Austin Schuh | a273376 | 2015-09-06 17:46:50 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2000-2007 Niels Provos <provos@citi.umich.edu> |
| 3 | * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * 3. The name of the author may not be used to endorse or promote products |
| 14 | * derived from this software without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| 17 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 18 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 19 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 20 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 21 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 22 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 23 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 25 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 26 | */ |
| 27 | #include "event2/event-config.h" |
| 28 | |
| 29 | #ifdef WIN32 |
| 30 | #include <winsock2.h> |
| 31 | #define WIN32_LEAN_AND_MEAN |
| 32 | #include <windows.h> |
| 33 | #undef WIN32_LEAN_AND_MEAN |
| 34 | #endif |
| 35 | #include <sys/types.h> |
| 36 | #if !defined(WIN32) && defined(_EVENT_HAVE_SYS_TIME_H) |
| 37 | #include <sys/time.h> |
| 38 | #endif |
| 39 | #include <sys/queue.h> |
| 40 | #ifdef _EVENT_HAVE_SYS_SOCKET_H |
| 41 | #include <sys/socket.h> |
| 42 | #endif |
| 43 | #include <stdio.h> |
| 44 | #include <stdlib.h> |
| 45 | #ifdef _EVENT_HAVE_UNISTD_H |
| 46 | #include <unistd.h> |
| 47 | #endif |
| 48 | #ifdef _EVENT_HAVE_SYS_EVENTFD_H |
| 49 | #include <sys/eventfd.h> |
| 50 | #endif |
| 51 | #include <ctype.h> |
| 52 | #include <errno.h> |
| 53 | #include <signal.h> |
| 54 | #include <string.h> |
| 55 | #include <time.h> |
| 56 | |
| 57 | #include "event2/event.h" |
| 58 | #include "event2/event_struct.h" |
| 59 | #include "event2/event_compat.h" |
| 60 | #include "event-internal.h" |
| 61 | #include "defer-internal.h" |
| 62 | #include "evthread-internal.h" |
| 63 | #include "event2/thread.h" |
| 64 | #include "event2/util.h" |
| 65 | #include "log-internal.h" |
| 66 | #include "evmap-internal.h" |
| 67 | #include "iocp-internal.h" |
| 68 | #include "changelist-internal.h" |
| 69 | #include "ht-internal.h" |
| 70 | #include "util-internal.h" |
| 71 | |
| 72 | #ifdef _EVENT_HAVE_EVENT_PORTS |
| 73 | extern const struct eventop evportops; |
| 74 | #endif |
| 75 | #ifdef _EVENT_HAVE_SELECT |
| 76 | extern const struct eventop selectops; |
| 77 | #endif |
| 78 | #ifdef _EVENT_HAVE_POLL |
| 79 | extern const struct eventop pollops; |
| 80 | #endif |
| 81 | #ifdef _EVENT_HAVE_EPOLL |
| 82 | extern const struct eventop epollops; |
| 83 | #endif |
| 84 | #ifdef _EVENT_HAVE_WORKING_KQUEUE |
| 85 | extern const struct eventop kqops; |
| 86 | #endif |
| 87 | #ifdef _EVENT_HAVE_DEVPOLL |
| 88 | extern const struct eventop devpollops; |
| 89 | #endif |
| 90 | #ifdef WIN32 |
| 91 | extern const struct eventop win32ops; |
| 92 | #endif |
| 93 | |
| 94 | /* Array of backends in order of preference. */ |
| 95 | static const struct eventop *eventops[] = { |
| 96 | #ifdef _EVENT_HAVE_EVENT_PORTS |
| 97 | &evportops, |
| 98 | #endif |
| 99 | #ifdef _EVENT_HAVE_WORKING_KQUEUE |
| 100 | &kqops, |
| 101 | #endif |
| 102 | #ifdef _EVENT_HAVE_EPOLL |
| 103 | &epollops, |
| 104 | #endif |
| 105 | #ifdef _EVENT_HAVE_DEVPOLL |
| 106 | &devpollops, |
| 107 | #endif |
| 108 | #ifdef _EVENT_HAVE_POLL |
| 109 | &pollops, |
| 110 | #endif |
| 111 | #ifdef _EVENT_HAVE_SELECT |
| 112 | &selectops, |
| 113 | #endif |
