Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h b/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h
new file mode 100644
index 0000000..ea5d8bc
--- /dev/null
+++ b/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h
@@ -0,0 +1,130 @@
+// -*- coding: utf-8
+// vim: set fileencoding=utf-8
+
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_NUMERICAL_DIFF_H
+#define EIGEN_NUMERICAL_DIFF_H
+
+namespace Eigen { 
+
+enum NumericalDiffMode {
+    Forward,
+    Central
+};
+
+
+/**
+  * This class allows you to add a method df() to your functor, which will 
+  * use numerical differentiation to compute an approximate of the
+  * derivative for the functor. Of course, if you have an analytical form
+  * for the derivative, you should rather implement df() by yourself.
+  *
+  * More information on
+  * http://en.wikipedia.org/wiki/Numerical_differentiation
+  *
+  * Currently only "Forward" and "Central" scheme are implemented.
+  */
+template<typename _Functor, NumericalDiffMode mode=Forward>
+class NumericalDiff : public _Functor
+{
+public:
+    typedef _Functor Functor;
+    typedef typename Functor::Scalar Scalar;
+    typedef typename Functor::InputType InputType;
+    typedef typename Functor::ValueType ValueType;
+    typedef typename Functor::JacobianType JacobianType;
+
+    NumericalDiff(Scalar _epsfcn=0.) : Functor(), epsfcn(_epsfcn) {}
+    NumericalDiff(const Functor& f, Scalar _epsfcn=0.) : Functor(f), epsfcn(_epsfcn) {}
+
+    // forward constructors
+    template<typename T0>
+        NumericalDiff(const T0& a0) : Functor(a0), epsfcn(0) {}
+    template<typename T0, typename T1>
+        NumericalDiff(const T0& a0, const T1& a1) : Functor(a0, a1), epsfcn(0) {}
+    template<typename T0, typename T1, typename T2>
+        NumericalDiff(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2), epsfcn(0) {}
+
+    enum {
+        InputsAtCompileTime = Functor::InputsAtCompileTime,
+        ValuesAtCompileTime = Functor::ValuesAtCompileTime
+    };
+
+    /**
+      * return the number of evaluation of functor
+     */
+    int df(const InputType& _x, JacobianType &jac) const
+    {
+        using std::sqrt;
+        using std::abs;
+        /* Local variables */
+        Scalar h;
+        int nfev=0;
+        const typename InputType::Index n = _x.size();
+        const Scalar eps = sqrt(((std::max)(epsfcn,NumTraits<Scalar>::epsilon() )));
+        ValueType val1, val2;
+        InputType x = _x;
+        // TODO : we should do this only if the size is not already known
+        val1.resize(Functor::values());
+        val2.resize(Functor::values());
+
+        // initialization
+        switch(mode) {
+            case Forward:
+                // compute f(x)
+                Functor::operator()(x, val1); nfev++;
+                break;
+            case Central:
+                // do nothing
+                break;
+            default:
+                eigen_assert(false);
+        };
+
+        // Function Body
+        for (int j = 0; j < n; ++j) {
+            h = eps * abs(x[j]);
+            if (h == 0.) {
+                h = eps;
+            }
+            switch(mode) {
+                case Forward:
+                    x[j] += h;
+                    Functor::operator()(x, val2);
+                    nfev++;
+                    x[j] = _x[j];
+                    jac.col(j) = (val2-val1)/h;
+                    break;
+                case Central:
+                    x[j] += h;
+                    Functor::operator()(x, val2); nfev++;
+                    x[j] -= 2*h;
+                    Functor::operator()(x, val1); nfev++;
+                    x[j] = _x[j];
+                    jac.col(j) = (val2-val1)/(2*h);
+                    break;
+                default:
+                    eigen_assert(false);
+            };
+        }
+        return nfev;
+    }
+private:
+    Scalar epsfcn;
+
+    NumericalDiff& operator=(const NumericalDiff&);
+};
+
+} // end namespace Eigen
+
+//vim: ai ts=4 sts=4 et sw=4
+#endif // EIGEN_NUMERICAL_DIFF_H
+