Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_TESTSPARSE_H |
| 11 | #define EIGEN_TESTSPARSE_H |
| 12 | |
| 13 | #define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET |
| 14 | |
| 15 | #include "main.h" |
| 16 | |
| 17 | #if EIGEN_GNUC_AT_LEAST(4,0) && !defined __ICC && !defined(__clang__) |
| 18 | |
| 19 | #ifdef min |
| 20 | #undef min |
| 21 | #endif |
| 22 | |
| 23 | #ifdef max |
| 24 | #undef max |
| 25 | #endif |
| 26 | |
| 27 | #include <tr1/unordered_map> |
| 28 | #define EIGEN_UNORDERED_MAP_SUPPORT |
| 29 | namespace std { |
| 30 | using std::tr1::unordered_map; |
| 31 | } |
| 32 | #endif |
| 33 | |
| 34 | #ifdef EIGEN_GOOGLEHASH_SUPPORT |
| 35 | #include <google/sparse_hash_map> |
| 36 | #endif |
| 37 | |
| 38 | #include <Eigen/Cholesky> |
| 39 | #include <Eigen/LU> |
| 40 | #include <Eigen/Sparse> |
| 41 | |
| 42 | enum { |
| 43 | ForceNonZeroDiag = 1, |
| 44 | MakeLowerTriangular = 2, |
| 45 | MakeUpperTriangular = 4, |
| 46 | ForceRealDiag = 8 |
| 47 | }; |
| 48 | |
| 49 | /* Initializes both a sparse and dense matrix with same random values, |
| 50 | * and a ratio of \a density non zero entries. |
| 51 | * \param flags is a union of ForceNonZeroDiag, MakeLowerTriangular and MakeUpperTriangular |
| 52 | * allowing to control the shape of the matrix. |
| 53 | * \param zeroCoords and nonzeroCoords allows to get the coordinate lists of the non zero, |
| 54 | * and zero coefficients respectively. |
| 55 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 56 | template<typename Scalar,int Opt1,int Opt2,typename StorageIndex> void |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 57 | initSparse(double density, |
| 58 | Matrix<Scalar,Dynamic,Dynamic,Opt1>& refMat, |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 59 | SparseMatrix<Scalar,Opt2,StorageIndex>& sparseMat, |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 60 | int flags = 0, |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 61 | std::vector<Matrix<StorageIndex,2,1> >* zeroCoords = 0, |
| 62 | std::vector<Matrix<StorageIndex,2,1> >* nonzeroCoords = 0) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 63 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 64 | enum { IsRowMajor = SparseMatrix<Scalar,Opt2,StorageIndex>::IsRowMajor }; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 65 | sparseMat.setZero(); |
| 66 | //sparseMat.reserve(int(refMat.rows()*refMat.cols()*density)); |
| 67 | sparseMat.reserve(VectorXi::Constant(IsRowMajor ? refMat.rows() : refMat.cols(), int((1.5*density)*(IsRowMajor?refMat.cols():refMat.rows())))); |
| 68 | |
| 69 | for(Index j=0; j<sparseMat.outerSize(); j++) |
| 70 | { |
| 71 | //sparseMat.startVec(j); |
| 72 | for(Index i=0; i<sparseMat.innerSize(); i++) |
| 73 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 74 | Index ai(i), aj(j); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 75 | if(IsRowMajor) |
| 76 | std::swap(ai,aj); |
| 77 | Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0); |
| 78 | if ((flags&ForceNonZeroDiag) && (i==j)) |
| 79 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 80 | // FIXME: the following is too conservative |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 81 | v = internal::random<Scalar>()*Scalar(3.); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 82 | v = v*v; |
| 83 | if(numext::real(v)>0) v += Scalar(5); |
| 84 | else v -= Scalar(5); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 85 | } |
| 86 | if ((flags & MakeLowerTriangular) && aj>ai) |
| 87 | v = Scalar(0); |
| 88 | else if ((flags & MakeUpperTriangular) && aj<ai) |
| 89 | v = Scalar(0); |
| 90 | |
| 91 | if ((flags&ForceRealDiag) && (i==j)) |
| 92 | v = numext::real(v); |
| 93 | |
| 94 | if (v!=Scalar(0)) |
| 95 | { |
| 96 | //sparseMat.insertBackByOuterInner(j,i) = v; |
| 97 | sparseMat.insertByOuterInner(j,i) = v; |
| 98 | if (nonzeroCoords) |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 99 | nonzeroCoords->push_back(Matrix<StorageIndex,2,1> (ai,aj)); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 100 | } |