| 114 | #ifdef WIN32 |
| 115 | &win32ops, |
| 116 | #endif |
| 117 | NULL |
| 118 | }; |
| 119 | |
| 120 | /* Global state; deprecated */ |
| 121 | struct event_base *event_global_current_base_ = NULL; |
| 122 | #define current_base event_global_current_base_ |
| 123 | |
| 124 | /* Global state */ |
| 125 | |
| 126 | static int use_monotonic; |
| 127 | |
| 128 | /* Prototypes */ |
| 129 | static inline int event_add_internal(struct event *ev, |
| 130 | const struct timeval *tv, int tv_is_absolute); |
| 131 | static inline int event_del_internal(struct event *ev); |
| 132 | |
| 133 | static void event_queue_insert(struct event_base *, struct event *, int); |
| 134 | static void event_queue_remove(struct event_base *, struct event *, int); |
| 135 | static int event_haveevents(struct event_base *); |
| 136 | |
| 137 | static int event_process_active(struct event_base *); |
| 138 | |
| 139 | static int timeout_next(struct event_base *, struct timeval **); |
| 140 | static void timeout_process(struct event_base *); |
| 141 | static void timeout_correct(struct event_base *, struct timeval *); |
| 142 | |
| 143 | static inline void event_signal_closure(struct event_base *, struct event *ev); |
| 144 | static inline void event_persist_closure(struct event_base *, struct event *ev); |
| 145 | |
| 146 | static int evthread_notify_base(struct event_base *base); |
| 147 | |
| 148 | #ifndef _EVENT_DISABLE_DEBUG_MODE |
| 149 | /* These functions implement a hashtable of which 'struct event *' structures |
| 150 | * have been setup or added. We don't want to trust the content of the struct |
| 151 | * event itself, since we're trying to work through cases where an event gets |
| 152 | * clobbered or freed. Instead, we keep a hashtable indexed by the pointer. |
| 153 | */ |
| 154 | |
| 155 | struct event_debug_entry { |
| 156 | HT_ENTRY(event_debug_entry) node; |
| 157 | const struct event *ptr; |
| 158 | unsigned added : 1; |
| 159 | }; |
| 160 | |
| 161 | static inline unsigned |
| 162 | hash_debug_entry(const struct event_debug_entry *e) |
| 163 | { |
| 164 | /* We need to do this silliness to convince compilers that we |
| 165 | * honestly mean to cast e->ptr to an integer, and discard any |
| 166 | * part of it that doesn't fit in an unsigned. |
| 167 | */ |
| 168 | unsigned u = (unsigned) ((ev_uintptr_t) e->ptr); |
| 169 | /* Our hashtable implementation is pretty sensitive to low bits, |
| 170 | * and every struct event is over 64 bytes in size, so we can |
| 171 | * just say >>6. */ |
| 172 | return (u >> 6); |
| 173 | } |
| 174 | |
| 175 | static inline int |
| 176 | eq_debug_entry(const struct event_debug_entry *a, |
| 177 | const struct event_debug_entry *b) |
| 178 | { |
| 179 | return a->ptr == b->ptr; |
| 180 | } |
| 181 | |
| 182 | int _event_debug_mode_on = 0; |
| 183 | /* Set if it's too late to enable event_debug_mode. */ |
| 184 | static int event_debug_mode_too_late = 0; |
| 185 | #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| 186 | static void *_event_debug_map_lock = NULL; |
| 187 | #endif |
| 188 | static HT_HEAD(event_debug_map, event_debug_entry) global_debug_map = |
| 189 | HT_INITIALIZER(); |
| 190 | |
| 191 | HT_PROTOTYPE(event_debug_map, event_debug_entry, node, hash_debug_entry, |
| 192 | eq_debug_entry) |
| 193 | HT_GENERATE(event_debug_map, event_debug_entry, node, hash_debug_entry, |
| 194 | eq_debug_entry, 0.5, mm_malloc, mm_realloc, mm_free) |
| 195 | |
| 196 | /* Macro: record that ev is now setup (that is, ready for an add) */ |
