blob: a825ff07f6e876731fd73c1ca09d379fb721dc9e [file] [log] [blame]
#!/usr/bin/python
from frc971.control_loops.python import control_loop
from frc971.control_loops.python import controls
import numpy
import scipy
import sys
from matplotlib import pylab
import gflags
import glog
FLAGS = gflags.FLAGS
gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
def PlotDiff(list1, list2, time):
pylab.subplot(1, 1, 1)
pylab.plot(time, numpy.subtract(list1, list2), label='diff')
pylab.legend()
class VelocityShooter(control_loop.HybridControlLoop):
def __init__(self, name='VelocityShooter'):
super(VelocityShooter, self).__init__(name)
# Number of motors
self.num_motors = 2.0
# Stall Torque in N m
self.stall_torque = 0.71 * self.num_motors
# Stall Current in Amps
self.stall_current = 134.0 * self.num_motors
# Free Speed in RPM
self.free_speed_rpm = 18730.0
# Free Speed in rotations/second.
self.free_speed = self.free_speed_rpm / 60.0
# Free Current in Amps
self.free_current = 0.7 * self.num_motors
# Moment of inertia of the shooter wheel in kg m^2
# 1400.6 grams/cm^2
# 1.407 *1e-4 kg m^2
self.J = 0.00120
# Resistance of the motor, divided by 2 to account for the 2 motors
self.R = 12.0 / self.stall_current
# Motor velocity constant
self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
(12.0 - self.R * self.free_current))
# Torque constant
self.Kt = self.stall_torque / self.stall_current
# Gear ratio
self.G = 12.0 / 36.0
# Control loop time step
self.dt = 0.00505
# State feedback matrices
# [angular velocity]
self.A_continuous = numpy.matrix(
[[-self.Kt / (self.Kv * self.J * self.G * self.G * self.R)]])
self.B_continuous = numpy.matrix(
[[self.Kt / (self.J * self.G * self.R)]])
self.C = numpy.matrix([[1]])
self.D = numpy.matrix([[0]])
# The states are [unfiltered_velocity]
self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
self.B_continuous, self.dt)
self.PlaceControllerPoles([.75])
glog.debug('K %s', repr(self.K))
glog.debug('System poles are %s',
repr(numpy.linalg.eig(self.A_continuous)[0]))
glog.debug('Poles are %s',
repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
self.PlaceObserverPoles([0.3])
self.U_max = numpy.matrix([[12.0]])
self.U_min = numpy.matrix([[-12.0]])
qff_vel = 8.0
self.Qff = numpy.matrix([[1.0 / (qff_vel**2.0)]])
self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
self.InitializeState()
class SecondOrderVelocityShooter(VelocityShooter):
def __init__(self, name='SecondOrderVelocityShooter'):
super(SecondOrderVelocityShooter, self).__init__(name)
self.A_continuous_unaugmented = self.A_continuous
self.B_continuous_unaugmented = self.B_continuous
self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
self.A_continuous[0:1, 0:1] = self.A_continuous_unaugmented
self.A_continuous[1, 0] = 175.0
self.A_continuous[1, 1] = -self.A_continuous[1, 0]
self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
self.B_continuous[0:1, 0] = self.B_continuous_unaugmented
self.C = numpy.matrix([[0, 1]])
self.D = numpy.matrix([[0]])
# The states are [unfiltered_velocity, velocity]
self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
self.B_continuous, self.dt)
self.PlaceControllerPoles([.70, 0.60])
q_vel = 40.0
q_filteredvel = 30.0
self.Q = numpy.matrix([[(1.0 / (q_vel**2.0)), 0.0],
[0.0, (1.0 / (q_filteredvel**2.0))]])
self.R = numpy.matrix([[(1.0 / (3.0**2.0))]])
self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
glog.debug('K %s', repr(self.K))
glog.debug('System poles are %s',
repr(numpy.linalg.eig(self.A_continuous)[0]))
glog.debug('Poles are %s',
repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
self.PlaceObserverPoles([0.3, 0.3])
self.U_max = numpy.matrix([[12.0]])