| 101 | else if (zeroCoords) |
| 102 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 103 | zeroCoords->push_back(Matrix<StorageIndex,2,1> (ai,aj)); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 104 | } |
| 105 | refMat(ai,aj) = v; |
| 106 | } |
| 107 | } |
| 108 | //sparseMat.finalize(); |
| 109 | } |
| 110 | |
| 111 | template<typename Scalar,int Opt1,int Opt2,typename Index> void |
| 112 | initSparse(double density, |
| 113 | Matrix<Scalar,Dynamic,Dynamic, Opt1>& refMat, |
| 114 | DynamicSparseMatrix<Scalar, Opt2, Index>& sparseMat, |
| 115 | int flags = 0, |
| 116 | std::vector<Matrix<Index,2,1> >* zeroCoords = 0, |
| 117 | std::vector<Matrix<Index,2,1> >* nonzeroCoords = 0) |
| 118 | { |
| 119 | enum { IsRowMajor = DynamicSparseMatrix<Scalar,Opt2,Index>::IsRowMajor }; |
| 120 | sparseMat.setZero(); |
| 121 | sparseMat.reserve(int(refMat.rows()*refMat.cols()*density)); |
| 122 | for(int j=0; j<sparseMat.outerSize(); j++) |
| 123 | { |
| 124 | sparseMat.startVec(j); // not needed for DynamicSparseMatrix |
| 125 | for(int i=0; i<sparseMat.innerSize(); i++) |
| 126 | { |
| 127 | int ai(i), aj(j); |
| 128 | if(IsRowMajor) |
| 129 | std::swap(ai,aj); |
| 130 | Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0); |
| 131 | if ((flags&ForceNonZeroDiag) && (i==j)) |
| 132 | { |
| 133 | v = internal::random<Scalar>()*Scalar(3.); |
| 134 | v = v*v + Scalar(5.); |
| 135 | } |
| 136 | if ((flags & MakeLowerTriangular) && aj>ai) |
| 137 | v = Scalar(0); |
| 138 | else if ((flags & MakeUpperTriangular) && aj<ai) |
| 139 | v = Scalar(0); |
| 140 | |
| 141 | if ((flags&ForceRealDiag) && (i==j)) |
| 142 | v = numext::real(v); |
| 143 | |
| 144 | if (v!=Scalar(0)) |
| 145 | { |
| 146 | sparseMat.insertBackByOuterInner(j,i) = v; |
| 147 | if (nonzeroCoords) |
| 148 | nonzeroCoords->push_back(Matrix<Index,2,1> (ai,aj)); |
| 149 | } |
| 150 | else if (zeroCoords) |
| 151 | { |
| 152 | zeroCoords->push_back(Matrix<Index,2,1> (ai,aj)); |
| 153 | } |
| 154 | refMat(ai,aj) = v; |
| 155 | } |
| 156 | } |
| 157 | sparseMat.finalize(); |
| 158 | } |
| 159 | |
| 160 | template<typename Scalar,int Options,typename Index> void |
| 161 | initSparse(double density, |
| 162 | Matrix<Scalar,Dynamic,1>& refVec, |
| 163 | SparseVector<Scalar,Options,Index>& sparseVec, |
| 164 | std::vector<int>* zeroCoords = 0, |
| 165 | std::vector<int>* nonzeroCoords = 0) |
| 166 | { |
| 167 | sparseVec.reserve(int(refVec.size()*density)); |
| 168 | sparseVec.setZero(); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 169 | for(int i=0; i<refVec.size(); i++) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 170 | { |
| 171 | Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0); |
| 172 | if (v!=Scalar(0)) |
| 173 | { |
| 174 | sparseVec.insertBack(i) = v; |
| 175 | if (nonzeroCoords) |
| 176 | nonzeroCoords->push_back(i); |
| 177 | } |
| 178 | else if (zeroCoords) |
| 179 | zeroCoords->push_back(i); |
| 180 | refVec[i] = v; |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | template<typename Scalar,int Options,typename Index> void |
| 185 | initSparse(double density, |
| 186 | Matrix<Scalar,1,Dynamic>& refVec, |
| 187 | SparseVector<Scalar,Options,Index>& sparseVec, |
| 188 | std::vector<int>* zeroCoords = 0, |
| 189 | std::vector<int>* nonzeroCoords = 0) |
| 190 | { |
| 191 | sparseVec.reserve(int(refVec.size()*density)); |
| 192 | sparseVec.setZero(); |
| 193 | for(int i=0; i<refVec.size(); i++) |
| 194 | { |
| 195 | Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0); |
| 196 | if (v!=Scalar(0)) |
| 197 | { |
| 198 | sparseVec.insertBack(i) = v; |
| 199 | if (nonzeroCoords) |
| 200 | nonzeroCoords->push_back(i); |
| 201 | } |
| 202 | else if (zeroCoords) |
| 203 | zeroCoords->push_back(i); |
| 204 | refVec[i] = v; |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | |
| 209 | #include <unsupported/Eigen/SparseExtra> |
| 210 | #endif // EIGEN_TESTSPARSE_H |