| 197 | #define _event_debug_note_setup(ev) do { \ |
| 198 | if (_event_debug_mode_on) { \ |
| 199 | struct event_debug_entry *dent,find; \ |
| 200 | find.ptr = (ev); \ |
| 201 | EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
| 202 | dent = HT_FIND(event_debug_map, &global_debug_map, &find); \ |
| 203 | if (dent) { \ |
| 204 | dent->added = 0; \ |
| 205 | } else { \ |
| 206 | dent = mm_malloc(sizeof(*dent)); \ |
| 207 | if (!dent) \ |
| 208 | event_err(1, \ |
| 209 | "Out of memory in debugging code"); \ |
| 210 | dent->ptr = (ev); \ |
| 211 | dent->added = 0; \ |
| 212 | HT_INSERT(event_debug_map, &global_debug_map, dent); \ |
| 213 | } \ |
| 214 | EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
| 215 | } \ |
| 216 | event_debug_mode_too_late = 1; \ |
| 217 | } while (0) |
| 218 | /* Macro: record that ev is no longer setup */ |
| 219 | #define _event_debug_note_teardown(ev) do { \ |
| 220 | if (_event_debug_mode_on) { \ |
| 221 | struct event_debug_entry *dent,find; \ |
| 222 | find.ptr = (ev); \ |
| 223 | EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
| 224 | dent = HT_REMOVE(event_debug_map, &global_debug_map, &find); \ |
| 225 | if (dent) \ |
| 226 | mm_free(dent); \ |
| 227 | EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
| 228 | } \ |
| 229 | event_debug_mode_too_late = 1; \ |
| 230 | } while (0) |
| 231 | /* Macro: record that ev is now added */ |
| 232 | #define _event_debug_note_add(ev) do { \ |
| 233 | if (_event_debug_mode_on) { \ |
| 234 | struct event_debug_entry *dent,find; \ |
| 235 | find.ptr = (ev); \ |
| 236 | EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
| 237 | dent = HT_FIND(event_debug_map, &global_debug_map, &find); \ |
| 238 | if (dent) { \ |
| 239 | dent->added = 1; \ |
| 240 | } else { \ |
| 241 | event_errx(_EVENT_ERR_ABORT, \ |
| 242 | "%s: noting an add on a non-setup event %p" \ |
| 243 | " (events: 0x%x, fd: "EV_SOCK_FMT \ |
| 244 | ", flags: 0x%x)", \ |
| 245 | __func__, (ev), (ev)->ev_events, \ |
| 246 | EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \ |
| 247 | } \ |
| 248 | EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
| 249 | } \ |
| 250 | event_debug_mode_too_late = 1; \ |
| 251 | } while (0) |
| 252 | /* Macro: record that ev is no longer added */ |
| 253 | #define _event_debug_note_del(ev) do { \ |
| 254 | if (_event_debug_mode_on) { \ |
| 255 | struct event_debug_entry *dent,find; \ |
| 256 | find.ptr = (ev); \ |
| 257 | EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
| 258 | dent = HT_FIND(event_debug_map, &global_debug_map, &find); \ |
| 259 | if (dent) { \ |
| 260 | dent->added = 0; \ |
| 261 | } else { \ |
| 262 | event_errx(_EVENT_ERR_ABORT, \ |
| 263 | "%s: noting a del on a non-setup event %p" \ |
| 264 | " (events: 0x%x, fd: "EV_SOCK_FMT \ |
| 265 | ", flags: 0x%x)", \ |
| 266 | __func__, (ev), (ev)->ev_events, \ |
| 267 | EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \ |
| 268 | } \ |
| 269 | EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
| 270 | } \ |
| 271 | event_debug_mode_too_late = 1; \ |
| 272 | } while (0) |
| 273 | /* Macro: assert that ev is setup (i.e., okay to add or inspect) */ |
| 274 | #define _event_debug_assert_is_setup(ev) do { \ |
| 275 | if (_event_debug_mode_on) { \ |
| 276 | struct event_debug_entry *dent,find; \ |
| 277 | find.ptr = (ev); \ |
| 278 | EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
| 279 | dent = HT_FIND(event_debug_map, &global_debug_map, &find); \ |
