Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #include "main.h" |
| 12 | #include <limits> |
| 13 | #include <Eigen/Eigenvalues> |
| 14 | #include <Eigen/LU> |
| 15 | |
| 16 | /* Check that two column vectors are approximately equal upto permutations, |
| 17 | by checking that the k-th power sums are equal for k = 1, ..., vec1.rows() */ |
| 18 | template<typename VectorType> |
| 19 | void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2) |
| 20 | { |
| 21 | typedef typename NumTraits<typename VectorType::Scalar>::Real RealScalar; |
| 22 | |
| 23 | VERIFY(vec1.cols() == 1); |
| 24 | VERIFY(vec2.cols() == 1); |
| 25 | VERIFY(vec1.rows() == vec2.rows()); |
| 26 | for (int k = 1; k <= vec1.rows(); ++k) |
| 27 | { |
| 28 | VERIFY_IS_APPROX(vec1.array().pow(RealScalar(k)).sum(), vec2.array().pow(RealScalar(k)).sum()); |
| 29 | } |
| 30 | } |
| 31 | |
| 32 | |
| 33 | template<typename MatrixType> void eigensolver(const MatrixType& m) |
| 34 | { |
| 35 | typedef typename MatrixType::Index Index; |
| 36 | /* this test covers the following files: |
| 37 | ComplexEigenSolver.h, and indirectly ComplexSchur.h |
| 38 | */ |
| 39 | Index rows = m.rows(); |
| 40 | Index cols = m.cols(); |
| 41 | |
| 42 | typedef typename MatrixType::Scalar Scalar; |
| 43 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 44 | |
| 45 | MatrixType a = MatrixType::Random(rows,cols); |
| 46 | MatrixType symmA = a.adjoint() * a; |
| 47 | |
| 48 | ComplexEigenSolver<MatrixType> ei0(symmA); |
| 49 | VERIFY_IS_EQUAL(ei0.info(), Success); |
| 50 | VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); |
| 51 | |
| 52 | ComplexEigenSolver<MatrixType> ei1(a); |
| 53 | VERIFY_IS_EQUAL(ei1.info(), Success); |
| 54 | VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); |
| 55 | // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus |
| 56 | // another algorithm so results may differ slightly |
| 57 | verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); |
| 58 | |
| 59 | ComplexEigenSolver<MatrixType> ei2; |
| 60 | ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); |
| 61 | VERIFY_IS_EQUAL(ei2.info(), Success); |
| 62 | VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); |
| 63 | VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); |
| 64 | if (rows > 2) { |
| 65 | ei2.setMaxIterations(1).compute(a); |
| 66 | VERIFY_IS_EQUAL(ei2.info(), NoConvergence); |
| 67 | VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1); |
| 68 | } |
| 69 | |
| 70 | ComplexEigenSolver<MatrixType> eiNoEivecs(a, false); |
| 71 | VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); |
| 72 | VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); |
| 73 | |
| 74 | // Regression test for issue #66 |
| 75 | MatrixType z = MatrixType::Zero(rows,cols); |
| 76 | ComplexEigenSolver<MatrixType> eiz(z); |
| 77 | VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); |
| 78 | |
| 79 | MatrixType id = MatrixType::Identity(rows, cols); |
| 80 | VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); |
| 81 | |
| 82 | if (rows > 1) |
| 83 | { |
| 84 | // Test matrix with NaN |
| 85 | a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); |
| 86 | ComplexEigenSolver<MatrixType> eiNaN(a); |
| 87 | VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m) |
| 92 | { |
| 93 | ComplexEigenSolver<MatrixType> eig; |
| 94 | VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| 95 | VERIFY_RAISES_ASSERT(eig.eigenvalues()); |
| 96 | |
| 97 | MatrixType a = MatrixType::Random(m.rows(),m.cols()); |
| 98 | eig.compute(a, false); |
| 99 | VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| 100 | } |
| 101 | |
| 102 | void test_eigensolver_complex() |
| 103 | { |
| 104 | int s = 0; |
| 105 | for(int i = 0; i < g_repeat; i++) { |
| 106 | CALL_SUBTEST_1( eigensolver(Matrix4cf()) ); |
| 107 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| 108 | CALL_SUBTEST_2( eigensolver(MatrixXcd(s,s)) ); |
| 109 | CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) ); |
| 110 | CALL_SUBTEST_4( eigensolver(Matrix3f()) ); |
| 111 | } |
| 112 | CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4cf()) ); |
| 113 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| 114 | CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXcd(s,s)) ); |
| 115 | CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>()) ); |
| 116 | CALL_SUBTEST_4( eigensolver_verify_assert(Matrix3f()) ); |
| 117 | |
| 118 | // Test problem size constructors |
| 119 | CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf> tmp(s)); |
| 120 | |
| 121 | TEST_SET_BUT_UNUSED_VARIABLE(s) |
| 122 | } |