Reformat python and c++ files

Change-Id: I7d7d99a2094c2a9181ed882735b55159c14db3b0
diff --git a/y2017/control_loops/python/column.py b/y2017/control_loops/python/column.py
index 1f8bd76..70cd649 100755
--- a/y2017/control_loops/python/column.py
+++ b/y2017/control_loops/python/column.py
@@ -14,383 +14,413 @@
 FLAGS = gflags.FLAGS
 
 try:
-  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+    gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 except gflags.DuplicateFlagError:
-  pass
+    pass
 
 
 class ColumnController(control_loop.ControlLoop):
-  def __init__(self, name='Column'):
-    super(ColumnController, self).__init__(name)
-    self.turret = turret.Turret(name + 'Turret')
-    self.indexer = indexer.Indexer(name + 'Indexer')
 
-    # Control loop time step
-    self.dt = 0.005
+    def __init__(self, name='Column'):
+        super(ColumnController, self).__init__(name)
+        self.turret = turret.Turret(name + 'Turret')
+        self.indexer = indexer.Indexer(name + 'Indexer')
 
-    # State is [position_indexer,
-    #           velocity_indexer,
-    #           position_shooter,
-    #           velocity_shooter]
-    # Input is [volts_indexer, volts_shooter]
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 2)))
+        # Control loop time step
+        self.dt = 0.005
 
-    self.A_continuous[0, 0] = -(self.indexer.Kt / self.indexer.Kv / (self.indexer.J * self.indexer.resistance * self.indexer.G * self.indexer.G) +
-                                self.turret.Kt / self.turret.Kv / (self.indexer.J * self.turret.resistance * self.turret.G * self.turret.G))
-    self.A_continuous[0, 2] = self.turret.Kt / self.turret.Kv / (self.indexer.J * self.turret.resistance * self.turret.G * self.turret.G)
-    self.B_continuous[0, 0] = self.indexer.Kt / (self.indexer.J * self.indexer.resistance * self.indexer.G)
-    self.B_continuous[0, 1] = -self.turret.Kt / (self.indexer.J * self.turret.resistance * self.turret.G)
+        # State is [position_indexer,
+        #           velocity_indexer,
+        #           position_shooter,
+        #           velocity_shooter]
+        # Input is [volts_indexer, volts_shooter]
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 2)))
 
-    self.A_continuous[1, 2] = 1
+        self.A_continuous[0, 0] = -(
+            self.indexer.Kt / self.indexer.Kv /
+            (self.indexer.J * self.indexer.resistance * self.indexer.G *
+             self.indexer.G) + self.turret.Kt / self.turret.Kv /
+            (self.indexer.J * self.turret.resistance * self.turret.G *
+             self.turret.G))
+        self.A_continuous[0, 2] = self.turret.Kt / self.turret.Kv / (
+            self.indexer.J * self.turret.resistance * self.turret.G *
+            self.turret.G)
+        self.B_continuous[0, 0] = self.indexer.Kt / (
+            self.indexer.J * self.indexer.resistance * self.indexer.G)
+        self.B_continuous[0, 1] = -self.turret.Kt / (
+            self.indexer.J * self.turret.resistance * self.turret.G)
 
-    self.A_continuous[2, 0] = self.turret.Kt / self.turret.Kv / (self.turret.J * self.turret.resistance * self.turret.G * self.turret.G)
-    self.A_continuous[2, 2] = -self.turret.Kt / self.turret.Kv / (self.turret.J * self.turret.resistance * self.turret.G * self.turret.G)
+        self.A_continuous[1, 2] = 1
 
-    self.B_continuous[2, 1] = self.turret.Kt / (self.turret.J * self.turret.resistance * self.turret.G)
+        self.A_continuous[2, 0] = self.turret.Kt / self.turret.Kv / (
+            self.turret.J * self.turret.resistance * self.turret.G *
+            self.turret.G)
+        self.A_continuous[2, 2] = -self.turret.Kt / self.turret.Kv / (
+            self.turret.J * self.turret.resistance * self.turret.G *
+            self.turret.G)
 
-    self.C = numpy.matrix([[1, 0, 0], [0, 1, 0]])
-    self.D = numpy.matrix([[0, 0], [0, 0]])
+        self.B_continuous[2, 1] = self.turret.Kt / (
+            self.turret.J * self.turret.resistance * self.turret.G)
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C = numpy.matrix([[1, 0, 0], [0, 1, 0]])
+        self.D = numpy.matrix([[0, 0], [0, 0]])
 
-    q_indexer_vel = 13.0
-    q_pos = 0.05
-    q_vel = 0.8
-    self.Q = numpy.matrix([[(1.0 / (q_indexer_vel ** 2.0)), 0.0, 0.0],
-                           [0.0, (1.0 / (q_pos ** 2.0)), 0.0],
-                           [0.0, 0.0, (1.0 / (q_vel ** 2.0))]])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0],
-                           [0.0, (1.0 / (12.0 ** 2.0))]])
-    self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+        q_indexer_vel = 13.0
+        q_pos = 0.05
+        q_vel = 0.8
+        self.Q = numpy.matrix([[(1.0 / (q_indexer_vel**2.0)), 0.0, 0.0],
+                               [0.0, (1.0 / (q_pos**2.0)), 0.0],
+                               [0.0, 0.0, (1.0 / (q_vel**2.0))]])
 
-    glog.debug('Controller poles are ' + repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+        self.R = numpy.matrix([[(1.0 / (12.0**2.0)), 0.0],
+                               [0.0, (1.0 / (12.0**2.0))]])
+        self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
 
-    q_vel_indexer_ff = 0.000005
-    q_pos_ff = 0.0000005
-    q_vel_ff = 0.00008
-    self.Qff = numpy.matrix([[(1.0 / (q_vel_indexer_ff ** 2.0)), 0.0, 0.0],
-                             [0.0, (1.0 / (q_pos_ff ** 2.0)), 0.0],
-                             [0.0, 0.0, (1.0 / (q_vel_ff ** 2.0))]])
+        glog.debug('Controller poles are ' +
+                   repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
 
-    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+        q_vel_indexer_ff = 0.000005
+        q_pos_ff = 0.0000005
+        q_vel_ff = 0.00008
+        self.Qff = numpy.matrix([[(1.0 / (q_vel_indexer_ff**2.0)), 0.0, 0.0],
+                                 [0.0, (1.0 / (q_pos_ff**2.0)), 0.0],
+                                 [0.0, 0.0, (1.0 / (q_vel_ff**2.0))]])
 
-    self.U_max = numpy.matrix([[12.0], [12.0]])
-    self.U_min = numpy.matrix([[-12.0], [-12.0]])
+        self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
 
-    self.InitializeState()
+        self.U_max = numpy.matrix([[12.0], [12.0]])
+        self.U_min = numpy.matrix([[-12.0], [-12.0]])
+
+        self.InitializeState()
 
 
 class Column(ColumnController):
-  def __init__(self, name='Column', disable_indexer=False):
-    super(Column, self).__init__(name)
-    A_continuous = numpy.matrix(numpy.zeros((4, 4)))
-    B_continuous = numpy.matrix(numpy.zeros((4, 2)))
 
-    A_continuous[0, 1] = 1
-    A_continuous[1:, 1:] = self.A_continuous
-    B_continuous[1:, :] = self.B_continuous
+    def __init__(self, name='Column', disable_indexer=False):
+        super(Column, self).__init__(name)
+        A_continuous = numpy.matrix(numpy.zeros((4, 4)))
+        B_continuous = numpy.matrix(numpy.zeros((4, 2)))
 
-    self.A_continuous = A_continuous
-    self.B_continuous = B_continuous
+        A_continuous[0, 1] = 1
+        A_continuous[1:, 1:] = self.A_continuous
+        B_continuous[1:, :] = self.B_continuous
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.A_continuous = A_continuous
+        self.B_continuous = B_continuous
 
-    self.C = numpy.matrix([[1, 0, 0, 0], [-1, 0, 1, 0]])
-    self.D = numpy.matrix([[0, 0], [0, 0]])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    orig_K = self.K
-    self.K = numpy.matrix(numpy.zeros((2, 4)))
-    self.K[:, 1:] = orig_K
+        self.C = numpy.matrix([[1, 0, 0, 0], [-1, 0, 1, 0]])
+        self.D = numpy.matrix([[0, 0], [0, 0]])
 
-    glog.debug('K is ' + repr(self.K))
-    # TODO(austin): Do we want to damp velocity out or not when disabled?
-    #if disable_indexer:
-    #  self.K[0, 1] = 0.0
-    #  self.K[1, 1] = 0.0
+        orig_K = self.K
+        self.K = numpy.matrix(numpy.zeros((2, 4)))
+        self.K[:, 1:] = orig_K
 
-    orig_Kff = self.Kff
-    self.Kff = numpy.matrix(numpy.zeros((2, 4)))
-    self.Kff[:, 1:] = orig_Kff
+        glog.debug('K is ' + repr(self.K))
+        # TODO(austin): Do we want to damp velocity out or not when disabled?
+        #if disable_indexer:
+        #  self.K[0, 1] = 0.0
+        #  self.K[1, 1] = 0.0
 
-    q_pos = 0.12
-    q_vel = 2.00
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0],
-                           [0.0, (q_vel ** 2.0), 0.0, 0.0],
-                           [0.0, 0.0, (q_pos ** 2.0), 0.0],
-                           [0.0, 0.0, 0.0, (q_vel ** 2.0)]])
+        orig_Kff = self.Kff
+        self.Kff = numpy.matrix(numpy.zeros((2, 4)))
+        self.Kff[:, 1:] = orig_Kff
 
