Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/Eigen/src/Geometry/Quaternion.h b/Eigen/src/Geometry/Quaternion.h
new file mode 100644
index 0000000..93056f6
--- /dev/null
+++ b/Eigen/src/Geometry/Quaternion.h
@@ -0,0 +1,776 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_QUATERNION_H
+#define EIGEN_QUATERNION_H
+namespace Eigen { 
+
+
+/***************************************************************************
+* Definition of QuaternionBase<Derived>
+* The implementation is at the end of the file
+***************************************************************************/
+
+namespace internal {
+template<typename Other,
+         int OtherRows=Other::RowsAtCompileTime,
+         int OtherCols=Other::ColsAtCompileTime>
+struct quaternionbase_assign_impl;
+}
+
+/** \geometry_module \ingroup Geometry_Module
+  * \class QuaternionBase
+  * \brief Base class for quaternion expressions
+  * \tparam Derived derived type (CRTP)
+  * \sa class Quaternion
+  */
+template<class Derived>
+class QuaternionBase : public RotationBase<Derived, 3>
+{
+  typedef RotationBase<Derived, 3> Base;
+public:
+  using Base::operator*;
+  using Base::derived;
+
+  typedef typename internal::traits<Derived>::Scalar Scalar;
+  typedef typename NumTraits<Scalar>::Real RealScalar;
+  typedef typename internal::traits<Derived>::Coefficients Coefficients;
+  enum {
+    Flags = Eigen::internal::traits<Derived>::Flags
+  };
+
+ // typedef typename Matrix<Scalar,4,1> Coefficients;
+  /** the type of a 3D vector */
+  typedef Matrix<Scalar,3,1> Vector3;
+  /** the equivalent rotation matrix type */
+  typedef Matrix<Scalar,3,3> Matrix3;
+  /** the equivalent angle-axis type */
+  typedef AngleAxis<Scalar> AngleAxisType;
+
+
+
+  /** \returns the \c x coefficient */
+  inline Scalar x() const { return this->derived().coeffs().coeff(0); }
+  /** \returns the \c y coefficient */
+  inline Scalar y() const { return this->derived().coeffs().coeff(1); }
+  /** \returns the \c z coefficient */
+  inline Scalar z() const { return this->derived().coeffs().coeff(2); }
+  /** \returns the \c w coefficient */
+  inline Scalar w() const { return this->derived().coeffs().coeff(3); }
+
+  /** \returns a reference to the \c x coefficient */
+  inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
+  /** \returns a reference to the \c y coefficient */
+  inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
+  /** \returns a reference to the \c z coefficient */
+  inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
+  /** \returns a reference to the \c w coefficient */
+  inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
+
+  /** \returns a read-only vector expression of the imaginary part (x,y,z) */
+  inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
+
+  /** \returns a vector expression of the imaginary part (x,y,z) */
+  inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
+
+  /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
+  inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
+
+  /** \returns a vector expression of the coefficients (x,y,z,w) */
+  inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
+
+  EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
+  template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
+
+// disabled this copy operator as it is giving very strange compilation errors when compiling
+// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
+// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
+// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
+//  Derived& operator=(const QuaternionBase& other)
+//  { return operator=<Derived>(other); }
+
+  Derived& operator=(const AngleAxisType& aa);
+  template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
+
+  /** \returns a quaternion representing an identity rotation
+    * \sa MatrixBase::Identity()
+    */
+  static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
+
+  /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
+    */
+  inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
+
+  /** \returns the squared norm of the quaternion's coefficients
+    * \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
+    */
+  inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
+
+  /** \returns the norm of the quaternion's coefficients
+    * \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
+    */
+  inline Scalar norm() const { return coeffs().norm(); }
+
+  /** Normalizes the quaternion \c *this
+    * \sa normalized(), MatrixBase::normalize() */
+  inline void normalize() { coeffs().normalize(); }
+  /** \returns a normalized copy of \c *this
+    * \sa normalize(), MatrixBase::normalized() */
+  inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
+
+    /** \returns the dot product of \c *this and \a other
+    * Geometrically speaking, the dot product of two unit quaternions
+    * corresponds to the cosine of half the angle between the two rotations.
+    * \sa angularDistance()
+    */
+  template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
+
+  template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
+
+  /** \returns an equivalent 3x3 rotation matrix */
+  Matrix3 toRotationMatrix() const;
+
+  /** \returns the quaternion which transform \a a into \a b through a rotation */
+  template<typename Derived1, typename Derived2>
+  Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
+
+  template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
+  template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
+
+  /** \returns the quaternion describing the inverse rotation */
+  Quaternion<Scalar> inverse() const;
+
+  /** \returns the conjugated quaternion */
+  Quaternion<Scalar> conjugate() const;
+
+  template<class OtherDerived> Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
+
+  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
+    * determined by \a prec.
