Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // -*- coding: utf-8 |
| 2 | // vim: set fileencoding=utf-8 |
| 3 | |
| 4 | // This file is part of Eigen, a lightweight C++ template library |
| 5 | // for linear algebra. |
| 6 | // |
| 7 | // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> |
| 8 | // |
| 9 | // This Source Code Form is subject to the terms of the Mozilla |
| 10 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 11 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 12 | |
| 13 | #ifndef EIGEN_NUMERICAL_DIFF_H |
| 14 | #define EIGEN_NUMERICAL_DIFF_H |
| 15 | |
| 16 | namespace Eigen { |
| 17 | |
| 18 | enum NumericalDiffMode { |
| 19 | Forward, |
| 20 | Central |
| 21 | }; |
| 22 | |
| 23 | |
| 24 | /** |
| 25 | * This class allows you to add a method df() to your functor, which will |
| 26 | * use numerical differentiation to compute an approximate of the |
| 27 | * derivative for the functor. Of course, if you have an analytical form |
| 28 | * for the derivative, you should rather implement df() by yourself. |
| 29 | * |
| 30 | * More information on |
| 31 | * http://en.wikipedia.org/wiki/Numerical_differentiation |
| 32 | * |
| 33 | * Currently only "Forward" and "Central" scheme are implemented. |
| 34 | */ |
| 35 | template<typename _Functor, NumericalDiffMode mode=Forward> |
| 36 | class NumericalDiff : public _Functor |
| 37 | { |
| 38 | public: |
| 39 | typedef _Functor Functor; |
| 40 | typedef typename Functor::Scalar Scalar; |
| 41 | typedef typename Functor::InputType InputType; |
| 42 | typedef typename Functor::ValueType ValueType; |
| 43 | typedef typename Functor::JacobianType JacobianType; |
| 44 | |
| 45 | NumericalDiff(Scalar _epsfcn=0.) : Functor(), epsfcn(_epsfcn) {} |
| 46 | NumericalDiff(const Functor& f, Scalar _epsfcn=0.) : Functor(f), epsfcn(_epsfcn) {} |
| 47 | |
| 48 | // forward constructors |
| 49 | template<typename T0> |
| 50 | NumericalDiff(const T0& a0) : Functor(a0), epsfcn(0) {} |
| 51 | template<typename T0, typename T1> |
| 52 | NumericalDiff(const T0& a0, const T1& a1) : Functor(a0, a1), epsfcn(0) {} |
| 53 | template<typename T0, typename T1, typename T2> |
| 54 | NumericalDiff(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2), epsfcn(0) {} |
| 55 | |
| 56 | enum { |
| 57 | InputsAtCompileTime = Functor::InputsAtCompileTime, |
| 58 | ValuesAtCompileTime = Functor::ValuesAtCompileTime |
| 59 | }; |
| 60 | |
| 61 | /** |
| 62 | * return the number of evaluation of functor |
| 63 | */ |
| 64 | int df(const InputType& _x, JacobianType &jac) const |
| 65 | { |
| 66 | using std::sqrt; |
| 67 | using std::abs; |
| 68 | /* Local variables */ |
| 69 | Scalar h; |
| 70 | int nfev=0; |
| 71 | const typename InputType::Index n = _x.size(); |
| 72 | const Scalar eps = sqrt(((std::max)(epsfcn,NumTraits<Scalar>::epsilon() ))); |
| 73 | ValueType val1, val2; |
| 74 | InputType x = _x; |
| 75 | // TODO : we should do this only if the size is not already known |
| 76 | val1.resize(Functor::values()); |
| 77 | val2.resize(Functor::values()); |
| 78 | |
| 79 | // initialization |
| 80 | switch(mode) { |
| 81 | case Forward: |
| 82 | // compute f(x) |
| 83 | Functor::operator()(x, val1); nfev++; |
| 84 | break; |
| 85 | case Central: |
| 86 | // do nothing |
| 87 | break; |
| 88 | default: |
| 89 | eigen_assert(false); |
| 90 | }; |
| 91 | |
| 92 | // Function Body |
| 93 | for (int j = 0; j < n; ++j) { |
| 94 | h = eps * abs(x[j]); |
| 95 | if (h == 0.) { |
| 96 | h = eps; |
| 97 | } |
| 98 | switch(mode) { |
| 99 | case Forward: |
| 100 | x[j] += h; |
| 101 | Functor::operator()(x, val2); |
| 102 | nfev++; |
| 103 | x[j] = _x[j]; |
| 104 | jac.col(j) = (val2-val1)/h; |
| 105 | break; |
| 106 | case Central: |
| 107 | x[j] += h; |
| 108 | Functor::operator()(x, val2); nfev++; |
| 109 | x[j] -= 2*h; |
| 110 | Functor::operator()(x, val1); nfev++; |
| 111 | x[j] = _x[j]; |
| 112 | jac.col(j) = (val2-val1)/(2*h); |
| 113 | break; |
| 114 | default: |
| 115 | eigen_assert(false); |
| 116 | }; |
| 117 | } |
| 118 | return nfev; |
| 119 | } |
| 120 | private: |
| 121 | Scalar epsfcn; |
| 122 | |
| 123 | NumericalDiff& operator=(const NumericalDiff&); |
| 124 | }; |
| 125 | |
| 126 | } // end namespace Eigen |
| 127 | |
| 128 | //vim: ai ts=4 sts=4 et sw=4 |
| 129 | #endif // EIGEN_NUMERICAL_DIFF_H |
| 130 | |