-    r_pos = 0.05
-    self.R = numpy.matrix([[(r_pos ** 2.0), 0.0],
-                           [0.0, (r_pos ** 2.0)]])
+        q_pos = 0.12
+        q_vel = 2.00
+        self.Q = numpy.matrix([[(q_pos**2.0), 0.0, 0.0, 0.0],
+                               [0.0, (q_vel**2.0), 0.0, 0.0],
+                               [0.0, 0.0, (q_pos**2.0), 0.0],
+                               [0.0, 0.0, 0.0, (q_vel**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        r_pos = 0.05
+        self.R = numpy.matrix([[(r_pos**2.0), 0.0], [0.0, (r_pos**2.0)]])
 
-    self.InitializeState()
+        self.KalmanGain, self.Q_steady = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.L = self.A * self.KalmanGain
+
+        self.InitializeState()
 
 
 class IntegralColumn(Column):
-  def __init__(self, name='IntegralColumn', voltage_error_noise=None,
-               disable_indexer=False):
-    super(IntegralColumn, self).__init__(name)
 
-    A_continuous = numpy.matrix(numpy.zeros((6, 6)))
-    A_continuous[0:4, 0:4] = self.A_continuous
-    A_continuous[0:4:, 4:6] = self.B_continuous
+    def __init__(self,
+                 name='IntegralColumn',
+                 voltage_error_noise=None,
+                 disable_indexer=False):
+        super(IntegralColumn, self).__init__(name)
 
-    B_continuous = numpy.matrix(numpy.zeros((6, 2)))
-    B_continuous[0:4, :] = self.B_continuous
+        A_continuous = numpy.matrix(numpy.zeros((6, 6)))
+        A_continuous[0:4, 0:4] = self.A_continuous
+        A_continuous[0:4:, 4:6] = self.B_continuous
 
-    self.A_continuous = A_continuous
-    self.B_continuous = B_continuous
+        B_continuous = numpy.matrix(numpy.zeros((6, 2)))
+        B_continuous[0:4, :] = self.B_continuous
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.A_continuous = A_continuous
+        self.B_continuous = B_continuous
 
-    C = numpy.matrix(numpy.zeros((2, 6)))
-    C[0:2, 0:4] = self.C
-    self.C = C
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.D = numpy.matrix([[0, 0], [0, 0]])
+        C = numpy.matrix(numpy.zeros((2, 6)))
+        C[0:2, 0:4] = self.C
+        self.C = C
 
-    orig_K = self.K
-    self.K = numpy.matrix(numpy.zeros((2, 6)))
-    self.K[:, 0:4] = orig_K
+        self.D = numpy.matrix([[0, 0], [0, 0]])
 
-    # TODO(austin): I'm not certain this is ideal.  If someone spins the bottom
-    # at a constant rate, we'll learn a voltage offset.  That should translate
-    # directly to a voltage on the turret to hold it steady.  I'm also not
-    # convinced we care that much.  If the indexer is off, it'll stop rather
-    # quickly anyways, so this is mostly a moot point.
-    if not disable_indexer:
-      self.K[0, 4] = 1
-    self.K[1, 5] = 1
+        orig_K = self.K
+        self.K = numpy.matrix(numpy.zeros((2, 6)))
+        self.K[:, 0:4] = orig_K
 
-    orig_Kff = self.Kff
-    self.Kff = numpy.matrix(numpy.zeros((2, 6)))
-    self.Kff[:, 0:4] = orig_Kff
+        # TODO(austin): I'm not certain this is ideal.  If someone spins the bottom
+        # at a constant rate, we'll learn a voltage offset.  That should translate
+        # directly to a voltage on the turret to hold it steady.  I'm also not
+        # convinced we care that much.  If the indexer is off, it'll stop rather
+        # quickly anyways, so this is mostly a moot point.
+        if not disable_indexer:
+            self.K[0, 4] = 1
+        self.K[1, 5] = 1
 
-    q_pos = 0.40
-    q_vel = 2.00
-    q_voltage = 8.0
-    if voltage_error_noise is not None:
-      q_voltage = voltage_error_noise
+        orig_Kff = self.Kff
+        self.Kff = numpy.matrix(numpy.zeros((2, 6)))
+        self.Kff[:, 0:4] = orig_Kff
 
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0],
-                           [0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0, 0.0],
-                           [0.0, 0.0, (q_pos ** 2.0), 0.0, 0.0, 0.0],
-                           [0.0, 0.0, 0.0, (q_vel ** 2.0), 0.0, 0.0],
-                           [0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0],
-                           [0.0, 0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0)]])
+        q_pos = 0.40
+        q_vel = 2.00
+        q_voltage = 8.0
+        if voltage_error_noise is not None:
+            q_voltage = voltage_error_noise
 
-    r_pos = 0.05
-    self.R = numpy.matrix([[(r_pos ** 2.0), 0.0],
-                           [0.0, (r_pos ** 2.0)]])
+        self.Q = numpy.matrix([[(q_pos**2.0), 0.0, 0.0, 0.0, 0.0, 0.0],
+                               [0.0, (q_vel**2.0), 0.0, 0.0, 0.0, 0.0],
+                               [0.0, 0.0, (q_pos**2.0), 0.0, 0.0, 0.0],
+                               [0.0, 0.0, 0.0, (q_vel**2.0), 0.0, 0.0],
+                               [0.0, 0.0, 0.0, 0.0, (q_voltage**2.0), 0.0],
+                               [0.0, 0.0, 0.0, 0.0, 0.0, (q_voltage**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        r_pos = 0.05
+        self.R = numpy.matrix([[(r_pos**2.0), 0.0], [0.0, (r_pos**2.0)]])
 
-    self.InitializeState()
+        self.KalmanGain, self.Q_steady = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.L = self.A * self.KalmanGain
+
+        self.InitializeState()
 
 
 class ScenarioPlotter(object):
-  def __init__(self):
-    # Various lists for graphing things.
-    self.t = []
-    self.xi = []
-    self.xt = []
-    self.vi = []
-    self.vt = []
-    self.ai = []
-    self.at = []
-    self.x_hat = []
-    self.ui = []
-    self.ut = []
-    self.ui_fb = []
-    self.ut_fb = []
-    self.offseti = []
-    self.offsett = []
-    self.turret_error = []
 
-  def run_test(self, column, end_goal,
-             controller_column,
-             observer_column=None,
-             iterations=200):
-    """Runs the column plant with an initial condition and goal.
+    def __init__(self):
+        # Various lists for graphing things.
+        self.t = []
+        self.xi = []
+        self.xt = []
+        self.vi = []
+        self.vt = []
+        self.ai = []
+        self.at = []
+        self.x_hat = []
+        self.ui = []
+        self.ut = []
+        self.ui_fb = []
+        self.ut_fb = []
+        self.offseti = []
+        self.offsett = []
+        self.turret_error = []
 
-      Args:
-        column: column object to use.
-        end_goal: end_goal state.
-        controller_column: Intake object to get K from, or None if we should
-            use column.
-        observer_column: Intake object to use for the observer, or None if we should
-            use the actual state.
-        iterations: Number of timesteps to run the model for.
-    """
+    def run_test(self,
+                 column,
+                 end_goal,
+                 controller_column,
+                 observer_column=None,
+                 iterations=200):
+        """Runs the column plant with an initial condition and goal.
 
-    if controller_column is None:
-      controller_column = column
+        Args:
+            column: column object to use.
+            end_goal: end_goal state.
+            controller_column: Intake object to get K from, or None if we should
+                use column.
+            observer_column: Intake object to use for the observer, or None if we should
+                use the actual state.
+            iterations: Number of timesteps to run the model for.
+        """
 
-    vbat = 12.0
+        if controller_column is None:
+            controller_column = column
 
-    if self.t:
-      initial_t = self.t[-1] + column.dt
-    else:
-      initial_t = 0
+        vbat = 12.0
 
-    goal = numpy.concatenate((column.X, numpy.matrix(numpy.zeros((2, 1)))), axis=0)
+        if self.t:
+            initial_t = self.t[-1] + column.dt
+        else:
+            initial_t = 0
 
-    profile = TrapezoidProfile(column.dt)
-    profile.set_maximum_acceleration(10.0)
-    profile.set_maximum_velocity(3.0)
-    profile.SetGoal(goal[2, 0])
+        goal = numpy.concatenate((column.X, numpy.matrix(numpy.zeros((2, 1)))),
+                                 axis=0)
 
-    U_last = numpy.matrix(numpy.zeros((2, 1)))
-    for i in xrange(iterations):
-      observer_column.Y = column.Y
-      observer_column.CorrectObserver(U_last)
+        profile = TrapezoidProfile(column.dt)
+        profile.set_maximum_acceleration(10.0)
+        profile.set_maximum_velocity(3.0)
+        profile.SetGoal(goal[2, 0])
 
-      self.offseti.append(observer_column.X_hat[4, 0])
-      self.offsett.append(observer_column.X_hat[5, 0])
-      self.x_hat.append(observer_column.X_hat[0, 0])
+        U_last = numpy.matrix(numpy.zeros((2, 1)))
+        for i in xrange(iterations):
+            observer_column.Y = column.Y
+            observer_column.CorrectObserver(U_last)
 
-      next_goal = numpy.concatenate(
-          (end_goal[0:2, :],
-           profile.Update(end_goal[2, 0], end_goal[3, 0]),
-           end_goal[4:6, :]),
-          axis=0)
+            self.offseti.append(observer_column.X_hat[4, 0])
+            self.offsett.append(observer_column.X_hat[5, 0])
+            self.x_hat.append(observer_column.X_hat[0, 0])
 