+    *
+    * \sa MatrixBase::isApprox() */
+  template<class OtherDerived>
+  bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
+  { return coeffs().isApprox(other.coeffs(), prec); }
+
+	/** return the result vector of \a v through the rotation*/
+  EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
+
+  /** \returns \c *this with scalar type casted to \a NewScalarType
+    *
+    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+    * then this function smartly returns a const reference to \c *this.
+    */
+  template<typename NewScalarType>
+  inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
+  {
+    return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
+  }
+
+#ifdef EIGEN_QUATERNIONBASE_PLUGIN
+# include EIGEN_QUATERNIONBASE_PLUGIN
+#endif
+};
+
+/***************************************************************************
+* Definition/implementation of Quaternion<Scalar>
+***************************************************************************/
+
+/** \geometry_module \ingroup Geometry_Module
+  *
+  * \class Quaternion
+  *
+  * \brief The quaternion class used to represent 3D orientations and rotations
+  *
+  * \tparam _Scalar the scalar type, i.e., the type of the coefficients
+  * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
+  *
+  * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
+  * orientations and rotations of objects in three dimensions. Compared to other representations
+  * like Euler angles or 3x3 matrices, quaternions offer the following advantages:
+  * \li \b compact storage (4 scalars)
+  * \li \b efficient to compose (28 flops),
+  * \li \b stable spherical interpolation
+  *
+  * The following two typedefs are provided for convenience:
+  * \li \c Quaternionf for \c float
+  * \li \c Quaterniond for \c double
+  *
+  * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
+  *
+  * \sa  class AngleAxis, class Transform
+  */
+
+namespace internal {
+template<typename _Scalar,int _Options>
+struct traits<Quaternion<_Scalar,_Options> >
+{
+  typedef Quaternion<_Scalar,_Options> PlainObject;
+  typedef _Scalar Scalar;
+  typedef Matrix<_Scalar,4,1,_Options> Coefficients;
+  enum{
+    IsAligned = internal::traits<Coefficients>::Flags & AlignedBit,
+    Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
+  };
+};
+}
+
+template<typename _Scalar, int _Options>
+class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
+{
+  typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
+  enum { IsAligned = internal::traits<Quaternion>::IsAligned };
+
+public:
+  typedef _Scalar Scalar;
+
+  EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
+  using Base::operator*=;
+
+  typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
+  typedef typename Base::AngleAxisType AngleAxisType;
+
+  /** Default constructor leaving the quaternion uninitialized. */
+  inline Quaternion() {}
+
+  /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
+    * its four coefficients \a w, \a x, \a y and \a z.
+    *
+    * \warning Note the order of the arguments: the real \a w coefficient first,
+    * while internally the coefficients are stored in the following order:
+    * [\c x, \c y, \c z, \c w]
+    */
+  inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
+
+  /** Constructs and initialize a quaternion from the array data */
+  inline Quaternion(const Scalar* data) : m_coeffs(data) {}
+
+  /** Copy constructor */
+  template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
+
+  /** Constructs and initializes a quaternion from the angle-axis \a aa */
+  explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
+
+  /** Constructs and initializes a quaternion from either:
+    *  - a rotation matrix expression,
+    *  - a 4D vector expression representing quaternion coefficients.
+    */
+  template<typename Derived>
+  explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
+
+  /** Explicit copy constructor with scalar conversion */
+  template<typename OtherScalar, int OtherOptions>
+  explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
+  { m_coeffs = other.coeffs().template cast<Scalar>(); }
+
+  template<typename Derived1, typename Derived2>
+  static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
+
+  inline Coefficients& coeffs() { return m_coeffs;}
+  inline const Coefficients& coeffs() const { return m_coeffs;}
+
+  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned)
+
+protected:
+  Coefficients m_coeffs;
+  
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+    static EIGEN_STRONG_INLINE void _check_template_params()
+    {
+      EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
+        INVALID_MATRIX_TEMPLATE_PARAMETERS)
+    }
+#endif
+};
+
+/** \ingroup Geometry_Module
+  * single precision quaternion type */
+typedef Quaternion<float> Quaternionf;
+/** \ingroup Geometry_Module
+  * double precision quaternion type */
+typedef Quaternion<double> Quaterniond;
+
+/***************************************************************************
+* Specialization of Map<Quaternion<Scalar>>
+***************************************************************************/
+
+namespace internal {
+  template<typename _Scalar, int _Options>
+  struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
+  {
+    typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
+  };
+}
+
+namespace internal {
+  template<typename _Scalar, int _Options>
+  struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
+  {
+    typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
+    typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
+    enum {
+      Flags = TraitsBase::Flags & ~LvalueBit
+    };
+  };
+}
+
+/** \ingroup Geometry_Module
+  * \brief Quaternion expression mapping a constant memory buffer
+  *
+  * \tparam _Scalar the type of the Quaternion coefficients
+  * \tparam _Options see class Map
+  *
+  * This is a specialization of class Map for Quaternion. This class allows to view
+  * a 4 scalar memory buffer as an Eigen's Quaternion object.
