Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_QUATERNION_H |
| 12 | #define EIGEN_QUATERNION_H |
| 13 | namespace Eigen { |
| 14 | |
| 15 | |
| 16 | /*************************************************************************** |
| 17 | * Definition of QuaternionBase<Derived> |
| 18 | * The implementation is at the end of the file |
| 19 | ***************************************************************************/ |
| 20 | |
| 21 | namespace internal { |
| 22 | template<typename Other, |
| 23 | int OtherRows=Other::RowsAtCompileTime, |
| 24 | int OtherCols=Other::ColsAtCompileTime> |
| 25 | struct quaternionbase_assign_impl; |
| 26 | } |
| 27 | |
| 28 | /** \geometry_module \ingroup Geometry_Module |
| 29 | * \class QuaternionBase |
| 30 | * \brief Base class for quaternion expressions |
| 31 | * \tparam Derived derived type (CRTP) |
| 32 | * \sa class Quaternion |
| 33 | */ |
| 34 | template<class Derived> |
| 35 | class QuaternionBase : public RotationBase<Derived, 3> |
| 36 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 37 | public: |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 38 | typedef RotationBase<Derived, 3> Base; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 39 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 40 | using Base::operator*; |
| 41 | using Base::derived; |
| 42 | |
| 43 | typedef typename internal::traits<Derived>::Scalar Scalar; |
| 44 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 45 | typedef typename internal::traits<Derived>::Coefficients Coefficients; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 46 | typedef typename Coefficients::CoeffReturnType CoeffReturnType; |
| 47 | typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit), |
| 48 | Scalar&, CoeffReturnType>::type NonConstCoeffReturnType; |
| 49 | |
| 50 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 51 | enum { |
| 52 | Flags = Eigen::internal::traits<Derived>::Flags |
| 53 | }; |
| 54 | |
| 55 | // typedef typename Matrix<Scalar,4,1> Coefficients; |
| 56 | /** the type of a 3D vector */ |
| 57 | typedef Matrix<Scalar,3,1> Vector3; |
| 58 | /** the equivalent rotation matrix type */ |
| 59 | typedef Matrix<Scalar,3,3> Matrix3; |
| 60 | /** the equivalent angle-axis type */ |
| 61 | typedef AngleAxis<Scalar> AngleAxisType; |
| 62 | |
| 63 | |
| 64 | |
| 65 | /** \returns the \c x coefficient */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 66 | EIGEN_DEVICE_FUNC inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 67 | /** \returns the \c y coefficient */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 68 | EIGEN_DEVICE_FUNC inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 69 | /** \returns the \c z coefficient */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 70 | EIGEN_DEVICE_FUNC inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 71 | /** \returns the \c w coefficient */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 72 | EIGEN_DEVICE_FUNC inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 73 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 74 | /** \returns a reference to the \c x coefficient (if Derived is a non-const lvalue) */ |
| 75 | EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); } |
| 76 | /** \returns a reference to the \c y coefficient (if Derived is a non-const lvalue) */ |
| 77 | EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); } |
| 78 | /** \returns a reference to the \c z coefficient (if Derived is a non-const lvalue) */ |
| 79 | EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); } |
| 80 | /** \returns a reference to the \c w coefficient (if Derived is a non-const lvalue) */ |
| 81 | EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 82 | |
| 83 | /** \returns a read-only vector expression of the imaginary part (x,y,z) */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 84 | EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 85 | |
| 86 | /** \returns a vector expression of the imaginary part (x,y,z) */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 87 | EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 88 | |
| 89 | /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 90 | EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 91 | |
| 92 | /** \returns a vector expression of the coefficients (x,y,z,w) */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 93 | EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 94 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 95 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other); |
| 96 | template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 97 | |
| 98 | // disabled this copy operator as it is giving very strange compilation errors when compiling |
| 99 | // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's |
| 100 | // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase |
| 101 | // we didn't have to add, in addition to templated operator=, such a non-templated copy operator. |
| 102 | // Derived& operator=(const QuaternionBase& other) |
| 103 | // { return operator=<Derived>(other); } |
| 104 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 105 | EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa); |
| 106 | template<class OtherDerived> EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 107 | |
| 108 | /** \returns a quaternion representing an identity rotation |
| 109 | * \sa MatrixBase::Identity() |
| 110 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 111 | EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 112 | |
| 113 | /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity() |
| 114 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 115 | EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 116 | |
| 117 | /** \returns the squared norm of the quaternion's coefficients |
| 118 | * \sa QuaternionBase::norm(), MatrixBase::squaredNorm() |
| 119 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 120 | EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 121 | |
| 122 | /** \returns the norm of the quaternion's coefficients |
| 123 | * \sa QuaternionBase::squaredNorm(), MatrixBase::norm() |
| 124 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 125 | EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 126 | |
| 127 | /** Normalizes the quaternion \c *this |
| 128 | * \sa normalized(), MatrixBase::normalize() */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 129 | EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 130 | /** \returns a normalized copy of \c *this |
| 131 | * \sa normalize(), MatrixBase::normalized() */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 132 | EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 133 | |
| 134 | /** \returns the dot product of \c *this and \a other |
| 135 | * Geometrically speaking, the dot product of two unit quaternions |
| 136 | * corresponds to the cosine of half the angle between the two rotations. |
| 137 | * \sa angularDistance() |
| 138 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 139 | template<class OtherDerived> EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 140 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 141 | template<class OtherDerived> EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 142 | |
| 143 | /** \returns an equivalent 3x3 rotation matrix */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 144 | EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix() const; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 145 | |
| 146 | /** \returns the quaternion which transform \a a into \a b through a rotation */ |
| 147 | template<typename Derived1, typename Derived2> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 148 | EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 149 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 150 | template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const; |
| 151 | template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 152 | |
| 153 | /** \returns the quaternion describing the inverse rotation */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 154 | EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 155 | |
| 156 | /** \returns the conjugated quaternion */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 157 | EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 158 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 159 | template<class OtherDerived> EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 160 | |
| 161 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| 162 | * determined by \a prec. |
| 163 | * |
| 164 | * \sa MatrixBase::isApprox() */ |
| 165 | template<class OtherDerived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 166 | EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 167 | { return coeffs().isApprox(other.coeffs(), prec); } |
| 168 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 169 | /** return the result vector of \a v through the rotation*/ |
| 170 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 171 | |
| 172 | /** \returns \c *this with scalar type casted to \a NewScalarType |
| 173 | * |
| 174 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| 175 | * then this function smartly returns a const reference to \c *this. |
| 176 | */ |
| 177 | template<typename NewScalarType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 178 | EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 179 | { |
| 180 | return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived()); |
| 181 | } |
| 182 | |
| 183 | #ifdef EIGEN_QUATERNIONBASE_PLUGIN |
| 184 | # include EIGEN_QUATERNIONBASE_PLUGIN |
| 185 | #endif |
| 186 | }; |
| 187 | |
| 188 | /*************************************************************************** |