-      ff_U = controller_column.Kff * (next_goal - observer_column.A * goal)
-      fb_U = controller_column.K * (goal - observer_column.X_hat)
-      self.turret_error.append((goal[2, 0] - column.X[2, 0]) * 100.0)
-      self.ui_fb.append(fb_U[0, 0])
-      self.ut_fb.append(fb_U[1, 0])
+            next_goal = numpy.concatenate(
+                (end_goal[0:2, :], profile.Update(
+                    end_goal[2, 0], end_goal[3, 0]), end_goal[4:6, :]),
+                axis=0)
 
-      U_uncapped = ff_U + fb_U
+            ff_U = controller_column.Kff * (
+                next_goal - observer_column.A * goal)
+            fb_U = controller_column.K * (goal - observer_column.X_hat)
+            self.turret_error.append((goal[2, 0] - column.X[2, 0]) * 100.0)
+            self.ui_fb.append(fb_U[0, 0])
+            self.ut_fb.append(fb_U[1, 0])
 
-      U = U_uncapped.copy()
-      U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
-      U[1, 0] = numpy.clip(U[1, 0], -vbat, vbat)
-      self.xi.append(column.X[0, 0])
-      self.xt.append(column.X[2, 0])
+            U_uncapped = ff_U + fb_U
 
-      if self.vi:
-        last_vi = self.vi[-1]
-      else:
-        last_vi = 0
-      if self.vt:
-        last_vt = self.vt[-1]
-      else:
-        last_vt = 0
+            U = U_uncapped.copy()
+            U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+            U[1, 0] = numpy.clip(U[1, 0], -vbat, vbat)
+            self.xi.append(column.X[0, 0])
+            self.xt.append(column.X[2, 0])
 
-      self.vi.append(column.X[1, 0])
-      self.vt.append(column.X[3, 0])
-      self.ai.append((self.vi[-1] - last_vi) / column.dt)
-      self.at.append((self.vt[-1] - last_vt) / column.dt)
+            if self.vi:
+                last_vi = self.vi[-1]
+            else:
+                last_vi = 0
+            if self.vt:
+                last_vt = self.vt[-1]
+            else:
+                last_vt = 0
 
-      offset = 0.0
-      if i > 100:
-        offset = 1.0
-      column.Update(U + numpy.matrix([[0.0], [offset]]))
+            self.vi.append(column.X[1, 0])
+            self.vt.append(column.X[3, 0])
+            self.ai.append((self.vi[-1] - last_vi) / column.dt)
+            self.at.append((self.vt[-1] - last_vt) / column.dt)
 
-      observer_column.PredictObserver(U)
+            offset = 0.0
+            if i > 100:
+                offset = 1.0
+            column.Update(U + numpy.matrix([[0.0], [offset]]))
 
-      self.t.append(initial_t + i * column.dt)
-      self.ui.append(U[0, 0])
-      self.ut.append(U[1, 0])
+            observer_column.PredictObserver(U)
 
-      ff_U -= U_uncapped - U
-      goal = controller_column.A * goal + controller_column.B * ff_U
+            self.t.append(initial_t + i * column.dt)
+            self.ui.append(U[0, 0])
+            self.ut.append(U[1, 0])
 
-      if U[1, 0] != U_uncapped[1, 0]:
-        profile.MoveCurrentState(
-            numpy.matrix([[goal[2, 0]], [goal[3, 0]]]))
+            ff_U -= U_uncapped - U
+            goal = controller_column.A * goal + controller_column.B * ff_U
 
-    glog.debug('Time: %f', self.t[-1])
-    glog.debug('goal_error %s', repr((end_goal - goal).T))
-    glog.debug('error %s', repr((observer_column.X_hat - end_goal).T))
+            if U[1, 0] != U_uncapped[1, 0]:
+                profile.MoveCurrentState(
+                    numpy.matrix([[goal[2, 0]], [goal[3, 0]]]))
 
-  def Plot(self):
-    pylab.subplot(3, 1, 1)
-    pylab.plot(self.t, self.xi, label='x_indexer')
-    pylab.plot(self.t, self.xt, label='x_turret')
-    pylab.plot(self.t, self.x_hat, label='x_hat')
-    pylab.plot(self.t, self.turret_error, label='turret_error * 100')
-    pylab.legend()
+        glog.debug('Time: %f', self.t[-1])
+        glog.debug('goal_error %s', repr((end_goal - goal).T))
+        glog.debug('error %s', repr((observer_column.X_hat - end_goal).T))
 
-    pylab.subplot(3, 1, 2)
-    pylab.plot(self.t, self.ui, label='u_indexer')
-    pylab.plot(self.t, self.ui_fb, label='u_indexer_fb')
-    pylab.plot(self.t, self.ut, label='u_turret')
-    pylab.plot(self.t, self.ut_fb, label='u_turret_fb')
-    pylab.plot(self.t, self.offseti, label='voltage_offset_indexer')
-    pylab.plot(self.t, self.offsett, label='voltage_offset_turret')
-    pylab.legend()
+    def Plot(self):
+        pylab.subplot(3, 1, 1)
+        pylab.plot(self.t, self.xi, label='x_indexer')
+        pylab.plot(self.t, self.xt, label='x_turret')
+        pylab.plot(self.t, self.x_hat, label='x_hat')
+        pylab.plot(self.t, self.turret_error, label='turret_error * 100')
+        pylab.legend()
 
-    pylab.subplot(3, 1, 3)
-    pylab.plot(self.t, self.ai, label='a_indexer')
-    pylab.plot(self.t, self.at, label='a_turret')
-    pylab.plot(self.t, self.vi, label='v_indexer')
-    pylab.plot(self.t, self.vt, label='v_turret')
-    pylab.legend()
+        pylab.subplot(3, 1, 2)
+        pylab.plot(self.t, self.ui, label='u_indexer')
+        pylab.plot(self.t, self.ui_fb, label='u_indexer_fb')
+        pylab.plot(self.t, self.ut, label='u_turret')
+        pylab.plot(self.t, self.ut_fb, label='u_turret_fb')
+        pylab.plot(self.t, self.offseti, label='voltage_offset_indexer')
+        pylab.plot(self.t, self.offsett, label='voltage_offset_turret')
+        pylab.legend()
 
-    pylab.show()
+        pylab.subplot(3, 1, 3)
+        pylab.plot(self.t, self.ai, label='a_indexer')
+        pylab.plot(self.t, self.at, label='a_turret')
+        pylab.plot(self.t, self.vi, label='v_indexer')
+        pylab.plot(self.t, self.vt, label='v_turret')
+        pylab.legend()
+
+        pylab.show()
 
 
 def main(argv):
-  scenario_plotter = ScenarioPlotter()
+    scenario_plotter = ScenarioPlotter()
 
-  column = Column()
-  column_controller = IntegralColumn()
-  observer_column = IntegralColumn()
+    column = Column()
+    column_controller = IntegralColumn()
+    observer_column = IntegralColumn()
 
-  initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
-  R = numpy.matrix([[0.0], [10.0], [5.0], [0.0], [0.0], [0.0]])
-  scenario_plotter.run_test(column, end_goal=R, controller_column=column_controller,
-                            observer_column=observer_column, iterations=400)
+    initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
+    R = numpy.matrix([[0.0], [10.0], [5.0], [0.0], [0.0], [0.0]])
+    scenario_plotter.run_test(
+        column,
+        end_goal=R,
+        controller_column=column_controller,
+        observer_column=observer_column,
+        iterations=400)
 
-  if FLAGS.plot:
-    scenario_plotter.Plot()
+    if FLAGS.plot:
+        scenario_plotter.Plot()
 
-  if len(argv) != 7:
-    glog.fatal('Expected .h file name and .cc file names')
-  else:
-    namespaces = ['y2017', 'control_loops', 'superstructure', 'column']
-    column = Column('Column')
-    loop_writer = control_loop.ControlLoopWriter('Column', [column],
-                                                 namespaces=namespaces)
-    loop_writer.AddConstant(control_loop.Constant(
-        'kIndexerFreeSpeed', '%f', column.indexer.free_speed))
-    loop_writer.AddConstant(control_loop.Constant(
-        'kIndexerOutputRatio', '%f', column.indexer.G))
-    loop_writer.AddConstant(control_loop.Constant(
-        'kTurretFreeSpeed', '%f', column.turret.free_speed))
-    loop_writer.AddConstant(control_loop.Constant(
-        'kTurretOutputRatio', '%f', column.turret.G))
-    loop_writer.Write(argv[1], argv[2])
+    if len(argv) != 7:
+        glog.fatal('Expected .h file name and .cc file names')
+    else:
+        namespaces = ['y2017', 'control_loops', 'superstructure', 'column']
+        column = Column('Column')
+        loop_writer = control_loop.ControlLoopWriter(
+            'Column', [column], namespaces=namespaces)
+        loop_writer.AddConstant(
+            control_loop.Constant('kIndexerFreeSpeed', '%f',
+                                  column.indexer.free_speed))
+        loop_writer.AddConstant(
+            control_loop.Constant('kIndexerOutputRatio', '%f',
+                                  column.indexer.G))
+        loop_writer.AddConstant(
+            control_loop.Constant('kTurretFreeSpeed', '%f',
+                                  column.turret.free_speed))
+        loop_writer.AddConstant(
+            control_loop.Constant('kTurretOutputRatio', '%f', column.turret.G))
+        loop_writer.Write(argv[1], argv[2])
 
