Parker Schuh | ebf887e | 2016-01-10 18:04:04 -0800 | [diff] [blame] | 1 | /* |
| 2 | * jfdctfst.c |
| 3 | * |
| 4 | * Copyright (C) 1994-1996, Thomas G. Lane. |
| 5 | * Modified 2003-2009 by Guido Vollbeding. |
| 6 | * This file is part of the Independent JPEG Group's software. |
| 7 | * For conditions of distribution and use, see the accompanying README file. |
| 8 | * |
| 9 | * This file contains a fast, not so accurate integer implementation of the |
| 10 | * forward DCT (Discrete Cosine Transform). |
| 11 | * |
| 12 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
| 13 | * on each column. Direct algorithms are also available, but they are |
| 14 | * much more complex and seem not to be any faster when reduced to code. |
| 15 | * |
| 16 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
| 17 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
| 18 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
| 19 | * JPEG textbook (see REFERENCES section in file README). The following code |
| 20 | * is based directly on figure 4-8 in P&M. |
| 21 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
| 22 | * possible to arrange the computation so that many of the multiplies are |
| 23 | * simple scalings of the final outputs. These multiplies can then be |
| 24 | * folded into the multiplications or divisions by the JPEG quantization |
| 25 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
| 26 | * to be done in the DCT itself. |
| 27 | * The primary disadvantage of this method is that with fixed-point math, |
| 28 | * accuracy is lost due to imprecise representation of the scaled |
| 29 | * quantization values. The smaller the quantization table entry, the less |
| 30 | * precise the scaled value, so this implementation does worse with high- |
| 31 | * quality-setting files than with low-quality ones. |
| 32 | */ |
| 33 | |
| 34 | #define JPEG_INTERNALS |
| 35 | #include "jinclude.h" |
| 36 | #include "jpeglib.h" |
| 37 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
| 38 | |
| 39 | #ifdef DCT_IFAST_SUPPORTED |
| 40 | |
| 41 | |
| 42 | /* |
| 43 | * This module is specialized to the case DCTSIZE = 8. |
| 44 | */ |
| 45 | |
| 46 | #if DCTSIZE != 8 |
| 47 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
| 48 | #endif |
| 49 | |
| 50 | |
| 51 | /* Scaling decisions are generally the same as in the LL&M algorithm; |
| 52 | * see jfdctint.c for more details. However, we choose to descale |
| 53 | * (right shift) multiplication products as soon as they are formed, |
| 54 | * rather than carrying additional fractional bits into subsequent additions. |
| 55 | * This compromises accuracy slightly, but it lets us save a few shifts. |
| 56 | * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) |
| 57 | * everywhere except in the multiplications proper; this saves a good deal |
| 58 | * of work on 16-bit-int machines. |
| 59 | * |
| 60 | * Again to save a few shifts, the intermediate results between pass 1 and |
| 61 | * pass 2 are not upscaled, but are represented only to integral precision. |
| 62 | * |
| 63 | * A final compromise is to represent the multiplicative constants to only |
| 64 | * 8 fractional bits, rather than 13. This saves some shifting work on some |
| 65 | * machines, and may also reduce the cost of multiplication (since there |
| 66 | * are fewer one-bits in the constants). |
| 67 | */ |
| 68 | |
| 69 | #define CONST_BITS 8 |
| 70 | |
| 71 | |
| 72 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
| 73 | * causing a lot of useless floating-point operations at run time. |
| 74 | * To get around this we use the following pre-calculated constants. |
| 75 | * If you change CONST_BITS you may want to add appropriate values. |
| 76 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
| 77 | */ |
| 78 | |
| 79 | #if CONST_BITS == 8 |
| 80 | #define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */ |
| 81 | #define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */ |
| 82 | #define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */ |
| 83 | #define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */ |
| 84 | #else |
| 85 | #define FIX_0_382683433 FIX(0.382683433) |
| 86 | #define FIX_0_541196100 FIX(0.541196100) |
| 87 | #define FIX_0_707106781 FIX(0.707106781) |
| 88 | #define FIX_1_306562965 FIX(1.306562965) |
| 89 | #endif |
| 90 | |
| 91 | |
| 92 | /* We can gain a little more speed, with a further compromise in accuracy, |
| 93 | * by omitting the addition in a descaling shift. This yields an incorrectly |
| 94 | * rounded result half the time... |
| 95 | */ |
| 96 | |
| 97 | #ifndef USE_ACCURATE_ROUNDING |
| 98 | #undef DESCALE |
| 99 | #define DESCALE(x,n) RIGHT_SHIFT(x, n) |
| 100 | #endif |
| 101 | |
| 102 | |