| 189 | * Definition/implementation of Quaternion<Scalar> |
| 190 | ***************************************************************************/ |
| 191 | |
| 192 | /** \geometry_module \ingroup Geometry_Module |
| 193 | * |
| 194 | * \class Quaternion |
| 195 | * |
| 196 | * \brief The quaternion class used to represent 3D orientations and rotations |
| 197 | * |
| 198 | * \tparam _Scalar the scalar type, i.e., the type of the coefficients |
| 199 | * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign. |
| 200 | * |
| 201 | * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of |
| 202 | * orientations and rotations of objects in three dimensions. Compared to other representations |
| 203 | * like Euler angles or 3x3 matrices, quaternions offer the following advantages: |
| 204 | * \li \b compact storage (4 scalars) |
| 205 | * \li \b efficient to compose (28 flops), |
| 206 | * \li \b stable spherical interpolation |
| 207 | * |
| 208 | * The following two typedefs are provided for convenience: |
| 209 | * \li \c Quaternionf for \c float |
| 210 | * \li \c Quaterniond for \c double |
| 211 | * |
| 212 | * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized. |
| 213 | * |
| 214 | * \sa class AngleAxis, class Transform |
| 215 | */ |
| 216 | |
| 217 | namespace internal { |
| 218 | template<typename _Scalar,int _Options> |
| 219 | struct traits<Quaternion<_Scalar,_Options> > |
| 220 | { |
| 221 | typedef Quaternion<_Scalar,_Options> PlainObject; |
| 222 | typedef _Scalar Scalar; |
| 223 | typedef Matrix<_Scalar,4,1,_Options> Coefficients; |
| 224 | enum{ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 225 | Alignment = internal::traits<Coefficients>::Alignment, |
| 226 | Flags = LvalueBit |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 227 | }; |
| 228 | }; |
| 229 | } |
| 230 | |
| 231 | template<typename _Scalar, int _Options> |
| 232 | class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> > |
| 233 | { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 234 | public: |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 235 | typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base; |
| 236 | enum { NeedsAlignment = internal::traits<Quaternion>::Alignment>0 }; |
| 237 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 238 | typedef _Scalar Scalar; |
| 239 | |
| 240 | EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion) |
| 241 | using Base::operator*=; |
| 242 | |
| 243 | typedef typename internal::traits<Quaternion>::Coefficients Coefficients; |
| 244 | typedef typename Base::AngleAxisType AngleAxisType; |
| 245 | |
| 246 | /** Default constructor leaving the quaternion uninitialized. */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 247 | EIGEN_DEVICE_FUNC inline Quaternion() {} |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 248 | |
| 249 | /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from |
| 250 | * its four coefficients \a w, \a x, \a y and \a z. |
| 251 | * |
| 252 | * \warning Note the order of the arguments: the real \a w coefficient first, |
| 253 | * while internally the coefficients are stored in the following order: |
| 254 | * [\c x, \c y, \c z, \c w] |
| 255 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 256 | EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){} |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 257 | |
| 258 | /** Constructs and initialize a quaternion from the array data */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 259 | EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {} |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 260 | |
| 261 | /** Copy constructor */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 262 | template<class Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 263 | |
| 264 | /** Constructs and initializes a quaternion from the angle-axis \a aa */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 265 | EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 266 | |
| 267 | /** Constructs and initializes a quaternion from either: |
| 268 | * - a rotation matrix expression, |
| 269 | * - a 4D vector expression representing quaternion coefficients. |
| 270 | */ |
| 271 | template<typename Derived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 272 | EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 273 | |
| 274 | /** Explicit copy constructor with scalar conversion */ |
| 275 | template<typename OtherScalar, int OtherOptions> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 276 | EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 277 | { m_coeffs = other.coeffs().template cast<Scalar>(); } |
| 278 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 279 | EIGEN_DEVICE_FUNC static Quaternion UnitRandom(); |