-    # IntegralColumn controller 1 will disable the indexer.
-    integral_column = IntegralColumn('IntegralColumn')
-    disabled_integral_column = IntegralColumn('DisabledIntegralColumn',
-                                              disable_indexer=True)
-    integral_loop_writer = control_loop.ControlLoopWriter(
-        'IntegralColumn', [integral_column, disabled_integral_column],
-        namespaces=namespaces)
-    integral_loop_writer.Write(argv[3], argv[4])
+        # IntegralColumn controller 1 will disable the indexer.
+        integral_column = IntegralColumn('IntegralColumn')
+        disabled_integral_column = IntegralColumn(
+            'DisabledIntegralColumn', disable_indexer=True)
+        integral_loop_writer = control_loop.ControlLoopWriter(
+            'IntegralColumn', [integral_column, disabled_integral_column],
+            namespaces=namespaces)
+        integral_loop_writer.Write(argv[3], argv[4])
 
-    stuck_integral_column = IntegralColumn('StuckIntegralColumn', voltage_error_noise=8.0)
-    stuck_integral_loop_writer = control_loop.ControlLoopWriter(
-        'StuckIntegralColumn', [stuck_integral_column], namespaces=namespaces)
-    stuck_integral_loop_writer.Write(argv[5], argv[6])
+        stuck_integral_column = IntegralColumn(
+            'StuckIntegralColumn', voltage_error_noise=8.0)
+        stuck_integral_loop_writer = control_loop.ControlLoopWriter(
+            'StuckIntegralColumn', [stuck_integral_column],
+            namespaces=namespaces)
+        stuck_integral_loop_writer.Write(argv[5], argv[6])
 
 
 if __name__ == '__main__':
-  argv = FLAGS(sys.argv)
-  glog.init()
-  sys.exit(main(argv))
+    argv = FLAGS(sys.argv)
+    glog.init()
+    sys.exit(main(argv))
diff --git a/y2017/control_loops/python/hood.py b/y2017/control_loops/python/hood.py
index fb5aa4e..58bd15e 100755
--- a/y2017/control_loops/python/hood.py
+++ b/y2017/control_loops/python/hood.py
@@ -12,329 +12,339 @@
 FLAGS = gflags.FLAGS
 
 try:
-  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+    gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 except gflags.DuplicateFlagError:
-  pass
+    pass
+
 
 class Hood(control_loop.ControlLoop):
-  def __init__(self, name='Hood'):
-    super(Hood, self).__init__(name)
-    # Stall Torque in N m
-    self.stall_torque = 0.43
-    # Stall Current in Amps
-    self.stall_current = 53.0
-    self.free_speed_rpm = 13180.0
-    # Free Speed in rotations/second.
-    self.free_speed = self.free_speed_rpm / 60
-    # Free Current in Amps
-    self.free_current = 1.8
 
-    # Resistance of the motor
-    self.R = 12.0 / self.stall_current
-    # Motor velocity constant
-    self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
-               (12.0 - self.R * self.free_current))
-    # Torque constant
-    self.Kt = self.stall_torque / self.stall_current
-    # First axle gear ratio off the motor
-    self.G1 = (12.0 / 60.0)
-    # Second axle gear ratio off the motor
-    self.G2 = self.G1 * (14.0 / 36.0)
-    # Third axle gear ratio off the motor
-    self.G3 = self.G2 * (14.0 / 36.0)
-    # The last gear reduction (encoder -> hood angle)
-    self.last_G = (20.0 / 345.0)
-    # Gear ratio
-    self.G = (12.0 / 60.0) * (14.0 / 36.0) * (14.0 / 36.0) * self.last_G
+    def __init__(self, name='Hood'):
+        super(Hood, self).__init__(name)
+        # Stall Torque in N m
+        self.stall_torque = 0.43
+        # Stall Current in Amps
+        self.stall_current = 53.0
+        self.free_speed_rpm = 13180.0
+        # Free Speed in rotations/second.
+        self.free_speed = self.free_speed_rpm / 60
+        # Free Current in Amps
+        self.free_current = 1.8
 
-    # 36 tooth gear inertia in kg * m^2
-    self.big_gear_inertia = 0.5 * 0.039 * ((36.0 / 40.0 * 0.025) ** 2)
+        # Resistance of the motor
+        self.R = 12.0 / self.stall_current
+        # Motor velocity constant
+        self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
+                   (12.0 - self.R * self.free_current))
+        # Torque constant
+        self.Kt = self.stall_torque / self.stall_current
+        # First axle gear ratio off the motor
+        self.G1 = (12.0 / 60.0)
+        # Second axle gear ratio off the motor
+        self.G2 = self.G1 * (14.0 / 36.0)
+        # Third axle gear ratio off the motor
+        self.G3 = self.G2 * (14.0 / 36.0)
+        # The last gear reduction (encoder -> hood angle)
+        self.last_G = (20.0 / 345.0)
+        # Gear ratio
+        self.G = (12.0 / 60.0) * (14.0 / 36.0) * (14.0 / 36.0) * self.last_G
 
-    # Motor inertia in kg * m^2
-    self.motor_inertia = 0.000006
-    glog.debug(self.big_gear_inertia)
+        # 36 tooth gear inertia in kg * m^2
+        self.big_gear_inertia = 0.5 * 0.039 * ((36.0 / 40.0 * 0.025)**2)
 
-    # Moment of inertia, measured in CAD.
-    # Extra mass to compensate for friction is added on.
-    self.J = 0.08 + 2.3 + \
-             self.big_gear_inertia * ((self.G1 / self.G) ** 2) + \
-             self.big_gear_inertia * ((self.G2 / self.G) ** 2) + \
-             self.motor_inertia * ((1.0 / self.G) ** 2.0)
-    glog.debug('J effective %f', self.J)
+        # Motor inertia in kg * m^2
+        self.motor_inertia = 0.000006
+        glog.debug(self.big_gear_inertia)
 
-    # Control loop time step
-    self.dt = 0.005
+        # Moment of inertia, measured in CAD.
+        # Extra mass to compensate for friction is added on.
+        self.J = 0.08 + 2.3 + \
+                 self.big_gear_inertia * ((self.G1 / self.G) ** 2) + \
+                 self.big_gear_inertia * ((self.G2 / self.G) ** 2) + \
+                 self.motor_inertia * ((1.0 / self.G) ** 2.0)
+        glog.debug('J effective %f', self.J)
 
-    # State is [position, velocity]
-    # Input is [Voltage]
+        # Control loop time step
+        self.dt = 0.005
 
-    C1 = self.Kt / (self.R * self.J * self.Kv * self.G * self.G)
-    C2 = self.Kt / (self.J * self.R * self.G)
+        # State is [position, velocity]
+        # Input is [Voltage]
 
-    self.A_continuous = numpy.matrix(
-        [[0, 1],
-         [0, -C1]])
+        C1 = self.Kt / (self.R * self.J * self.Kv * self.G * self.G)
+        C2 = self.Kt / (self.J * self.R * self.G)
 
-    # Start with the unmodified input
-    self.B_continuous = numpy.matrix(
-        [[0],
-         [C2]])
+        self.A_continuous = numpy.matrix([[0, 1], [0, -C1]])
 
-    self.C = numpy.matrix([[1, 0]])
-    self.D = numpy.matrix([[0]])
+        # Start with the unmodified input
+        self.B_continuous = numpy.matrix([[0], [C2]])
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C = numpy.matrix([[1, 0]])
+        self.D = numpy.matrix([[0]])
 
-    controllability = controls.ctrb(self.A, self.B)
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    glog.debug('Free speed is %f',
-               -self.B_continuous[1, 0] / self.A_continuous[1, 1] * 12.0)
-    glog.debug(repr(self.A_continuous))
+        controllability = controls.ctrb(self.A, self.B)
 
-    # Calculate the LQR controller gain
-    q_pos = 0.015
-    q_vel = 0.40
-    self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0],
-                           [0.0, (1.0 / (q_vel ** 2.0))]])
+        glog.debug('Free speed is %f',
+                   -self.B_continuous[1, 0] / self.A_continuous[1, 1] * 12.0)
+        glog.debug(repr(self.A_continuous))
 
-    self.R = numpy.matrix([[(5.0 / (12.0 ** 2.0))]])
-    self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+        # Calculate the LQR controller gain
+        q_pos = 0.015
+        q_vel = 0.40
+        self.Q = numpy.matrix([[(1.0 / (q_pos**2.0)), 0.0],
+                               [0.0, (1.0 / (q_vel**2.0))]])
 
-    # Calculate the feed forwards gain.
-    q_pos_ff = 0.005
-    q_vel_ff = 1.0
-    self.Qff = numpy.matrix([[(1.0 / (q_pos_ff ** 2.0)), 0.0],
-                             [0.0, (1.0 / (q_vel_ff ** 2.0))]])
+        self.R = numpy.matrix([[(5.0 / (12.0**2.0))]])
+        self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
 
-    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+        # Calculate the feed forwards gain.
+        q_pos_ff = 0.005
+        q_vel_ff = 1.0
+        self.Qff = numpy.matrix([[(1.0 / (q_pos_ff**2.0)), 0.0],
+                                 [0.0, (1.0 / (q_vel_ff**2.0))]])
 
-    glog.debug('K %s', repr(self.K))
-    glog.debug('Poles are %s',
-               repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+        self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
 
-    q_pos = 0.10
-    q_vel = 1.65
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0],
-                           [0.0, (q_vel ** 2.0)]])
+        glog.debug('K %s', repr(self.K))
+        glog.debug('Poles are %s',
+                   repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
 
-    r_volts = 0.025
-    self.R = numpy.matrix([[(r_volts ** 2.0)]])
+        q_pos = 0.10
+        q_vel = 1.65
+        self.Q = numpy.matrix([[(q_pos**2.0), 0.0], [0.0, (q_vel**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        r_volts = 0.025
+        self.R = numpy.matrix([[(r_volts**2.0)]])
 