| 280 | if (!dent) { \ |
| 281 | event_errx(_EVENT_ERR_ABORT, \ |
| 282 | "%s called on a non-initialized event %p" \ |
| 283 | " (events: 0x%x, fd: "EV_SOCK_FMT\ |
| 284 | ", flags: 0x%x)", \ |
| 285 | __func__, (ev), (ev)->ev_events, \ |
| 286 | EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \ |
| 287 | } \ |
| 288 | EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
| 289 | } \ |
| 290 | } while (0) |
| 291 | /* Macro: assert that ev is not added (i.e., okay to tear down or set |
| 292 | * up again) */ |
| 293 | #define _event_debug_assert_not_added(ev) do { \ |
| 294 | if (_event_debug_mode_on) { \ |
| 295 | struct event_debug_entry *dent,find; \ |
| 296 | find.ptr = (ev); \ |
| 297 | EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
| 298 | dent = HT_FIND(event_debug_map, &global_debug_map, &find); \ |
| 299 | if (dent && dent->added) { \ |
| 300 | event_errx(_EVENT_ERR_ABORT, \ |
| 301 | "%s called on an already added event %p" \ |
| 302 | " (events: 0x%x, fd: "EV_SOCK_FMT", " \ |
| 303 | "flags: 0x%x)", \ |
| 304 | __func__, (ev), (ev)->ev_events, \ |
| 305 | EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \ |
| 306 | } \ |
| 307 | EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
| 308 | } \ |
| 309 | } while (0) |
| 310 | #else |
| 311 | #define _event_debug_note_setup(ev) \ |
| 312 | ((void)0) |
| 313 | #define _event_debug_note_teardown(ev) \ |
| 314 | ((void)0) |
| 315 | #define _event_debug_note_add(ev) \ |
| 316 | ((void)0) |
| 317 | #define _event_debug_note_del(ev) \ |
| 318 | ((void)0) |
| 319 | #define _event_debug_assert_is_setup(ev) \ |
| 320 | ((void)0) |
| 321 | #define _event_debug_assert_not_added(ev) \ |
| 322 | ((void)0) |
| 323 | #endif |
| 324 | |
| 325 | #define EVENT_BASE_ASSERT_LOCKED(base) \ |
| 326 | EVLOCK_ASSERT_LOCKED((base)->th_base_lock) |
| 327 | |
| 328 | /* The first time this function is called, it sets use_monotonic to 1 |
| 329 | * if we have a clock function that supports monotonic time */ |
| 330 | static void |
| 331 | detect_monotonic(void) |
| 332 | { |
| 333 | #if defined(_EVENT_HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) |
| 334 | struct timespec ts; |
| 335 | static int use_monotonic_initialized = 0; |
| 336 | |
| 337 | if (use_monotonic_initialized) |
| 338 | return; |
| 339 | |
| 340 | if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) |
| 341 | use_monotonic = 1; |
| 342 | |
| 343 | use_monotonic_initialized = 1; |
| 344 | #endif |
| 345 | } |
| 346 | |
| 347 | /* How often (in seconds) do we check for changes in wall clock time relative |
| 348 | * to monotonic time? Set this to -1 for 'never.' */ |
| 349 | #define CLOCK_SYNC_INTERVAL -1 |
| 350 | |
| 351 | /** Set 'tp' to the current time according to 'base'. We must hold the lock |
| 352 | * on 'base'. If there is a cached time, return it. Otherwise, use |
| 353 | * clock_gettime or gettimeofday as appropriate to find out the right time. |
| 354 | * Return 0 on success, -1 on failure. |
| 355 | */ |
| 356 | static int |
| 357 | gettime(struct event_base *base, struct timeval *tp) |
| 358 | { |
| 359 | EVENT_BASE_ASSERT_LOCKED(base); |
| 360 | |
| 361 | if (base->tv_cache.tv_sec) { |
| 362 | *tp = base->tv_cache; |
| 363 | return (0); |
| 364 | } |
| 365 | |
| 366 | #if defined(_EVENT_HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) |
| 367 | if (use_monotonic) { |
| 368 | struct timespec ts; |
| 369 | |
| 370 | if (clock_gettime(CLOCK_MONOTONIC, &ts) == -1) |