| 280 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 281 | template<typename Derived1, typename Derived2> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 282 | EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 283 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 284 | EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;} |
| 285 | EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;} |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 286 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 287 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment)) |
| 288 | |
| 289 | #ifdef EIGEN_QUATERNION_PLUGIN |
| 290 | # include EIGEN_QUATERNION_PLUGIN |
| 291 | #endif |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 292 | |
| 293 | protected: |
| 294 | Coefficients m_coeffs; |
| 295 | |
| 296 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 297 | static EIGEN_STRONG_INLINE void _check_template_params() |
| 298 | { |
| 299 | EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options, |
| 300 | INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| 301 | } |
| 302 | #endif |
| 303 | }; |
| 304 | |
| 305 | /** \ingroup Geometry_Module |
| 306 | * single precision quaternion type */ |
| 307 | typedef Quaternion<float> Quaternionf; |
| 308 | /** \ingroup Geometry_Module |
| 309 | * double precision quaternion type */ |
| 310 | typedef Quaternion<double> Quaterniond; |
| 311 | |
| 312 | /*************************************************************************** |
| 313 | * Specialization of Map<Quaternion<Scalar>> |
| 314 | ***************************************************************************/ |
| 315 | |
| 316 | namespace internal { |
| 317 | template<typename _Scalar, int _Options> |
| 318 | struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > |
| 319 | { |
| 320 | typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients; |
| 321 | }; |
| 322 | } |
| 323 | |
| 324 | namespace internal { |
| 325 | template<typename _Scalar, int _Options> |
| 326 | struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > |
| 327 | { |
| 328 | typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients; |
| 329 | typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase; |
| 330 | enum { |
| 331 | Flags = TraitsBase::Flags & ~LvalueBit |
| 332 | }; |
| 333 | }; |
| 334 | } |
| 335 | |
| 336 | /** \ingroup Geometry_Module |
| 337 | * \brief Quaternion expression mapping a constant memory buffer |
| 338 | * |
| 339 | * \tparam _Scalar the type of the Quaternion coefficients |
| 340 | * \tparam _Options see class Map |
| 341 | * |
| 342 | * This is a specialization of class Map for Quaternion. This class allows to view |
| 343 | * a 4 scalar memory buffer as an Eigen's Quaternion object. |
| 344 | * |
| 345 | * \sa class Map, class Quaternion, class QuaternionBase |
| 346 | */ |
| 347 | template<typename _Scalar, int _Options> |
| 348 | class Map<const Quaternion<_Scalar>, _Options > |
| 349 | : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > |
| 350 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 351 | public: |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 352 | typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base; |
| 353 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 354 | typedef _Scalar Scalar; |
| 355 | typedef typename internal::traits<Map>::Coefficients Coefficients; |
| 356 | EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) |
| 357 | using Base::operator*=; |
| 358 | |
| 359 | /** Constructs a Mapped Quaternion object from the pointer \a coeffs |
| 360 | * |
| 361 | * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: |
| 362 | * \code *coeffs == {x, y, z, w} \endcode |
| 363 | * |
| 364 | * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 365 | EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {} |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 366 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 367 | EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;} |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 368 | |
| 369 | protected: |
| 370 | const Coefficients m_coeffs; |
| 371 | }; |
| 372 | |
| 373 | /** \ingroup Geometry_Module |
| 374 | * \brief Expression of a quaternion from a memory buffer |
| 375 | * |
| 376 | * \tparam _Scalar the type of the Quaternion coefficients |
| 377 | * \tparam _Options see class Map |
| 378 | * |
| 379 | * This is a specialization of class Map for Quaternion. This class allows to view |
| 380 | * a 4 scalar memory buffer as an Eigen's Quaternion object. |
| 381 | * |
| 382 | * \sa class Map, class Quaternion, class QuaternionBase |
| 383 | */ |
| 384 | template<typename _Scalar, int _Options> |
| 385 | class Map<Quaternion<_Scalar>, _Options > |
| 386 | : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> > |
| 387 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 388 | public: |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 389 | typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base; |