+  *
+  * \sa class Map, class Quaternion, class QuaternionBase
+  */
+template<typename _Scalar, int _Options>
+class Map<const Quaternion<_Scalar>, _Options >
+  : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
+{
+    typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
+
+  public:
+    typedef _Scalar Scalar;
+    typedef typename internal::traits<Map>::Coefficients Coefficients;
+    EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
+    using Base::operator*=;
+
+    /** Constructs a Mapped Quaternion object from the pointer \a coeffs
+      *
+      * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
+      * \code *coeffs == {x, y, z, w} \endcode
+      *
+      * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
+    EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
+
+    inline const Coefficients& coeffs() const { return m_coeffs;}
+
+  protected:
+    const Coefficients m_coeffs;
+};
+
+/** \ingroup Geometry_Module
+  * \brief Expression of a quaternion from a memory buffer
+  *
+  * \tparam _Scalar the type of the Quaternion coefficients
+  * \tparam _Options see class Map
+  *
+  * This is a specialization of class Map for Quaternion. This class allows to view
+  * a 4 scalar memory buffer as an Eigen's  Quaternion object.
+  *
+  * \sa class Map, class Quaternion, class QuaternionBase
+  */
+template<typename _Scalar, int _Options>
+class Map<Quaternion<_Scalar>, _Options >
+  : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
+{
+    typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
+
+  public:
+    typedef _Scalar Scalar;
+    typedef typename internal::traits<Map>::Coefficients Coefficients;
+    EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
+    using Base::operator*=;
+
+    /** Constructs a Mapped Quaternion object from the pointer \a coeffs
+      *
+      * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
+      * \code *coeffs == {x, y, z, w} \endcode
+      *
+      * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
+    EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
+
+    inline Coefficients& coeffs() { return m_coeffs; }
+    inline const Coefficients& coeffs() const { return m_coeffs; }
+
+  protected:
+    Coefficients m_coeffs;
+};
+
+/** \ingroup Geometry_Module
+  * Map an unaligned array of single precision scalars as a quaternion */
+typedef Map<Quaternion<float>, 0>         QuaternionMapf;
+/** \ingroup Geometry_Module
+  * Map an unaligned array of double precision scalars as a quaternion */
+typedef Map<Quaternion<double>, 0>        QuaternionMapd;
+/** \ingroup Geometry_Module
+  * Map a 16-byte aligned array of single precision scalars as a quaternion */
+typedef Map<Quaternion<float>, Aligned>   QuaternionMapAlignedf;
+/** \ingroup Geometry_Module
+  * Map a 16-byte aligned array of double precision scalars as a quaternion */
+typedef Map<Quaternion<double>, Aligned>  QuaternionMapAlignedd;
+
+/***************************************************************************
+* Implementation of QuaternionBase methods
+***************************************************************************/
+
+// Generic Quaternion * Quaternion product
+// This product can be specialized for a given architecture via the Arch template argument.
+namespace internal {
+template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
+{
+  static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
+    return Quaternion<Scalar>
+    (
+      a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
+      a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
+      a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
+      a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
+    );
+  }
+};
+}
+
+/** \returns the concatenation of two rotations as a quaternion-quaternion product */
+template <class Derived>
+template <class OtherDerived>
+EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
+QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
+{
+  EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
+   YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+  return internal::quat_product<Architecture::Target, Derived, OtherDerived,
+                         typename internal::traits<Derived>::Scalar,
+                         internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other);
+}
+
+/** \sa operator*(Quaternion) */
+template <class Derived>
+template <class OtherDerived>
+EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
+{
+  derived() = derived() * other.derived();
+  return derived();
+}
+
+/** Rotation of a vector by a quaternion.
+  * \remarks If the quaternion is used to rotate several points (>1)
+  * then it is much more efficient to first convert it to a 3x3 Matrix.