self.U_min = numpy.matrix([[-12.0]])
qff_vel = 8.0
self.Qff = numpy.matrix([[1.0 / (qff_vel**2.0), 0.0],
[0.0, 1.0 / (qff_vel**2.0)]])
self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
self.InitializeState()
class Shooter(SecondOrderVelocityShooter):
def __init__(self, name='Shooter'):
super(Shooter, self).__init__(name)
self.A_continuous_unaugmented = self.A_continuous
self.B_continuous_unaugmented = self.B_continuous
self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
self.A_continuous[1:3, 1:3] = self.A_continuous_unaugmented
self.A_continuous[0, 2] = 1
self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
self.B_continuous[1:3, 0] = self.B_continuous_unaugmented
# State feedback matrices
# [position, unfiltered_velocity, angular velocity]
self.C = numpy.matrix([[1, 0, 0]])
self.D = numpy.matrix([[0]])
self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
self.B_continuous, self.dt)
glog.debug(repr(self.A_continuous))
glog.debug(repr(self.B_continuous))
observeability = controls.ctrb(self.A.T, self.C.T)
glog.debug('Rank of augmented observability matrix. %d',
numpy.linalg.matrix_rank(observeability))
self.PlaceObserverPoles([0.9, 0.8, 0.7])
self.K_unaugmented = self.K
self.K = numpy.matrix(numpy.zeros((1, 3)))
self.K[0, 1:3] = self.K_unaugmented
self.Kff_unaugmented = self.Kff
self.Kff = numpy.matrix(numpy.zeros((1, 3)))
self.Kff[0, 1:3] = self.Kff_unaugmented
self.InitializeState()
class IntegralShooter(Shooter):
def __init__(self, name='IntegralShooter'):
super(IntegralShooter, self).__init__(name=name)
self.A_continuous_unaugmented = self.A_continuous
self.B_continuous_unaugmented = self.B_continuous
self.A_continuous = numpy.matrix(numpy.zeros((4, 4)))
self.A_continuous[0:3, 0:3] = self.A_continuous_unaugmented
self.A_continuous[0:3, 3] = self.B_continuous_unaugmented
self.B_continuous = numpy.matrix(numpy.zeros((4, 1)))
self.B_continuous[0:3, 0] = self.B_continuous_unaugmented
self.C_unaugmented = self.C
self.C = numpy.matrix(numpy.zeros((1, 4)))
self.C[0:1, 0:3] = self.C_unaugmented
# The states are [position, unfiltered_velocity, velocity, torque_error]
self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
self.B_continuous, self.dt)
glog.debug('A: \n%s', repr(self.A_continuous))
glog.debug('eig(A): \n%s', repr(scipy.linalg.eig(self.A_continuous)))
glog.debug('schur(A): \n%s', repr(
scipy.linalg.schur(self.A_continuous)))
glog.debug('A_dt(A): \n%s', repr(self.A))
q_pos = 0.01
q_vel = 5.0
q_velfilt = 1.5
q_voltage = 2.0
self.Q_continuous = numpy.matrix([[(q_pos**2.0), 0.0, 0.0, 0.0],
[0.0, (q_vel**2.0), 0.0, 0.0],
[0.0, 0.0, (q_velfilt**2.0), 0.0],
[0.0, 0.0, 0.0, (q_voltage**2.0)]])
r_pos = 0.0003
self.R_continuous = numpy.matrix([[(r_pos**2.0)]])
_, _, self.Q, self.R = controls.kalmd(
A_continuous=self.A_continuous,
B_continuous=self.B_continuous,
Q_continuous=self.Q_continuous,
R_continuous=self.R_continuous,
dt=self.dt)
self.KalmanGain, self.P_steady_state = controls.kalman(
A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
self.L = self.A * self.KalmanGain
self.K_unaugmented = self.K
self.K = numpy.matrix(numpy.zeros((1, 4)))
self.K[0, 0:3] = self.K_unaugmented
self.K[0, 3] = 1
self.Kff_unaugmented = self.Kff
self.Kff = numpy.matrix(numpy.zeros((1, 4)))
self.Kff[0, 0:3] = self.Kff_unaugmented
self.InitializeState()
class ScenarioPlotter(object):
def __init__(self):
# Various lists for graphing things.
self.t = []
self.x = []
self.v = []
self.a = []
self.x_hat = []
self.u = []
self.offset = []
self.diff = []
def run_test(self,
shooter,
goal,
iterations=200,
controller_shooter=None,
observer_shooter=None,
hybrid_obs=False):
"""Runs the shooter plant with an initial condition and goal.