| 390 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 391 | typedef _Scalar Scalar; |
| 392 | typedef typename internal::traits<Map>::Coefficients Coefficients; |
| 393 | EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) |
| 394 | using Base::operator*=; |
| 395 | |
| 396 | /** Constructs a Mapped Quaternion object from the pointer \a coeffs |
| 397 | * |
| 398 | * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: |
| 399 | * \code *coeffs == {x, y, z, w} \endcode |
| 400 | * |
| 401 | * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 402 | EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {} |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 403 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 404 | EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; } |
| 405 | EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 406 | |
| 407 | protected: |
| 408 | Coefficients m_coeffs; |
| 409 | }; |
| 410 | |
| 411 | /** \ingroup Geometry_Module |
| 412 | * Map an unaligned array of single precision scalars as a quaternion */ |
| 413 | typedef Map<Quaternion<float>, 0> QuaternionMapf; |
| 414 | /** \ingroup Geometry_Module |
| 415 | * Map an unaligned array of double precision scalars as a quaternion */ |
| 416 | typedef Map<Quaternion<double>, 0> QuaternionMapd; |
| 417 | /** \ingroup Geometry_Module |
| 418 | * Map a 16-byte aligned array of single precision scalars as a quaternion */ |
| 419 | typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf; |
| 420 | /** \ingroup Geometry_Module |
| 421 | * Map a 16-byte aligned array of double precision scalars as a quaternion */ |
| 422 | typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd; |
| 423 | |
| 424 | /*************************************************************************** |
| 425 | * Implementation of QuaternionBase methods |
| 426 | ***************************************************************************/ |
| 427 | |
| 428 | // Generic Quaternion * Quaternion product |
| 429 | // This product can be specialized for a given architecture via the Arch template argument. |
| 430 | namespace internal { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 431 | template<int Arch, class Derived1, class Derived2, typename Scalar> struct quat_product |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 432 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 433 | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){ |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 434 | return Quaternion<Scalar> |
| 435 | ( |
| 436 | a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), |
| 437 | a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), |
| 438 | a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), |
| 439 | a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() |
| 440 | ); |
| 441 | } |
| 442 | }; |
| 443 | } |
| 444 | |
| 445 | /** \returns the concatenation of two rotations as a quaternion-quaternion product */ |
| 446 | template <class Derived> |
| 447 | template <class OtherDerived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 448 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 449 | QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const |
| 450 | { |
| 451 | EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value), |
| 452 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
| 453 | return internal::quat_product<Architecture::Target, Derived, OtherDerived, |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 454 | typename internal::traits<Derived>::Scalar>::run(*this, other); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 455 | } |
| 456 | |
| 457 | /** \sa operator*(Quaternion) */ |
| 458 | template <class Derived> |
| 459 | template <class OtherDerived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 460 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 461 | { |
| 462 | derived() = derived() * other.derived(); |
| 463 | return derived(); |
| 464 | } |
| 465 | |
| 466 | /** Rotation of a vector by a quaternion. |
| 467 | * \remarks If the quaternion is used to rotate several points (>1) |
| 468 | * then it is much more efficient to first convert it to a 3x3 Matrix. |
| 469 | * Comparison of the operation cost for n transformations: |
| 470 | * - Quaternion2: 30n |
| 471 | * - Via a Matrix3: 24 + 15n |
| 472 | */ |
| 473 | template <class Derived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 474 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3 |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 475 | QuaternionBase<Derived>::_transformVector(const Vector3& v) const |
| 476 | { |
| 477 | // Note that this algorithm comes from the optimization by hand |
| 478 | // of the conversion to a Matrix followed by a Matrix/Vector product. |
| 479 | // It appears to be much faster than the common algorithm found |
| 480 | // in the literature (30 versus 39 flops). It also requires two |