+  * Comparison of the operation cost for n transformations:
+  *   - Quaternion2:    30n
+  *   - Via a Matrix3: 24 + 15n
+  */
+template <class Derived>
+EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
+QuaternionBase<Derived>::_transformVector(const Vector3& v) const
+{
+    // Note that this algorithm comes from the optimization by hand
+    // of the conversion to a Matrix followed by a Matrix/Vector product.
+    // It appears to be much faster than the common algorithm found
+    // in the literature (30 versus 39 flops). It also requires two
+    // Vector3 as temporaries.
+    Vector3 uv = this->vec().cross(v);
+    uv += uv;
+    return v + this->w() * uv + this->vec().cross(uv);
+}
+
+template<class Derived>
+EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
+{
+  coeffs() = other.coeffs();
+  return derived();
+}
+
+template<class Derived>
+template<class OtherDerived>
+EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
+{
+  coeffs() = other.coeffs();
+  return derived();
+}
+
+/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
+  */
+template<class Derived>
+EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
+{
+  using std::cos;
+  using std::sin;
+  Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
+  this->w() = cos(ha);
+  this->vec() = sin(ha) * aa.axis();
+  return derived();
+}
+
+/** Set \c *this from the expression \a xpr:
+  *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
+  *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
+  *     and \a xpr is converted to a quaternion
+  */
+
+template<class Derived>
+template<class MatrixDerived>
+inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
+{
+  EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
+   YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+  internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
+  return derived();
+}
+
+/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
+  * be normalized, otherwise the result is undefined.
+  */
+template<class Derived>
+inline typename QuaternionBase<Derived>::Matrix3
+QuaternionBase<Derived>::toRotationMatrix(void) const
+{
+  // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
+  // if not inlined then the cost of the return by value is huge ~ +35%,
+  // however, not inlining this function is an order of magnitude slower, so
+  // it has to be inlined, and so the return by value is not an issue
+  Matrix3 res;
+
+  const Scalar tx  = Scalar(2)*this->x();
+  const Scalar ty  = Scalar(2)*this->y();
+  const Scalar tz  = Scalar(2)*this->z();
+  const Scalar twx = tx*this->w();
+  const Scalar twy = ty*this->w();
+  const Scalar twz = tz*this->w();
+  const Scalar txx = tx*this->x();
+  const Scalar txy = ty*this->x();
+  const Scalar txz = tz*this->x();
+  const Scalar tyy = ty*this->y();
+  const Scalar tyz = tz*this->y();
+  const Scalar tzz = tz*this->z();
+
+  res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
+  res.coeffRef(0,1) = txy-twz;
+  res.coeffRef(0,2) = txz+twy;
+  res.coeffRef(1,0) = txy+twz;
+  res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
+  res.coeffRef(1,2) = tyz-twx;
+  res.coeffRef(2,0) = txz-twy;
+  res.coeffRef(2,1) = tyz+twx;
+  res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
+
+  return res;
+}
+
+/** Sets \c *this to be a quaternion representing a rotation between
+  * the two arbitrary vectors \a a and \a b. In other words, the built
+  * rotation represent a rotation sending the line of direction \a a
+  * to the line of direction \a b, both lines passing through the origin.
+  *
+  * \returns a reference to \c *this.
+  *
+  * Note that the two input vectors do \b not have to be normalized, and
+  * do not need to have the same norm.
+  */
+template<class Derived>
+template<typename Derived1, typename Derived2>
+inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
+{
+  using std::max;
+  using std::sqrt;
+  Vector3 v0 = a.normalized();
+  Vector3 v1 = b.normalized();
+  Scalar c = v1.dot(v0);
+
+  // if dot == -1, vectors are nearly opposites
+  // => accurately compute the rotation axis by computing the
+  //    intersection of the two planes. This is done by solving:
+  //       x^T v0 = 0
+  //       x^T v1 = 0
+  //    under the constraint:
+  //       ||x|| = 1
+  //    which yields a singular value problem
+  if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
+  {
+    c = (max)(c,Scalar(-1));
+    Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
+    JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
+    Vector3 axis = svd.matrixV().col(2);
+
+    Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
+    this->w() = sqrt(w2);
+    this->vec() = axis * sqrt(Scalar(1) - w2);
+    return derived();
+  }
+  Vector3 axis = v0.cross(v1);
+  Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
+  Scalar invs = Scalar(1)/s;
+  this->vec() = axis * invs;
+  this->w() = s * Scalar(0.5);
+
+  return derived();
+}
+
+
+/** Returns a quaternion representing a rotation between
+  * the two arbitrary vectors \a a and \a b. In other words, the built
+  * rotation represent a rotation sending the line of direction \a a
+  * to the line of direction \a b, both lines passing through the origin.