-    glog.debug('Kal %s', repr(self.KalmanGain))
-    self.L = self.A * self.KalmanGain
-    glog.debug('KalL is %s', repr(self.L))
+        self.KalmanGain, self.Q_steady = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
 
-    # The box formed by U_min and U_max must encompass all possible values,
-    # or else Austin's code gets angry.
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        glog.debug('Kal %s', repr(self.KalmanGain))
+        self.L = self.A * self.KalmanGain
+        glog.debug('KalL is %s', repr(self.L))
 
-    self.InitializeState()
+        # The box formed by U_min and U_max must encompass all possible values,
+        # or else Austin's code gets angry.
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
+
+        self.InitializeState()
+
 
 class IntegralHood(Hood):
-  def __init__(self, name='IntegralHood'):
-    super(IntegralHood, self).__init__(name=name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name='IntegralHood'):
+        super(IntegralHood, self).__init__(name=name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
-    self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
-    self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
+        self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
 
-    self.C_unaugmented = self.C
-    self.C = numpy.matrix(numpy.zeros((1, 3)))
-    self.C[0:1, 0:2] = self.C_unaugmented
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+        self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C_unaugmented = self.C
+        self.C = numpy.matrix(numpy.zeros((1, 3)))
+        self.C[0:1, 0:2] = self.C_unaugmented
 
-    q_pos = 0.01
-    q_vel = 4.0
-    q_voltage = 4.0
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
-                           [0.0, (q_vel ** 2.0), 0.0],
-                           [0.0, 0.0, (q_voltage ** 2.0)]])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    r_pos = 0.001
-    self.R = numpy.matrix([[(r_pos ** 2.0)]])
+        q_pos = 0.01
+        q_vel = 4.0
+        q_voltage = 4.0
+        self.Q = numpy.matrix([[(q_pos**2.0), 0.0, 0.0],
+                               [0.0, (q_vel**2.0), 0.0],
+                               [0.0, 0.0, (q_voltage**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        r_pos = 0.001
+        self.R = numpy.matrix([[(r_pos**2.0)]])
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 3)))
-    self.K[0, 0:2] = self.K_unaugmented
-    self.K[0, 2] = 1
+        self.KalmanGain, self.Q_steady = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.L = self.A * self.KalmanGain
 
-    self.Kff = numpy.concatenate((self.Kff, numpy.matrix(numpy.zeros((1, 1)))), axis=1)
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((1, 3)))
+        self.K[0, 0:2] = self.K_unaugmented
+        self.K[0, 2] = 1
 
-    self.InitializeState()
+        self.Kff = numpy.concatenate(
+            (self.Kff, numpy.matrix(numpy.zeros((1, 1)))), axis=1)
+
+        self.InitializeState()
+
 
 class ScenarioPlotter(object):
-  def __init__(self):
-    # Various lists for graphing things.
-    self.t = []
-    self.x = []
-    self.v = []
-    self.v_hat = []
-    self.a = []
-    self.x_hat = []
-    self.u = []
-    self.offset = []
 
-  def run_test(self, hood, end_goal,
-             controller_hood,
-             observer_hood=None,
-             iterations=200):
-    """Runs the hood plant with an initial condition and goal.
+    def __init__(self):
+        # Various lists for graphing things.
+        self.t = []
+        self.x = []
+        self.v = []
+        self.v_hat = []
+        self.a = []
+        self.x_hat = []
+        self.u = []
+        self.offset = []
 
-      Args:
-        hood: hood object to use.
-        end_goal: end_goal state.
-        controller_hood: Hood object to get K from, or None if we should
-            use hood.
-        observer_hood: Hood object to use for the observer, or None if we should
-            use the actual state.
-        iterations: Number of timesteps to run the model for.
-    """
+    def run_test(self,
+                 hood,
+                 end_goal,
+                 controller_hood,
+                 observer_hood=None,
+                 iterations=200):
+        """Runs the hood plant with an initial condition and goal.
 
-    if controller_hood is None:
-      controller_hood = hood
+        Args:
+            hood: hood object to use.
+            end_goal: end_goal state.
+            controller_hood: Hood object to get K from, or None if we should
+                use hood.
+            observer_hood: Hood object to use for the observer, or None if we should
+                use the actual state.
+            iterations: Number of timesteps to run the model for.
+        """
 
-    vbat = 12.0
+        if controller_hood is None:
+            controller_hood = hood
 
-    if self.t:
-      initial_t = self.t[-1] + hood.dt
-    else:
-      initial_t = 0
+        vbat = 12.0
 
-    goal = numpy.concatenate((hood.X, numpy.matrix(numpy.zeros((1, 1)))), axis=0)
+        if self.t:
+            initial_t = self.t[-1] + hood.dt
+        else:
+            initial_t = 0
 
-    profile = TrapezoidProfile(hood.dt)
-    profile.set_maximum_acceleration(10.0)
-    profile.set_maximum_velocity(1.0)
-    profile.SetGoal(goal[0, 0])
+        goal = numpy.concatenate((hood.X, numpy.matrix(numpy.zeros((1, 1)))),
+                                 axis=0)
 
-    U_last = numpy.matrix(numpy.zeros((1, 1)))
-    for i in xrange(iterations):
-      observer_hood.Y = hood.Y
-      observer_hood.CorrectObserver(U_last)
+        profile = TrapezoidProfile(hood.dt)
+        profile.set_maximum_acceleration(10.0)
+        profile.set_maximum_velocity(1.0)
+        profile.SetGoal(goal[0, 0])
 
-      self.offset.append(observer_hood.X_hat[2, 0])
-      self.x_hat.append(observer_hood.X_hat[0, 0])
+        U_last = numpy.matrix(numpy.zeros((1, 1)))
+        for i in xrange(iterations):
+            observer_hood.Y = hood.Y
+            observer_hood.CorrectObserver(U_last)
 
-      next_goal = numpy.concatenate(
-          (profile.Update(end_goal[0, 0], end_goal[1, 0]),
-           numpy.matrix(numpy.zeros((1, 1)))),
-          axis=0)
+            self.offset.append(observer_hood.X_hat[2, 0])
+            self.x_hat.append(observer_hood.X_hat[0, 0])
 
-      ff_U = controller_hood.Kff * (next_goal - observer_hood.A * goal)
+            next_goal = numpy.concatenate(
+                (profile.Update(end_goal[0, 0], end_goal[1, 0]),
+                 numpy.matrix(numpy.zeros((1, 1)))),
+                axis=0)
 
-      U_uncapped = controller_hood.K * (goal - observer_hood.X_hat) + ff_U
-      U = U_uncapped.copy()
-      U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
-      self.x.append(hood.X[0, 0])
+            ff_U = controller_hood.Kff * (next_goal - observer_hood.A * goal)
 
-      if self.v:
-        last_v = self.v[-1]
-      else:
-        last_v = 0
+            U_uncapped = controller_hood.K * (goal - observer_hood.X_hat) + ff_U
+            U = U_uncapped.copy()
+            U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+            self.x.append(hood.X[0, 0])
 
-      self.v.append(hood.X[1, 0])
-      self.a.append((self.v[-1] - last_v) / hood.dt)
-      self.v_hat.append(observer_hood.X_hat[1, 0])
+            if self.v:
+                last_v = self.v[-1]
+            else:
+                last_v = 0
 
-      offset = 0.0
-      if i > 100:
-        offset = 2.0
-      hood.Update(U + offset)
+            self.v.append(hood.X[1, 0])
+            self.a.append((self.v[-1] - last_v) / hood.dt)
+            self.v_hat.append(observer_hood.X_hat[1, 0])
 
-      observer_hood.PredictObserver(U)
+            offset = 0.0
+            if i > 100:
+                offset = 2.0
+            hood.Update(U + offset)
 
-      self.t.append(initial_t + i * hood.dt)
-      self.u.append(U[0, 0])
+            observer_hood.PredictObserver(U)
 
-      ff_U -= U_uncapped - U
-      goal = controller_hood.A * goal + controller_hood.B * ff_U
+            self.t.append(initial_t + i * hood.dt)
+            self.u.append(U[0, 0])
 
-      if U[0, 0] != U_uncapped[0, 0]:
-        profile.MoveCurrentState(
-            numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
+            ff_U -= U_uncapped - U
+            goal = controller_hood.A * goal + controller_hood.B * ff_U
 
-    glog.debug('Time: %f', self.t[-1])
-    glog.debug('goal_error %s', repr(end_goal - goal))
-    glog.debug('error %s', repr(observer_hood.X_hat - end_goal))
+            if U[0, 0] != U_uncapped[0, 0]:
+                profile.MoveCurrentState(
+                    numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
 
-  def Plot(self):
-    pylab.subplot(3, 1, 1)
-    pylab.plot(self.t, self.x, label='x')
-    pylab.plot(self.t, self.x_hat, label='x_hat')
-    pylab.plot(self.t, self.v, label='v')
-    pylab.plot(self.t, self.v_hat, label='v_hat')
-    pylab.legend()
+        glog.debug('Time: %f', self.t[-1])
+        glog.debug('goal_error %s', repr(end_goal - goal))
+        glog.debug('error %s', repr(observer_hood.X_hat - end_goal))
 
-    pylab.subplot(3, 1, 2)
-    pylab.plot(self.t, self.u, label='u')
-    pylab.plot(self.t, self.offset, label='voltage_offset')
-    pylab.legend()
+    def Plot(self):
+        pylab.subplot(3, 1, 1)
+        pylab.plot(self.t, self.x, label='x')
+        pylab.plot(self.t, self.x_hat, label='x_hat')
+        pylab.plot(self.t, self.v, label='v')
+        pylab.plot(self.t, self.v_hat, label='v_hat')
+        pylab.legend()
 