| 481 | // Vector3 as temporaries. |
| 482 | Vector3 uv = this->vec().cross(v); |
| 483 | uv += uv; |
| 484 | return v + this->w() * uv + this->vec().cross(uv); |
| 485 | } |
| 486 | |
| 487 | template<class Derived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 488 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 489 | { |
| 490 | coeffs() = other.coeffs(); |
| 491 | return derived(); |
| 492 | } |
| 493 | |
| 494 | template<class Derived> |
| 495 | template<class OtherDerived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 496 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 497 | { |
| 498 | coeffs() = other.coeffs(); |
| 499 | return derived(); |
| 500 | } |
| 501 | |
| 502 | /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this |
| 503 | */ |
| 504 | template<class Derived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 505 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 506 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 507 | EIGEN_USING_STD_MATH(cos) |
| 508 | EIGEN_USING_STD_MATH(sin) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 509 | Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings |
| 510 | this->w() = cos(ha); |
| 511 | this->vec() = sin(ha) * aa.axis(); |
| 512 | return derived(); |
| 513 | } |
| 514 | |
| 515 | /** Set \c *this from the expression \a xpr: |
| 516 | * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion |
| 517 | * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix |
| 518 | * and \a xpr is converted to a quaternion |
| 519 | */ |
| 520 | |
| 521 | template<class Derived> |
| 522 | template<class MatrixDerived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 523 | EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 524 | { |
| 525 | EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value), |
| 526 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
| 527 | internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived()); |
| 528 | return derived(); |
| 529 | } |
| 530 | |
| 531 | /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to |
| 532 | * be normalized, otherwise the result is undefined. |
| 533 | */ |
| 534 | template<class Derived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 535 | EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3 |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 536 | QuaternionBase<Derived>::toRotationMatrix(void) const |
| 537 | { |
| 538 | // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) |
| 539 | // if not inlined then the cost of the return by value is huge ~ +35%, |
| 540 | // however, not inlining this function is an order of magnitude slower, so |
| 541 | // it has to be inlined, and so the return by value is not an issue |
| 542 | Matrix3 res; |
| 543 | |
| 544 | const Scalar tx = Scalar(2)*this->x(); |
| 545 | const Scalar ty = Scalar(2)*this->y(); |
| 546 | const Scalar tz = Scalar(2)*this->z(); |
| 547 | const Scalar twx = tx*this->w(); |
| 548 | const Scalar twy = ty*this->w(); |
| 549 | const Scalar twz = tz*this->w(); |
| 550 | const Scalar txx = tx*this->x(); |
| 551 | const Scalar txy = ty*this->x(); |
| 552 | const Scalar txz = tz*this->x(); |
| 553 | const Scalar tyy = ty*this->y(); |
| 554 | const Scalar tyz = tz*this->y(); |
| 555 | const Scalar tzz = tz*this->z(); |
| 556 | |
| 557 | res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); |
| 558 | res.coeffRef(0,1) = txy-twz; |
| 559 | res.coeffRef(0,2) = txz+twy; |
| 560 | res.coeffRef(1,0) = txy+twz; |
| 561 | res.coeffRef(1,1) = Scalar(1)-(txx+tzz); |
| 562 | res.coeffRef(1,2) = tyz-twx; |
| 563 | res.coeffRef(2,0) = txz-twy; |
| 564 | res.coeffRef(2,1) = tyz+twx; |
| 565 | res.coeffRef(2,2) = Scalar(1)-(txx+tyy); |
| 566 | |
| 567 | return res; |
| 568 | } |
| 569 | |
| 570 | /** Sets \c *this to be a quaternion representing a rotation between |
| 571 | * the two arbitrary vectors \a a and \a b. In other words, the built |
| 572 | * rotation represent a rotation sending the line of direction \a a |
| 573 | * to the line of direction \a b, both lines passing through the origin. |
| 574 | * |
| 575 | * \returns a reference to \c *this. |
| 576 | * |
| 577 | * Note that the two input vectors do \b not have to be normalized, and |
| 578 | * do not need to have the same norm. |
| 579 | */ |
| 580 | template<class Derived> |
| 581 | template<typename Derived1, typename Derived2> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 582 | EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 583 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 584 | EIGEN_USING_STD_MATH(sqrt) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 585 | Vector3 v0 = a.normalized(); |
| 586 | Vector3 v1 = b.normalized(); |
| 587 | Scalar c = v1.dot(v0); |
| 588 | |
| 589 | // if dot == -1, vectors are nearly opposites |
| 590 | // => accurately compute the rotation axis by computing the |