Args:
shooter: Shooter object to use.
goal: goal state.
iterations: Number of timesteps to run the model for.
controller_shooter: Shooter object to get K from, or None if we should
use shooter.
observer_shooter: Shooter object to use for the observer, or None if we
should use the actual state.
"""
if controller_shooter is None:
controller_shooter = shooter
vbat = 12.0
if self.t:
initial_t = self.t[-1] + shooter.dt
else:
initial_t = 0
last_U = numpy.matrix([[0.0]])
for i in xrange(iterations):
X_hat = shooter.X
if observer_shooter is not None:
X_hat = observer_shooter.X_hat
self.x_hat.append(observer_shooter.X_hat[2, 0])
ff_U = controller_shooter.Kff * (goal - observer_shooter.A * goal)
U = controller_shooter.K * (goal - X_hat) + ff_U
U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
self.x.append(shooter.X[0, 0])
self.diff.append(shooter.X[2, 0] - observer_shooter.X_hat[2, 0])
if self.v:
last_v = self.v[-1]
else:
last_v = 0
self.v.append(shooter.X[2, 0])
self.a.append((self.v[-1] - last_v) / shooter.dt)
if observer_shooter is not None:
if i != 0:
observer_shooter.Y = shooter.Y
observer_shooter.CorrectObserver(U)
self.offset.append(observer_shooter.X_hat[3, 0])
applied_U = last_U.copy()
if i > 60:
applied_U += 2
shooter.Update(applied_U)
if observer_shooter is not None:
if hybrid_obs:
observer_shooter.PredictHybridObserver(last_U, shooter.dt)
else:
observer_shooter.PredictObserver(last_U)
last_U = U.copy()
self.t.append(initial_t + i * shooter.dt)
self.u.append(U[0, 0])
def Plot(self):
pylab.figure()
pylab.subplot(3, 1, 1)
pylab.plot(self.t, self.v, label='x')
pylab.plot(self.t, self.x_hat, label='x_hat')
pylab.legend()
pylab.subplot(3, 1, 2)
pylab.plot(self.t, self.u, label='u')
pylab.plot(self.t, self.offset, label='voltage_offset')
pylab.legend()
pylab.subplot(3, 1, 3)
pylab.plot(self.t, self.a, label='a')
pylab.legend()
pylab.draw()
def main(argv):
scenario_plotter = ScenarioPlotter()
if FLAGS.plot:
iterations = 200
initial_X = numpy.matrix([[0.0], [0.0], [0.0]])
R = numpy.matrix([[0.0], [100.0], [100.0], [0.0]])
scenario_plotter_int = ScenarioPlotter()
shooter = Shooter()
shooter_controller = IntegralShooter()
observer_shooter_hybrid = IntegralShooter()
scenario_plotter_int.run_test(
shooter,
goal=R,
controller_shooter=shooter_controller,
observer_shooter=observer_shooter_hybrid,
iterations=iterations,
hybrid_obs=True)
scenario_plotter_int.Plot()
pylab.show()
if len(argv) != 5:
glog.fatal('Expected .h file name and .cc file name')
else:
namespaces = ['y2017', 'control_loops', 'superstructure', 'shooter']
shooter = Shooter('Shooter')
loop_writer = control_loop.ControlLoopWriter(
'Shooter', [shooter], namespaces=namespaces)
loop_writer.AddConstant(
control_loop.Constant('kFreeSpeed', '%f', shooter.free_speed))
loop_writer.AddConstant(
control_loop.Constant('kOutputRatio', '%f', shooter.G))
loop_writer.Write(argv[1], argv[2])
integral_shooter = IntegralShooter('IntegralShooter')
integral_loop_writer = control_loop.ControlLoopWriter(
'IntegralShooter', [integral_shooter],
namespaces=namespaces,
plant_type='StateFeedbackHybridPlant',
observer_type='HybridKalman')
integral_loop_writer.Write(argv[3], argv[4])
if __name__ == '__main__':
argv = FLAGS(sys.argv)
glog.init()
sys.exit(main(argv))