-    pylab.subplot(3, 1, 3)
-    pylab.plot(self.t, self.a, label='a')
-    pylab.legend()
+        pylab.subplot(3, 1, 2)
+        pylab.plot(self.t, self.u, label='u')
+        pylab.plot(self.t, self.offset, label='voltage_offset')
+        pylab.legend()
 
-    pylab.show()
+        pylab.subplot(3, 1, 3)
+        pylab.plot(self.t, self.a, label='a')
+        pylab.legend()
+
+        pylab.show()
 
 
 def main(argv):
 
-  scenario_plotter = ScenarioPlotter()
+    scenario_plotter = ScenarioPlotter()
 
-  hood = Hood()
-  hood_controller = IntegralHood()
-  observer_hood = IntegralHood()
+    hood = Hood()
+    hood_controller = IntegralHood()
+    observer_hood = IntegralHood()
 
-  # Test moving the hood with constant separation.
-  initial_X = numpy.matrix([[0.0], [0.0]])
-  R = numpy.matrix([[numpy.pi/4.0], [0.0], [0.0]])
-  scenario_plotter.run_test(hood, end_goal=R,
-                            controller_hood=hood_controller,
-                            observer_hood=observer_hood, iterations=200)
+    # Test moving the hood with constant separation.
+    initial_X = numpy.matrix([[0.0], [0.0]])
+    R = numpy.matrix([[numpy.pi / 4.0], [0.0], [0.0]])
+    scenario_plotter.run_test(
+        hood,
+        end_goal=R,
+        controller_hood=hood_controller,
+        observer_hood=observer_hood,
+        iterations=200)
 
-  if FLAGS.plot:
-    scenario_plotter.Plot()
+    if FLAGS.plot:
+        scenario_plotter.Plot()
 
-  # Write the generated constants out to a file.
-  if len(argv) != 5:
-    glog.fatal('Expected .h file name and .cc file name for the hood and integral hood.')
-  else:
-    namespaces = ['y2017', 'control_loops', 'superstructure', 'hood']
-    hood = Hood('Hood')
-    loop_writer = control_loop.ControlLoopWriter('Hood', [hood],
-                                                 namespaces=namespaces)
-    loop_writer.AddConstant(control_loop.Constant(
-        'kFreeSpeed', '%f', hood.free_speed))
-    loop_writer.AddConstant(control_loop.Constant(
-        'kOutputRatio', '%f', hood.G))
-    loop_writer.Write(argv[1], argv[2])
+    # Write the generated constants out to a file.
+    if len(argv) != 5:
+        glog.fatal(
+            'Expected .h file name and .cc file name for the hood and integral hood.'
+        )
+    else:
+        namespaces = ['y2017', 'control_loops', 'superstructure', 'hood']
+        hood = Hood('Hood')
+        loop_writer = control_loop.ControlLoopWriter(
+            'Hood', [hood], namespaces=namespaces)
+        loop_writer.AddConstant(
+            control_loop.Constant('kFreeSpeed', '%f', hood.free_speed))
+        loop_writer.AddConstant(
+            control_loop.Constant('kOutputRatio', '%f', hood.G))
+        loop_writer.Write(argv[1], argv[2])
 
-    integral_hood = IntegralHood('IntegralHood')
-    integral_loop_writer = control_loop.ControlLoopWriter('IntegralHood', [integral_hood],
-                                                          namespaces=namespaces)
-    integral_loop_writer.AddConstant(control_loop.Constant('kLastReduction', '%f',
-          integral_hood.last_G))
-    integral_loop_writer.Write(argv[3], argv[4])
+        integral_hood = IntegralHood('IntegralHood')
+        integral_loop_writer = control_loop.ControlLoopWriter(
+            'IntegralHood', [integral_hood], namespaces=namespaces)
+        integral_loop_writer.AddConstant(
+            control_loop.Constant('kLastReduction', '%f', integral_hood.last_G))
+        integral_loop_writer.Write(argv[3], argv[4])
 
 
 if __name__ == '__main__':
-  argv = FLAGS(sys.argv)
-  glog.init()
-  sys.exit(main(argv))
+    argv = FLAGS(sys.argv)
+    glog.init()
+    sys.exit(main(argv))
diff --git a/y2017/control_loops/python/shooter.py b/y2017/control_loops/python/shooter.py
index 1b0ff13..a825ff0 100755
--- a/y2017/control_loops/python/shooter.py
+++ b/y2017/control_loops/python/shooter.py
@@ -16,370 +16,388 @@
 
 
 def PlotDiff(list1, list2, time):
-  pylab.subplot(1, 1, 1)
-  pylab.plot(time, numpy.subtract(list1, list2), label='diff')
-  pylab.legend()
+    pylab.subplot(1, 1, 1)
+    pylab.plot(time, numpy.subtract(list1, list2), label='diff')
+    pylab.legend()
+
 
 class VelocityShooter(control_loop.HybridControlLoop):
-  def __init__(self, name='VelocityShooter'):
-    super(VelocityShooter, self).__init__(name)
-    # Number of motors
-    self.num_motors = 2.0
-    # Stall Torque in N m
-    self.stall_torque = 0.71 * self.num_motors
-    # Stall Current in Amps
-    self.stall_current = 134.0 * self.num_motors
-    # Free Speed in RPM
-    self.free_speed_rpm = 18730.0
-    # Free Speed in rotations/second.
-    self.free_speed = self.free_speed_rpm / 60.0
-    # Free Current in Amps
-    self.free_current = 0.7 * self.num_motors
-    # Moment of inertia of the shooter wheel in kg m^2
-    # 1400.6 grams/cm^2
-    # 1.407 *1e-4 kg m^2
-    self.J = 0.00120
-    # Resistance of the motor, divided by 2 to account for the 2 motors
-    self.R = 12.0 / self.stall_current
-    # Motor velocity constant
-    self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
-              (12.0 - self.R * self.free_current))
-    # Torque constant
-    self.Kt = self.stall_torque / self.stall_current
-    # Gear ratio
-    self.G = 12.0 / 36.0
-    # Control loop time step
-    self.dt = 0.00505
 
-    # State feedback matrices
-    # [angular velocity]
-    self.A_continuous = numpy.matrix(
-        [[-self.Kt / (self.Kv * self.J * self.G * self.G * self.R)]])
-    self.B_continuous = numpy.matrix(
-        [[self.Kt / (self.J * self.G * self.R)]])
-    self.C = numpy.matrix([[1]])
-    self.D = numpy.matrix([[0]])
+    def __init__(self, name='VelocityShooter'):
+        super(VelocityShooter, self).__init__(name)
+        # Number of motors
+        self.num_motors = 2.0
+        # Stall Torque in N m
+        self.stall_torque = 0.71 * self.num_motors
+        # Stall Current in Amps
+        self.stall_current = 134.0 * self.num_motors
+        # Free Speed in RPM
+        self.free_speed_rpm = 18730.0
+        # Free Speed in rotations/second.
+        self.free_speed = self.free_speed_rpm / 60.0
+        # Free Current in Amps
+        self.free_current = 0.7 * self.num_motors
+        # Moment of inertia of the shooter wheel in kg m^2
+        # 1400.6 grams/cm^2
+        # 1.407 *1e-4 kg m^2
+        self.J = 0.00120
+        # Resistance of the motor, divided by 2 to account for the 2 motors
+        self.R = 12.0 / self.stall_current
+        # Motor velocity constant
+        self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
+                   (12.0 - self.R * self.free_current))
+        # Torque constant
+        self.Kt = self.stall_torque / self.stall_current
+        # Gear ratio
+        self.G = 12.0 / 36.0
+        # Control loop time step
+        self.dt = 0.00505
 
-    # The states are [unfiltered_velocity]
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        # State feedback matrices
+        # [angular velocity]
+        self.A_continuous = numpy.matrix(
+            [[-self.Kt / (self.Kv * self.J * self.G * self.G * self.R)]])
+        self.B_continuous = numpy.matrix(
+            [[self.Kt / (self.J * self.G * self.R)]])
+        self.C = numpy.matrix([[1]])
+        self.D = numpy.matrix([[0]])
 
-    self.PlaceControllerPoles([.75])
+        # The states are [unfiltered_velocity]
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    glog.debug('K %s', repr(self.K))
-    glog.debug('System poles are %s',
-               repr(numpy.linalg.eig(self.A_continuous)[0]))
-    glog.debug('Poles are %s',
-               repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+        self.PlaceControllerPoles([.75])
 
-    self.PlaceObserverPoles([0.3])
+        glog.debug('K %s', repr(self.K))
+        glog.debug('System poles are %s',
+                   repr(numpy.linalg.eig(self.A_continuous)[0]))
+        glog.debug('Poles are %s',
+                   repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
 
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.PlaceObserverPoles([0.3])
 
-    qff_vel = 8.0
-    self.Qff = numpy.matrix([[1.0 / (qff_vel ** 2.0)]])
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
 
-    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
-    self.InitializeState()
+        qff_vel = 8.0
+        self.Qff = numpy.matrix([[1.0 / (qff_vel**2.0)]])
+
+        self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+        self.InitializeState()
+
 
 class SecondOrderVelocityShooter(VelocityShooter):
-  def __init__(self, name='SecondOrderVelocityShooter'):
-    super(SecondOrderVelocityShooter, self).__init__(name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name='SecondOrderVelocityShooter'):
+        super(SecondOrderVelocityShooter, self).__init__(name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
-    self.A_continuous[0:1, 0:1] = self.A_continuous_unaugmented
-    self.A_continuous[1, 0] = 175.0
-    self.A_continuous[1, 1] = -self.A_continuous[1, 0]
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
-    self.B_continuous[0:1, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
+        self.A_continuous[0:1, 0:1] = self.A_continuous_unaugmented
+        self.A_continuous[1, 0] = 175.0
+        self.A_continuous[1, 1] = -self.A_continuous[1, 0]
 