| 591 | // intersection of the two planes. This is done by solving: |
| 592 | // x^T v0 = 0 |
| 593 | // x^T v1 = 0 |
| 594 | // under the constraint: |
| 595 | // ||x|| = 1 |
| 596 | // which yields a singular value problem |
| 597 | if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision()) |
| 598 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 599 | c = numext::maxi(c,Scalar(-1)); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 600 | Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose(); |
| 601 | JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV); |
| 602 | Vector3 axis = svd.matrixV().col(2); |
| 603 | |
| 604 | Scalar w2 = (Scalar(1)+c)*Scalar(0.5); |
| 605 | this->w() = sqrt(w2); |
| 606 | this->vec() = axis * sqrt(Scalar(1) - w2); |
| 607 | return derived(); |
| 608 | } |
| 609 | Vector3 axis = v0.cross(v1); |
| 610 | Scalar s = sqrt((Scalar(1)+c)*Scalar(2)); |
| 611 | Scalar invs = Scalar(1)/s; |
| 612 | this->vec() = axis * invs; |
| 613 | this->w() = s * Scalar(0.5); |
| 614 | |
| 615 | return derived(); |
| 616 | } |
| 617 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 618 | /** \returns a random unit quaternion following a uniform distribution law on SO(3) |
| 619 | * |
| 620 | * \note The implementation is based on http://planning.cs.uiuc.edu/node198.html |
| 621 | */ |
| 622 | template<typename Scalar, int Options> |
| 623 | EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::UnitRandom() |
| 624 | { |
| 625 | EIGEN_USING_STD_MATH(sqrt) |
| 626 | EIGEN_USING_STD_MATH(sin) |
| 627 | EIGEN_USING_STD_MATH(cos) |
| 628 | const Scalar u1 = internal::random<Scalar>(0, 1), |
| 629 | u2 = internal::random<Scalar>(0, 2*EIGEN_PI), |
| 630 | u3 = internal::random<Scalar>(0, 2*EIGEN_PI); |
| 631 | const Scalar a = sqrt(1 - u1), |
| 632 | b = sqrt(u1); |
| 633 | return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3)); |
| 634 | } |
| 635 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 636 | |
| 637 | /** Returns a quaternion representing a rotation between |
| 638 | * the two arbitrary vectors \a a and \a b. In other words, the built |
| 639 | * rotation represent a rotation sending the line of direction \a a |
| 640 | * to the line of direction \a b, both lines passing through the origin. |
| 641 | * |
| 642 | * \returns resulting quaternion |
| 643 | * |
| 644 | * Note that the two input vectors do \b not have to be normalized, and |
| 645 | * do not need to have the same norm. |
| 646 | */ |
| 647 | template<typename Scalar, int Options> |
| 648 | template<typename Derived1, typename Derived2> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 649 | EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 650 | { |
| 651 | Quaternion quat; |
| 652 | quat.setFromTwoVectors(a, b); |
| 653 | return quat; |
| 654 | } |
| 655 | |
| 656 | |
| 657 | /** \returns the multiplicative inverse of \c *this |
| 658 | * Note that in most cases, i.e., if you simply want the opposite rotation, |
| 659 | * and/or the quaternion is normalized, then it is enough to use the conjugate. |
| 660 | * |
| 661 | * \sa QuaternionBase::conjugate() |
| 662 | */ |
| 663 | template <class Derived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 664 | EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 665 | { |
| 666 | // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? |
| 667 | Scalar n2 = this->squaredNorm(); |
| 668 | if (n2 > Scalar(0)) |
| 669 | return Quaternion<Scalar>(conjugate().coeffs() / n2); |
| 670 | else |
| 671 | { |
| 672 | // return an invalid result to flag the error |
| 673 | return Quaternion<Scalar>(Coefficients::Zero()); |
| 674 | } |
| 675 | } |
| 676 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 677 | // Generic conjugate of a Quaternion |
| 678 | namespace internal { |
| 679 | template<int Arch, class Derived, typename Scalar> struct quat_conj |
| 680 | { |
| 681 | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q){ |
| 682 | return Quaternion<Scalar>(q.w(),-q.x(),-q.y(),-q.z()); |
| 683 | } |
| 684 | }; |
| 685 | } |
| 686 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 687 | /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse |
| 688 | * if the quaternion is normalized. |
| 689 | * The conjugate of a quaternion represents the opposite rotation. |
| 690 | * |
| 691 | * \sa Quaternion2::inverse() |
| 692 | */ |
| 693 | template <class Derived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 694 | EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 695 | QuaternionBase<Derived>::conjugate() const |
| 696 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 697 | return internal::quat_conj<Architecture::Target, Derived, |
| 698 | typename internal::traits<Derived>::Scalar>::run(*this); |
| 699 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 700 | } |
| 701 | |
| 702 | /** \returns the angle (in radian) between two rotations |
