Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #include "main.h" |
| 12 | #include <limits> |
| 13 | #include <Eigen/Eigenvalues> |
| 14 | #include <Eigen/LU> |
| 15 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 16 | template<typename MatrixType> bool find_pivot(typename MatrixType::Scalar tol, MatrixType &diffs, Index col=0) |
| 17 | { |
| 18 | bool match = diffs.diagonal().sum() <= tol; |
| 19 | if(match || col==diffs.cols()) |
| 20 | { |
| 21 | return match; |
| 22 | } |
| 23 | else |
| 24 | { |
| 25 | Index n = diffs.cols(); |
| 26 | std::vector<std::pair<Index,Index> > transpositions; |
| 27 | for(Index i=col; i<n; ++i) |
| 28 | { |
| 29 | Index best_index(0); |
| 30 | if(diffs.col(col).segment(col,n-i).minCoeff(&best_index) > tol) |
| 31 | break; |
| 32 | |
| 33 | best_index += col; |
| 34 | |
| 35 | diffs.row(col).swap(diffs.row(best_index)); |
| 36 | if(find_pivot(tol,diffs,col+1)) return true; |
| 37 | diffs.row(col).swap(diffs.row(best_index)); |
| 38 | |
| 39 | // move current pivot to the end |
| 40 | diffs.row(n-(i-col)-1).swap(diffs.row(best_index)); |
| 41 | transpositions.push_back(std::pair<Index,Index>(n-(i-col)-1,best_index)); |
| 42 | } |
| 43 | // restore |
| 44 | for(Index k=transpositions.size()-1; k>=0; --k) |
| 45 | diffs.row(transpositions[k].first).swap(diffs.row(transpositions[k].second)); |
| 46 | } |
| 47 | return false; |
| 48 | } |
| 49 | |
| 50 | /* Check that two column vectors are approximately equal upto permutations. |
| 51 | * Initially, this method checked that the k-th power sums are equal for all k = 1, ..., vec1.rows(), |
| 52 | * however this strategy is numerically inacurate because of numerical cancellation issues. |
| 53 | */ |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 54 | template<typename VectorType> |
| 55 | void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2) |
| 56 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 57 | typedef typename VectorType::Scalar Scalar; |
| 58 | typedef typename NumTraits<Scalar>::Real RealScalar; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 59 | |
| 60 | VERIFY(vec1.cols() == 1); |
| 61 | VERIFY(vec2.cols() == 1); |
| 62 | VERIFY(vec1.rows() == vec2.rows()); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 63 | |
| 64 | Index n = vec1.rows(); |
| 65 | RealScalar tol = test_precision<RealScalar>()*test_precision<RealScalar>()*numext::maxi(vec1.squaredNorm(),vec2.squaredNorm()); |
| 66 | Matrix<RealScalar,Dynamic,Dynamic> diffs = (vec1.rowwise().replicate(n) - vec2.rowwise().replicate(n).transpose()).cwiseAbs2(); |
| 67 | |
| 68 | VERIFY( find_pivot(tol, diffs) ); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 69 | } |
| 70 | |
| 71 | |
| 72 | template<typename MatrixType> void eigensolver(const MatrixType& m) |
| 73 | { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 74 | /* this test covers the following files: |
| 75 | ComplexEigenSolver.h, and indirectly ComplexSchur.h |
| 76 | */ |
| 77 | Index rows = m.rows(); |
| 78 | Index cols = m.cols(); |
| 79 | |
| 80 | typedef typename MatrixType::Scalar Scalar; |
| 81 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 82 | |
| 83 | MatrixType a = MatrixType::Random(rows,cols); |
| 84 | MatrixType symmA = a.adjoint() * a; |
| 85 | |
| 86 | ComplexEigenSolver<MatrixType> ei0(symmA); |
| 87 | VERIFY_IS_EQUAL(ei0.info(), Success); |
| 88 | VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); |
| 89 | |
| 90 | ComplexEigenSolver<MatrixType> ei1(a); |
| 91 | VERIFY_IS_EQUAL(ei1.info(), Success); |
| 92 | VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); |
| 93 | // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus |
| 94 | // another algorithm so results may differ slightly |
| 95 | verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); |
| 96 | |
| 97 | ComplexEigenSolver<MatrixType> ei2; |
| 98 | ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); |
| 99 | VERIFY_IS_EQUAL(ei2.info(), Success); |
| 100 | VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); |
| 101 | VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); |
| 102 | if (rows > 2) { |
| 103 | ei2.setMaxIterations(1).compute(a); |
| 104 | VERIFY_IS_EQUAL(ei2.info(), NoConvergence); |
| 105 | VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1); |
| 106 | } |
| 107 | |
| 108 | ComplexEigenSolver<MatrixType> eiNoEivecs(a, false); |
| 109 | VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); |
| 110 | VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); |
| 111 | |
| 112 | // Regression test for issue #66 |
| 113 | MatrixType z = MatrixType::Zero(rows,cols); |
| 114 | ComplexEigenSolver<MatrixType> eiz(z); |
| 115 | VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); |
| 116 | |
| 117 | MatrixType id = MatrixType::Identity(rows, cols); |
| 118 | VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); |
| 119 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 120 | if (rows > 1 && rows < 20) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 121 | { |
| 122 | // Test matrix with NaN |
| 123 | a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); |
| 124 | ComplexEigenSolver<MatrixType> eiNaN(a); |
| 125 | VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); |
| 126 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 127 | |
| 128 | // regression test for bug 1098 |
| 129 | { |
| 130 | ComplexEigenSolver<MatrixType> eig(a.adjoint() * a); |
| 131 | eig.compute(a.adjoint() * a); |
| 132 | } |
| 133 | |
| 134 | // regression test for bug 478 |
| 135 | { |
| 136 | a.setZero(); |
| 137 | ComplexEigenSolver<MatrixType> ei3(a); |
| 138 | VERIFY_IS_EQUAL(ei3.info(), Success); |
| 139 | VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1)); |
| 140 | VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity()); |
| 141 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 142 | } |
| 143 | |
| 144 | template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m) |
| 145 | { |
| 146 | ComplexEigenSolver<MatrixType> eig; |
| 147 | VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| 148 | VERIFY_RAISES_ASSERT(eig.eigenvalues()); |
| 149 | |
| 150 | MatrixType a = MatrixType::Random(m.rows(),m.cols()); |
| 151 | eig.compute(a, false); |
| 152 | VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| 153 | } |
| 154 | |
| 155 | void test_eigensolver_complex() |
| 156 | { |
| 157 | int s = 0; |
| 158 | for(int i = 0; i < g_repeat; i++) { |
| 159 | CALL_SUBTEST_1( eigensolver(Matrix4cf()) ); |
| 160 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| 161 | CALL_SUBTEST_2( eigensolver(MatrixXcd(s,s)) ); |
| 162 | CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) ); |
| 163 | CALL_SUBTEST_4( eigensolver(Matrix3f()) ); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 164 | TEST_SET_BUT_UNUSED_VARIABLE(s) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 165 | } |
| 166 | CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4cf()) ); |
| 167 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| 168 | CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXcd(s,s)) ); |
| 169 | CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>()) ); |
| 170 | CALL_SUBTEST_4( eigensolver_verify_assert(Matrix3f()) ); |
| 171 | |
| 172 | // Test problem size constructors |
| 173 | CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf> tmp(s)); |
| 174 | |
| 175 | TEST_SET_BUT_UNUSED_VARIABLE(s) |
| 176 | } |