-    self.C = numpy.matrix([[0, 1]])
-    self.D = numpy.matrix([[0]])
+        self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
+        self.B_continuous[0:1, 0] = self.B_continuous_unaugmented
 
-    # The states are [unfiltered_velocity, velocity]
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C = numpy.matrix([[0, 1]])
+        self.D = numpy.matrix([[0]])
 
-    self.PlaceControllerPoles([.70, 0.60])
+        # The states are [unfiltered_velocity, velocity]
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    q_vel = 40.0
-    q_filteredvel = 30.0
-    self.Q = numpy.matrix([[(1.0 / (q_vel ** 2.0)), 0.0],
-                           [0.0, (1.0 / (q_filteredvel ** 2.0))]])
+        self.PlaceControllerPoles([.70, 0.60])
 
-    self.R = numpy.matrix([[(1.0 / (3.0 ** 2.0))]])
-    self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+        q_vel = 40.0
+        q_filteredvel = 30.0
+        self.Q = numpy.matrix([[(1.0 / (q_vel**2.0)), 0.0],
+                               [0.0, (1.0 / (q_filteredvel**2.0))]])
 
-    glog.debug('K %s', repr(self.K))
-    glog.debug('System poles are %s',
-               repr(numpy.linalg.eig(self.A_continuous)[0]))
-    glog.debug('Poles are %s',
-               repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+        self.R = numpy.matrix([[(1.0 / (3.0**2.0))]])
+        self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
 
-    self.PlaceObserverPoles([0.3, 0.3])
+        glog.debug('K %s', repr(self.K))
+        glog.debug('System poles are %s',
+                   repr(numpy.linalg.eig(self.A_continuous)[0]))
+        glog.debug('Poles are %s',
+                   repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
 
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.PlaceObserverPoles([0.3, 0.3])
 
-    qff_vel = 8.0
-    self.Qff = numpy.matrix([[1.0 / (qff_vel ** 2.0), 0.0],
-                             [0.0, 1.0 / (qff_vel ** 2.0)]])
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
 
-    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
-    self.InitializeState()
+        qff_vel = 8.0
+        self.Qff = numpy.matrix([[1.0 / (qff_vel**2.0), 0.0],
+                                 [0.0, 1.0 / (qff_vel**2.0)]])
+
+        self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+        self.InitializeState()
 
 
 class Shooter(SecondOrderVelocityShooter):
-  def __init__(self, name='Shooter'):
-    super(Shooter, self).__init__(name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name='Shooter'):
+        super(Shooter, self).__init__(name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.A_continuous[1:3, 1:3] = self.A_continuous_unaugmented
-    self.A_continuous[0, 2] = 1
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
-    self.B_continuous[1:3, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.A_continuous[1:3, 1:3] = self.A_continuous_unaugmented
+        self.A_continuous[0, 2] = 1
 
-    # State feedback matrices
-    # [position, unfiltered_velocity, angular velocity]
-    self.C = numpy.matrix([[1, 0, 0]])
-    self.D = numpy.matrix([[0]])
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+        self.B_continuous[1:3, 0] = self.B_continuous_unaugmented
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
-    glog.debug(repr(self.A_continuous))
-    glog.debug(repr(self.B_continuous))
+        # State feedback matrices
+        # [position, unfiltered_velocity, angular velocity]
+        self.C = numpy.matrix([[1, 0, 0]])
+        self.D = numpy.matrix([[0]])
 
-    observeability = controls.ctrb(self.A.T, self.C.T)
-    glog.debug('Rank of augmented observability matrix. %d', numpy.linalg.matrix_rank(
-            observeability))
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
+        glog.debug(repr(self.A_continuous))
+        glog.debug(repr(self.B_continuous))
 
+        observeability = controls.ctrb(self.A.T, self.C.T)
+        glog.debug('Rank of augmented observability matrix. %d',
+                   numpy.linalg.matrix_rank(observeability))
 
-    self.PlaceObserverPoles([0.9, 0.8, 0.7])
+        self.PlaceObserverPoles([0.9, 0.8, 0.7])
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 3)))
-    self.K[0, 1:3] = self.K_unaugmented
-    self.Kff_unaugmented = self.Kff
-    self.Kff = numpy.matrix(numpy.zeros((1, 3)))
-    self.Kff[0, 1:3] = self.Kff_unaugmented
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((1, 3)))
+        self.K[0, 1:3] = self.K_unaugmented
+        self.Kff_unaugmented = self.Kff
+        self.Kff = numpy.matrix(numpy.zeros((1, 3)))
+        self.Kff[0, 1:3] = self.Kff_unaugmented
 
-    self.InitializeState()
+        self.InitializeState()
 
 
 class IntegralShooter(Shooter):
-  def __init__(self, name='IntegralShooter'):
-    super(IntegralShooter, self).__init__(name=name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name='IntegralShooter'):
+        super(IntegralShooter, self).__init__(name=name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((4, 4)))
-    self.A_continuous[0:3, 0:3] = self.A_continuous_unaugmented
-    self.A_continuous[0:3, 3] = self.B_continuous_unaugmented
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((4, 1)))
-    self.B_continuous[0:3, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((4, 4)))
+        self.A_continuous[0:3, 0:3] = self.A_continuous_unaugmented
+        self.A_continuous[0:3, 3] = self.B_continuous_unaugmented
 
-    self.C_unaugmented = self.C
-    self.C = numpy.matrix(numpy.zeros((1, 4)))
-    self.C[0:1, 0:3] = self.C_unaugmented
+        self.B_continuous = numpy.matrix(numpy.zeros((4, 1)))
+        self.B_continuous[0:3, 0] = self.B_continuous_unaugmented
 
-    # The states are [position, unfiltered_velocity, velocity, torque_error]
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C_unaugmented = self.C
+        self.C = numpy.matrix(numpy.zeros((1, 4)))
+        self.C[0:1, 0:3] = self.C_unaugmented
 
-    glog.debug('A: \n%s', repr(self.A_continuous))
-    glog.debug('eig(A): \n%s', repr(scipy.linalg.eig(self.A_continuous)))
-    glog.debug('schur(A): \n%s', repr(scipy.linalg.schur(self.A_continuous)))
-    glog.debug('A_dt(A): \n%s', repr(self.A))
+        # The states are [position, unfiltered_velocity, velocity, torque_error]
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    q_pos = 0.01
-    q_vel = 5.0
-    q_velfilt = 1.5
-    q_voltage = 2.0
-    self.Q_continuous = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0],
-                                      [0.0, (q_vel ** 2.0), 0.0, 0.0],
-                                      [0.0, 0.0, (q_velfilt ** 2.0), 0.0],
-                                      [0.0, 0.0, 0.0, (q_voltage ** 2.0)]])
+        glog.debug('A: \n%s', repr(self.A_continuous))
+        glog.debug('eig(A): \n%s', repr(scipy.linalg.eig(self.A_continuous)))
+        glog.debug('schur(A): \n%s', repr(
+            scipy.linalg.schur(self.A_continuous)))
+        glog.debug('A_dt(A): \n%s', repr(self.A))
 
-    r_pos = 0.0003
-    self.R_continuous = numpy.matrix([[(r_pos ** 2.0)]])
+        q_pos = 0.01
+        q_vel = 5.0
+        q_velfilt = 1.5
+        q_voltage = 2.0
+        self.Q_continuous = numpy.matrix([[(q_pos**2.0), 0.0, 0.0, 0.0],
+                                          [0.0, (q_vel**2.0), 0.0, 0.0],
+                                          [0.0, 0.0, (q_velfilt**2.0), 0.0],
+                                          [0.0, 0.0, 0.0, (q_voltage**2.0)]])
 
-    _, _, self.Q, self.R = controls.kalmd(
-        A_continuous=self.A_continuous, B_continuous=self.B_continuous,
-        Q_continuous=self.Q_continuous, R_continuous=self.R_continuous,
-        dt=self.dt)
+        r_pos = 0.0003
+        self.R_continuous = numpy.matrix([[(r_pos**2.0)]])
 
-    self.KalmanGain, self.P_steady_state = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        _, _, self.Q, self.R = controls.kalmd(
+            A_continuous=self.A_continuous,
+            B_continuous=self.B_continuous,
+            Q_continuous=self.Q_continuous,
+            R_continuous=self.R_continuous,
+            dt=self.dt)
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 4)))
-    self.K[0, 0:3] = self.K_unaugmented
-    self.K[0, 3] = 1
-    self.Kff_unaugmented = self.Kff
-    self.Kff = numpy.matrix(numpy.zeros((1, 4)))
-    self.Kff[0, 0:3] = self.Kff_unaugmented
+        self.KalmanGain, self.P_steady_state = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.L = self.A * self.KalmanGain
 
-    self.InitializeState()
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((1, 4)))
+        self.K[0, 0:3] = self.K_unaugmented
+        self.K[0, 3] = 1
+        self.Kff_unaugmented = self.Kff
+        self.Kff = numpy.matrix(numpy.zeros((1, 4)))
+        self.Kff[0, 0:3] = self.Kff_unaugmented
+
+        self.InitializeState()
 
 
 class ScenarioPlotter(object):
-  def __init__(self):
-    # Various lists for graphing things.
-    self.t = []
-    self.x = []
-    self.v = []
-    self.a = []
-    self.x_hat = []
-    self.u = []
-    self.offset = []
-    self.diff = []
 
-  def run_test(self, shooter, goal, iterations=200, controller_shooter=None,
-             observer_shooter=None, hybrid_obs = False):
-    """Runs the shooter plant with an initial condition and goal.
+    def __init__(self):
+        # Various lists for graphing things.
+        self.t = []
+        self.x = []
+        self.v = []
+        self.a = []
+        self.x_hat = []
+        self.u = []
+        self.offset = []
+        self.diff = []
 
-      Args:
-        shooter: Shooter object to use.
-        goal: goal state.
-        iterations: Number of timesteps to run the model for.
-        controller_shooter: Shooter object to get K from, or None if we should
-            use shooter.
-        observer_shooter: Shooter object to use for the observer, or None if we
-            should use the actual state.
-    """
+    def run_test(self,
+                 shooter,
+                 goal,
+                 iterations=200,
+                 controller_shooter=None,
+                 observer_shooter=None,
+                 hybrid_obs=False):
+        """Runs the shooter plant with an initial condition and goal.
 