| 371 | return (-1); |
| 372 | |
| 373 | tp->tv_sec = ts.tv_sec; |
| 374 | tp->tv_usec = ts.tv_nsec / 1000; |
| 375 | if (base->last_updated_clock_diff + CLOCK_SYNC_INTERVAL |
| 376 | < ts.tv_sec) { |
| 377 | struct timeval tv; |
| 378 | evutil_gettimeofday(&tv,NULL); |
| 379 | evutil_timersub(&tv, tp, &base->tv_clock_diff); |
| 380 | base->last_updated_clock_diff = ts.tv_sec; |
| 381 | } |
| 382 | |
| 383 | return (0); |
| 384 | } |
| 385 | #endif |
| 386 | |
| 387 | return (evutil_gettimeofday(tp, NULL)); |
| 388 | } |
| 389 | |
| 390 | int |
| 391 | event_base_gettimeofday_cached(struct event_base *base, struct timeval *tv) |
| 392 | { |
| 393 | int r; |
| 394 | if (!base) { |
| 395 | base = current_base; |
| 396 | if (!current_base) |
| 397 | return evutil_gettimeofday(tv, NULL); |
| 398 | } |
| 399 | |
| 400 | EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| 401 | if (base->tv_cache.tv_sec == 0) { |
| 402 | r = evutil_gettimeofday(tv, NULL); |
| 403 | } else { |
| 404 | #if defined(_EVENT_HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) |
| 405 | evutil_timeradd(&base->tv_cache, &base->tv_clock_diff, tv); |
| 406 | #else |
| 407 | *tv = base->tv_cache; |
| 408 | #endif |
| 409 | r = 0; |
| 410 | } |
| 411 | EVBASE_RELEASE_LOCK(base, th_base_lock); |
| 412 | return r; |
| 413 | } |
| 414 | |
| 415 | /** Make 'base' have no current cached time. */ |
| 416 | static inline void |
| 417 | clear_time_cache(struct event_base *base) |
| 418 | { |
| 419 | base->tv_cache.tv_sec = 0; |
| 420 | } |
| 421 | |
| 422 | /** Replace the cached time in 'base' with the current time. */ |
| 423 | static inline void |
| 424 | update_time_cache(struct event_base *base) |
| 425 | { |
| 426 | base->tv_cache.tv_sec = 0; |
| 427 | if (!(base->flags & EVENT_BASE_FLAG_NO_CACHE_TIME)) |
| 428 | gettime(base, &base->tv_cache); |
| 429 | } |
| 430 | |
| 431 | struct event_base * |
| 432 | event_init(void) |
| 433 | { |
| 434 | struct event_base *base = event_base_new_with_config(NULL); |
| 435 | |
| 436 | if (base == NULL) { |
| 437 | event_errx(1, "%s: Unable to construct event_base", __func__); |
| 438 | return NULL; |
| 439 | } |
| 440 | |
| 441 | current_base = base; |
| 442 | |
| 443 | return (base); |
| 444 | } |
| 445 | |
| 446 | struct event_base * |
| 447 | event_base_new(void) |
| 448 | { |
| 449 | struct event_base *base = NULL; |
| 450 | struct event_config *cfg = event_config_new(); |
| 451 | if (cfg) { |
| 452 | base = event_base_new_with_config(cfg); |
| 453 | event_config_free(cfg); |
| 454 | } |
| 455 | return base; |
| 456 | } |
| 457 | |
| 458 | /** Return true iff 'method' is the name of a method that 'cfg' tells us to |
| 459 | * avoid. */ |
| 460 | static int |
| 461 | event_config_is_avoided_method(const struct event_config *cfg, |
| 462 | const char *method) |
| 463 | { |
| 464 | struct event_config_entry *entry; |
| 465 | |
| 466 | TAILQ_FOREACH(entry, &cfg->entries, next) { |
| 467 | if (entry->avoid_method != NULL && |
| 468 | strcmp(entry->avoid_method, method) == 0) |
| 469 | return (1); |
| 470 | } |
| 471 | |
| 472 | return (0); |
| 473 | } |
| 474 | |
| 475 | /** Return true iff 'method' is disabled according to the environment. */ |
| 476 | static int |
| 477 | event_is_method_disabled(const char *name) |
| 478 | { |
| 479 | char environment[64]; |
| 480 | int i; |
| 481 | |
| 482 | evutil_snprintf(environment, sizeof(environment), "EVENT_NO%s", name); |
| 483 | for (i = 8; environment[i] != '\0'; ++i) |