| 103 | /* Multiply a DCTELEM variable by an INT32 constant, and immediately |
| 104 | * descale to yield a DCTELEM result. |
| 105 | */ |
| 106 | |
| 107 | #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) |
| 108 | |
| 109 | |
| 110 | /* |
| 111 | * Perform the forward DCT on one block of samples. |
| 112 | */ |
| 113 | |
| 114 | GLOBAL(void) |
| 115 | jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 116 | { |
| 117 | DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
| 118 | DCTELEM tmp10, tmp11, tmp12, tmp13; |
| 119 | DCTELEM z1, z2, z3, z4, z5, z11, z13; |
| 120 | DCTELEM *dataptr; |
| 121 | JSAMPROW elemptr; |
| 122 | int ctr; |
| 123 | SHIFT_TEMPS |
| 124 | |
| 125 | /* Pass 1: process rows. */ |
| 126 | |
| 127 | dataptr = data; |
| 128 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
| 129 | elemptr = sample_data[ctr] + start_col; |
| 130 | |
| 131 | /* Load data into workspace */ |
| 132 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); |
| 133 | tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); |
| 134 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); |
| 135 | tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); |
| 136 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); |
| 137 | tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); |
| 138 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); |
| 139 | tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); |
| 140 | |
| 141 | /* Even part */ |
| 142 | |
| 143 | tmp10 = tmp0 + tmp3; /* phase 2 */ |
| 144 | tmp13 = tmp0 - tmp3; |
| 145 | tmp11 = tmp1 + tmp2; |
| 146 | tmp12 = tmp1 - tmp2; |
| 147 | |
| 148 | /* Apply unsigned->signed conversion */ |
| 149 | dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */ |
| 150 | dataptr[4] = tmp10 - tmp11; |
| 151 | |
| 152 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ |
| 153 | dataptr[2] = tmp13 + z1; /* phase 5 */ |
| 154 | dataptr[6] = tmp13 - z1; |
| 155 | |
| 156 | /* Odd part */ |
| 157 | |
| 158 | tmp10 = tmp4 + tmp5; /* phase 2 */ |
| 159 | tmp11 = tmp5 + tmp6; |
| 160 | tmp12 = tmp6 + tmp7; |
| 161 | |
| 162 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ |
| 163 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ |
| 164 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ |
| 165 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ |
| 166 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ |
| 167 | |
| 168 | z11 = tmp7 + z3; /* phase 5 */ |
| 169 | z13 = tmp7 - z3; |
| 170 | |
| 171 | dataptr[5] = z13 + z2; /* phase 6 */ |
| 172 | dataptr[3] = z13 - z2; |
| 173 | dataptr[1] = z11 + z4; |
| 174 | dataptr[7] = z11 - z4; |
| 175 | |
| 176 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 177 | } |
| 178 | |
| 179 | /* Pass 2: process columns. */ |
| 180 | |
| 181 | dataptr = data; |
| 182 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 183 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
| 184 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
| 185 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
| 186 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
| 187 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
| 188 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
| 189 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
| 190 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
| 191 | |
| 192 | /* Even part */ |
| 193 | |
| 194 | tmp10 = tmp0 + tmp3; /* phase 2 */ |
| 195 | tmp13 = tmp0 - tmp3; |
| 196 | tmp11 = tmp1 + tmp2; |
| 197 | tmp12 = tmp1 - tmp2; |
| 198 | |
| 199 | dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ |
| 200 | dataptr[DCTSIZE*4] = tmp10 - tmp11; |
| 201 | |
| 202 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ |
| 203 | dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ |
| 204 | dataptr[DCTSIZE*6] = tmp13 - z1; |
| 205 | |
| 206 | /* Odd part */ |
| 207 | |
| 208 | tmp10 = tmp4 + tmp5; /* phase 2 */ |
| 209 | tmp11 = tmp5 + tmp6; |
| 210 | tmp12 = tmp6 + tmp7; |
| 211 | |
| 212 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ |
| 213 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ |
| 214 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ |
| 215 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ |
| 216 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ |
| 217 | |
| 218 | z11 = tmp7 + z3; /* phase 5 */ |
| 219 | z13 = tmp7 - z3; |
| 220 | |
| 221 | dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ |
| 222 | dataptr[DCTSIZE*3] = z13 - z2; |
| 223 | dataptr[DCTSIZE*1] = z11 + z4; |
| 224 | dataptr[DCTSIZE*7] = z11 - z4; |
| 225 | |
| 226 | dataptr++; /* advance pointer to next column */ |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | #endif /* DCT_IFAST_SUPPORTED */ |