-    if controller_shooter is None:
-      controller_shooter = shooter
+        Args:
+            shooter: Shooter object to use.
+            goal: goal state.
+            iterations: Number of timesteps to run the model for.
+            controller_shooter: Shooter object to get K from, or None if we should
+                use shooter.
+            observer_shooter: Shooter object to use for the observer, or None if we
+                should use the actual state.
+        """
 
-    vbat = 12.0
+        if controller_shooter is None:
+            controller_shooter = shooter
 
-    if self.t:
-      initial_t = self.t[-1] + shooter.dt
-    else:
-      initial_t = 0
+        vbat = 12.0
 
-    last_U = numpy.matrix([[0.0]])
-    for i in xrange(iterations):
-      X_hat = shooter.X
-
-      if observer_shooter is not None:
-        X_hat = observer_shooter.X_hat
-        self.x_hat.append(observer_shooter.X_hat[2, 0])
-
-      ff_U = controller_shooter.Kff * (goal - observer_shooter.A * goal)
-
-      U = controller_shooter.K * (goal - X_hat) + ff_U
-      U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
-      self.x.append(shooter.X[0, 0])
-
-      self.diff.append(shooter.X[2, 0] - observer_shooter.X_hat[2, 0])
-
-      if self.v:
-        last_v = self.v[-1]
-      else:
-        last_v = 0
-
-      self.v.append(shooter.X[2, 0])
-      self.a.append((self.v[-1] - last_v) / shooter.dt)
-
-      if observer_shooter is not None:
-        if i != 0:
-          observer_shooter.Y = shooter.Y
-          observer_shooter.CorrectObserver(U)
-        self.offset.append(observer_shooter.X_hat[3, 0])
-
-      applied_U = last_U.copy()
-      if i > 60:
-        applied_U += 2
-      shooter.Update(applied_U)
-
-      if observer_shooter is not None:
-        if hybrid_obs:
-          observer_shooter.PredictHybridObserver(last_U, shooter.dt)
+        if self.t:
+            initial_t = self.t[-1] + shooter.dt
         else:
-          observer_shooter.PredictObserver(last_U)
-      last_U = U.copy()
+            initial_t = 0
 
+        last_U = numpy.matrix([[0.0]])
+        for i in xrange(iterations):
+            X_hat = shooter.X
 
-      self.t.append(initial_t + i * shooter.dt)
-      self.u.append(U[0, 0])
+            if observer_shooter is not None:
+                X_hat = observer_shooter.X_hat
+                self.x_hat.append(observer_shooter.X_hat[2, 0])
 
-  def Plot(self):
-    pylab.figure()
-    pylab.subplot(3, 1, 1)
-    pylab.plot(self.t, self.v, label='x')
-    pylab.plot(self.t, self.x_hat, label='x_hat')
-    pylab.legend()
+            ff_U = controller_shooter.Kff * (goal - observer_shooter.A * goal)
 
-    pylab.subplot(3, 1, 2)
-    pylab.plot(self.t, self.u, label='u')
-    pylab.plot(self.t, self.offset, label='voltage_offset')
-    pylab.legend()
+            U = controller_shooter.K * (goal - X_hat) + ff_U
+            U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+            self.x.append(shooter.X[0, 0])
 
-    pylab.subplot(3, 1, 3)
-    pylab.plot(self.t, self.a, label='a')
-    pylab.legend()
+            self.diff.append(shooter.X[2, 0] - observer_shooter.X_hat[2, 0])
 
-    pylab.draw()
+            if self.v:
+                last_v = self.v[-1]
+            else:
+                last_v = 0
+
+            self.v.append(shooter.X[2, 0])
+            self.a.append((self.v[-1] - last_v) / shooter.dt)
+
+            if observer_shooter is not None:
+                if i != 0:
+                    observer_shooter.Y = shooter.Y
+                    observer_shooter.CorrectObserver(U)
+                self.offset.append(observer_shooter.X_hat[3, 0])
+
+            applied_U = last_U.copy()
+            if i > 60:
+                applied_U += 2
+            shooter.Update(applied_U)
+
+            if observer_shooter is not None:
+                if hybrid_obs:
+                    observer_shooter.PredictHybridObserver(last_U, shooter.dt)
+                else:
+                    observer_shooter.PredictObserver(last_U)
+            last_U = U.copy()
+
+            self.t.append(initial_t + i * shooter.dt)
+            self.u.append(U[0, 0])
+
+    def Plot(self):
+        pylab.figure()
+        pylab.subplot(3, 1, 1)
+        pylab.plot(self.t, self.v, label='x')
+        pylab.plot(self.t, self.x_hat, label='x_hat')
+        pylab.legend()
+
+        pylab.subplot(3, 1, 2)
+        pylab.plot(self.t, self.u, label='u')
+        pylab.plot(self.t, self.offset, label='voltage_offset')
+        pylab.legend()
+
+        pylab.subplot(3, 1, 3)
+        pylab.plot(self.t, self.a, label='a')
+        pylab.legend()
+
+        pylab.draw()
 
 
 def main(argv):
-  scenario_plotter = ScenarioPlotter()
+    scenario_plotter = ScenarioPlotter()
 
-  if FLAGS.plot:
-    iterations = 200
+    if FLAGS.plot:
+        iterations = 200
 
-    initial_X = numpy.matrix([[0.0], [0.0], [0.0]])
-    R = numpy.matrix([[0.0], [100.0], [100.0], [0.0]])
+        initial_X = numpy.matrix([[0.0], [0.0], [0.0]])
+        R = numpy.matrix([[0.0], [100.0], [100.0], [0.0]])
 
-    scenario_plotter_int = ScenarioPlotter()
+        scenario_plotter_int = ScenarioPlotter()
 
-    shooter = Shooter()
-    shooter_controller = IntegralShooter()
-    observer_shooter_hybrid = IntegralShooter()
+        shooter = Shooter()
+        shooter_controller = IntegralShooter()
+        observer_shooter_hybrid = IntegralShooter()
 
-    scenario_plotter_int.run_test(shooter, goal=R, controller_shooter=shooter_controller,
-      observer_shooter=observer_shooter_hybrid, iterations=iterations,
-      hybrid_obs = True)
+        scenario_plotter_int.run_test(
+            shooter,
+            goal=R,
+            controller_shooter=shooter_controller,
+            observer_shooter=observer_shooter_hybrid,
+            iterations=iterations,
+            hybrid_obs=True)
 
-    scenario_plotter_int.Plot()
+        scenario_plotter_int.Plot()
 
-    pylab.show()
+        pylab.show()
 
-  if len(argv) != 5:
-    glog.fatal('Expected .h file name and .cc file name')
-  else:
-    namespaces = ['y2017', 'control_loops', 'superstructure', 'shooter']
-    shooter = Shooter('Shooter')
-    loop_writer = control_loop.ControlLoopWriter('Shooter', [shooter],
-                                                 namespaces=namespaces)
-    loop_writer.AddConstant(control_loop.Constant(
-        'kFreeSpeed', '%f', shooter.free_speed))
-    loop_writer.AddConstant(control_loop.Constant(
-        'kOutputRatio', '%f', shooter.G))
-    loop_writer.Write(argv[1], argv[2])
+    if len(argv) != 5:
+        glog.fatal('Expected .h file name and .cc file name')
+    else:
+        namespaces = ['y2017', 'control_loops', 'superstructure', 'shooter']
+        shooter = Shooter('Shooter')
+        loop_writer = control_loop.ControlLoopWriter(
+            'Shooter', [shooter], namespaces=namespaces)
+        loop_writer.AddConstant(
+            control_loop.Constant('kFreeSpeed', '%f', shooter.free_speed))
+        loop_writer.AddConstant(
+            control_loop.Constant('kOutputRatio', '%f', shooter.G))
+        loop_writer.Write(argv[1], argv[2])
 
-    integral_shooter = IntegralShooter('IntegralShooter')
-    integral_loop_writer = control_loop.ControlLoopWriter(
-        'IntegralShooter', [integral_shooter], namespaces=namespaces,
-        plant_type='StateFeedbackHybridPlant',
-        observer_type='HybridKalman')
-    integral_loop_writer.Write(argv[3], argv[4])
+        integral_shooter = IntegralShooter('IntegralShooter')
+        integral_loop_writer = control_loop.ControlLoopWriter(
+            'IntegralShooter', [integral_shooter],
+            namespaces=namespaces,
+            plant_type='StateFeedbackHybridPlant',
+            observer_type='HybridKalman')
+        integral_loop_writer.Write(argv[3], argv[4])
 
 
 if __name__ == '__main__':
-  argv = FLAGS(sys.argv)
-  glog.init()
-  sys.exit(main(argv))
+    argv = FLAGS(sys.argv)
+    glog.init()
+    sys.exit(main(argv))