+  *
+  * \returns resulting quaternion
+  *
+  * Note that the two input vectors do \b not have to be normalized, and
+  * do not need to have the same norm.
+  */
+template<typename Scalar, int Options>
+template<typename Derived1, typename Derived2>
+Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
+{
+    Quaternion quat;
+    quat.setFromTwoVectors(a, b);
+    return quat;
+}
+
+
+/** \returns the multiplicative inverse of \c *this
+  * Note that in most cases, i.e., if you simply want the opposite rotation,
+  * and/or the quaternion is normalized, then it is enough to use the conjugate.
+  *
+  * \sa QuaternionBase::conjugate()
+  */
+template <class Derived>
+inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
+{
+  // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ??
+  Scalar n2 = this->squaredNorm();
+  if (n2 > Scalar(0))
+    return Quaternion<Scalar>(conjugate().coeffs() / n2);
+  else
+  {
+    // return an invalid result to flag the error
+    return Quaternion<Scalar>(Coefficients::Zero());
+  }
+}
+
+/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
+  * if the quaternion is normalized.
+  * The conjugate of a quaternion represents the opposite rotation.
+  *
+  * \sa Quaternion2::inverse()
+  */
+template <class Derived>
+inline Quaternion<typename internal::traits<Derived>::Scalar>
+QuaternionBase<Derived>::conjugate() const
+{
+  return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
+}
+
+/** \returns the angle (in radian) between two rotations
+  * \sa dot()
+  */
+template <class Derived>
+template <class OtherDerived>
+inline typename internal::traits<Derived>::Scalar
+QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
+{
+  using std::atan2;
+  using std::abs;
+  Quaternion<Scalar> d = (*this) * other.conjugate();
+  return Scalar(2) * atan2( d.vec().norm(), abs(d.w()) );
+}
+
+ 
+    
+/** \returns the spherical linear interpolation between the two quaternions
+  * \c *this and \a other at the parameter \a t in [0;1].
+  * 
+  * This represents an interpolation for a constant motion between \c *this and \a other,
+  * see also http://en.wikipedia.org/wiki/Slerp.
+  */
+template <class Derived>
+template <class OtherDerived>
+Quaternion<typename internal::traits<Derived>::Scalar>
+QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const
+{
+  using std::acos;
+  using std::sin;
+  using std::abs;
+  static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
+  Scalar d = this->dot(other);
+  Scalar absD = abs(d);
+
+  Scalar scale0;
+  Scalar scale1;
+
+  if(absD>=one)
+  {
+    scale0 = Scalar(1) - t;
+    scale1 = t;
+  }
+  else
+  {
+    // theta is the angle between the 2 quaternions
+    Scalar theta = acos(absD);
+    Scalar sinTheta = sin(theta);
+
+    scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
+    scale1 = sin( ( t * theta) ) / sinTheta;
+  }
+  if(d<Scalar(0)) scale1 = -scale1;
+
+  return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
+}
+
+namespace internal {
+
+// set from a rotation matrix
+template<typename Other>
+struct quaternionbase_assign_impl<Other,3,3>
+{
+  typedef typename Other::Scalar Scalar;
+  typedef DenseIndex Index;
+  template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat)
+  {
+    using std::sqrt;
+    // This algorithm comes from  "Quaternion Calculus and Fast Animation",
+    // Ken Shoemake, 1987 SIGGRAPH course notes
+    Scalar t = mat.trace();
+    if (t > Scalar(0))
+    {
+      t = sqrt(t + Scalar(1.0));
+      q.w() = Scalar(0.5)*t;
+      t = Scalar(0.5)/t;
+      q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
+      q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
+      q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
+    }
+    else
+    {
+      DenseIndex i = 0;
+      if (mat.coeff(1,1) > mat.coeff(0,0))
+        i = 1;
+      if (mat.coeff(2,2) > mat.coeff(i,i))
+        i = 2;
+      DenseIndex j = (i+1)%3;
+      DenseIndex k = (j+1)%3;
+
+      t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
+      q.coeffs().coeffRef(i) = Scalar(0.5) * t;
+      t = Scalar(0.5)/t;
+      q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
+      q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
+      q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
+    }
+  }
+};
+
+// set from a vector of coefficients assumed to be a quaternion
+template<typename Other>
+struct quaternionbase_assign_impl<Other,4,1>
+{
+  typedef typename Other::Scalar Scalar;
+  template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec)
+  {
+    q.coeffs() = vec;
+  }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_QUATERNION_H