| 703 | * \sa dot() |
| 704 | */ |
| 705 | template <class Derived> |
| 706 | template <class OtherDerived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 707 | EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 708 | QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const |
| 709 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 710 | EIGEN_USING_STD_MATH(atan2) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 711 | Quaternion<Scalar> d = (*this) * other.conjugate(); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 712 | return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) ); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 713 | } |
| 714 | |
| 715 | |
| 716 | |
| 717 | /** \returns the spherical linear interpolation between the two quaternions |
| 718 | * \c *this and \a other at the parameter \a t in [0;1]. |
| 719 | * |
| 720 | * This represents an interpolation for a constant motion between \c *this and \a other, |
| 721 | * see also http://en.wikipedia.org/wiki/Slerp. |
| 722 | */ |
| 723 | template <class Derived> |
| 724 | template <class OtherDerived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 725 | EIGEN_DEVICE_FUNC Quaternion<typename internal::traits<Derived>::Scalar> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 726 | QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const |
| 727 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 728 | EIGEN_USING_STD_MATH(acos) |
| 729 | EIGEN_USING_STD_MATH(sin) |
| 730 | const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon(); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 731 | Scalar d = this->dot(other); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 732 | Scalar absD = numext::abs(d); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 733 | |
| 734 | Scalar scale0; |
| 735 | Scalar scale1; |
| 736 | |
| 737 | if(absD>=one) |
| 738 | { |
| 739 | scale0 = Scalar(1) - t; |
| 740 | scale1 = t; |
| 741 | } |
| 742 | else |
| 743 | { |
| 744 | // theta is the angle between the 2 quaternions |
| 745 | Scalar theta = acos(absD); |
| 746 | Scalar sinTheta = sin(theta); |
| 747 | |
| 748 | scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta; |
| 749 | scale1 = sin( ( t * theta) ) / sinTheta; |
| 750 | } |
| 751 | if(d<Scalar(0)) scale1 = -scale1; |
| 752 | |
| 753 | return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs()); |
| 754 | } |
| 755 | |
| 756 | namespace internal { |
| 757 | |
| 758 | // set from a rotation matrix |
| 759 | template<typename Other> |
| 760 | struct quaternionbase_assign_impl<Other,3,3> |
| 761 | { |
| 762 | typedef typename Other::Scalar Scalar; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 763 | template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 764 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 765 | const typename internal::nested_eval<Other,2>::type mat(a_mat); |
| 766 | EIGEN_USING_STD_MATH(sqrt) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 767 | // This algorithm comes from "Quaternion Calculus and Fast Animation", |
| 768 | // Ken Shoemake, 1987 SIGGRAPH course notes |
| 769 | Scalar t = mat.trace(); |
| 770 | if (t > Scalar(0)) |
| 771 | { |
| 772 | t = sqrt(t + Scalar(1.0)); |
| 773 | q.w() = Scalar(0.5)*t; |
| 774 | t = Scalar(0.5)/t; |
| 775 | q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; |
| 776 | q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; |
| 777 | q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; |
| 778 | } |
| 779 | else |
| 780 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 781 | Index i = 0; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 782 | if (mat.coeff(1,1) > mat.coeff(0,0)) |
| 783 | i = 1; |
| 784 | if (mat.coeff(2,2) > mat.coeff(i,i)) |
| 785 | i = 2; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 786 | Index j = (i+1)%3; |
| 787 | Index k = (j+1)%3; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 788 | |
| 789 | t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); |
| 790 | q.coeffs().coeffRef(i) = Scalar(0.5) * t; |
| 791 | t = Scalar(0.5)/t; |
| 792 | q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; |
| 793 | q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; |
| 794 | q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; |
| 795 | } |
| 796 | } |
| 797 | }; |
| 798 | |
| 799 | // set from a vector of coefficients assumed to be a quaternion |
| 800 | template<typename Other> |
| 801 | struct quaternionbase_assign_impl<Other,4,1> |
| 802 | { |
| 803 | typedef typename Other::Scalar Scalar; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 804 | template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 805 | { |
| 806 | q.coeffs() = vec; |
| 807 | } |
| 808 | }; |
| 809 | |
| 810 | } // end namespace internal |
| 811 | |
| 812 | } // end namespace Eigen |
| 813 | |
| 814 | #endif // EIGEN_QUATERNION_H |