.Plot()
 
-    pylab.show()
+        pylab.show()
 
-  if len(argv) != 5:
-    glog.fatal('Expected .h file name and .cc file name')
-  else:
-    namespaces = ['y2017', 'control_loops', 'superstructure', 'shooter']
-    shooter = Shooter('Shooter')
-    loop_writer = control_loop.ControlLoopWriter('Shooter', [shooter],
-                                                 namespaces=namespaces)
-    loop_writer.AddConstant(control_loop.Constant(
-        'kFreeSpeed', '%f', shooter.free_speed))
-    loop_writer.AddConstant(control_loop.Constant(
-        'kOutputRatio', '%f', shooter.G))
-    loop_writer.Write(argv[1], argv[2])
+    if len(argv) != 5:
+        glog.fatal('Expected .h file name and .cc file name')
+    else:
+        namespaces = ['y2017', 'control_loops', 'superstructure', 'shooter']
+        shooter = Shooter('Shooter')
+        loop_writer = control_loop.ControlLoopWriter(
+            'Shooter', [shooter], namespaces=namespaces)
+        loop_writer.AddConstant(
+            control_loop.Constant('kFreeSpeed', '%f', shooter.free_speed))
+        loop_writer.AddConstant(
+            control_loop.Constant('kOutputRatio', '%f', shooter.G))
+        loop_writer.Write(argv[1], argv[2])
 
-    integral_shooter = IntegralShooter('IntegralShooter')
-    integral_loop_writer = control_loop.ControlLoopWriter(
-        'IntegralShooter', [integral_shooter], namespaces=namespaces,
-        plant_type='StateFeedbackHybridPlant',
-        observer_type='HybridKalman')
-    integral_loop_writer.Write(argv[3], argv[4])
+        integral_shooter = IntegralShooter('IntegralShooter')
+        integral_loop_writer = control_loop.ControlLoopWriter(
+            'IntegralShooter', [integral_shooter],
+            namespaces=namespaces,
+            plant_type='StateFeedbackHybridPlant',
+            observer_type='HybridKalman')
+        integral_loop_writer.Write(argv[3], argv[4])
 
 
 if __name__ == '__main__':
-  argv = FLAGS(sys.argv)
-  glog.init()
-  sys.exit(main(argv))
+    argv = FLAGS(sys.argv)
+    glog.init()
+    sys.exit(main(argv))