| 484 | environment[i] = EVUTIL_TOUPPER(environment[i]); |
| 485 | /* Note that evutil_getenv() ignores the environment entirely if |
| 486 | * we're setuid */ |
| 487 | return (evutil_getenv(environment) != NULL); |
| 488 | } |
| 489 | |
| 490 | int |
| 491 | event_base_get_features(const struct event_base *base) |
| 492 | { |
| 493 | return base->evsel->features; |
| 494 | } |
| 495 | |
| 496 | void |
| 497 | event_deferred_cb_queue_init(struct deferred_cb_queue *cb) |
| 498 | { |
| 499 | memset(cb, 0, sizeof(struct deferred_cb_queue)); |
| 500 | TAILQ_INIT(&cb->deferred_cb_list); |
| 501 | } |
| 502 | |
| 503 | /** Helper for the deferred_cb queue: wake up the event base. */ |
| 504 | static void |
| 505 | notify_base_cbq_callback(struct deferred_cb_queue *cb, void *baseptr) |
| 506 | { |
| 507 | struct event_base *base = baseptr; |
| 508 | if (EVBASE_NEED_NOTIFY(base)) |
| 509 | evthread_notify_base(base); |
| 510 | } |
| 511 | |
| 512 | struct deferred_cb_queue * |
| 513 | event_base_get_deferred_cb_queue(struct event_base *base) |
| 514 | { |
| 515 | return base ? &base->defer_queue : NULL; |
| 516 | } |
| 517 | |
| 518 | void |
| 519 | event_enable_debug_mode(void) |
| 520 | { |
| 521 | #ifndef _EVENT_DISABLE_DEBUG_MODE |
| 522 | if (_event_debug_mode_on) |
| 523 | event_errx(1, "%s was called twice!", __func__); |
| 524 | if (event_debug_mode_too_late) |
| 525 | event_errx(1, "%s must be called *before* creating any events " |
| 526 | "or event_bases",__func__); |
| 527 | |
| 528 | _event_debug_mode_on = 1; |
| 529 | |
| 530 | HT_INIT(event_debug_map, &global_debug_map); |
| 531 | #endif |
| 532 | } |
| 533 | |
| 534 | #if 0 |
| 535 | void |
| 536 | event_disable_debug_mode(void) |
| 537 | { |
| 538 | struct event_debug_entry **ent, *victim; |
| 539 | |
| 540 | EVLOCK_LOCK(_event_debug_map_lock, 0); |
| 541 | for (ent = HT_START(event_debug_map, &global_debug_map); ent; ) { |
| 542 | victim = *ent; |
| 543 | ent = HT_NEXT_RMV(event_debug_map,&global_debug_map, ent); |
| 544 | mm_free(victim); |
| 545 | } |
| 546 | HT_CLEAR(event_debug_map, &global_debug_map); |
| 547 | EVLOCK_UNLOCK(_event_debug_map_lock , 0); |
| 548 | } |
| 549 | #endif |
| 550 | |
| 551 | struct event_base * |
| 552 | event_base_new_with_config(const struct event_config *cfg) |
| 553 | { |
| 554 | int i; |
| 555 | struct event_base *base; |
| 556 | int should_check_environment; |
| 557 | |
| 558 | #ifndef _EVENT_DISABLE_DEBUG_MODE |
| 559 | event_debug_mode_too_late = 1; |
| 560 | #endif |
| 561 | |
| 562 | if ((base = mm_calloc(1, sizeof(struct event_base))) == NULL) { |
| 563 | event_warn("%s: calloc", __func__); |
| 564 | return NULL; |
| 565 | } |
| 566 | detect_monotonic(); |
| 567 | gettime(base, &base->event_tv); |
| 568 | |
| 569 | min_heap_ctor(&base->timeheap); |
| 570 | TAILQ_INIT(&base->eventqueue); |
| 571 | base->sig.ev_signal_pair[0] = -1; |
| 572 | base->sig.ev_signal_pair[1] = -1; |
| 573 | base->th_notify_fd[0] = -1; |
| 574 | base->th_notify_fd[1] = -1; |
| 575 | |
| 576 | event_deferred_cb_queue_init(&base->defer_queue); |
| 577 | base->defer_queue.notify_fn = notify_base_cbq_callback; |
| 578 | base->defer_queue.notify_arg = base; |
| 579 | if (cfg) |
| 580 | base->flags = cfg->flags; |
| 581 | |
| 582 | evmap_io_initmap(&base->io); |
| 583 | evmap_signal_initmap(&base->sigmap); |
| 584 | event_changelist_init(&base->changelist); |
| 585 | |
| 586 | base->evbase = NULL; |
| 587 | |
| 588 | should_check_environment = |
| 589 | !(cfg && (cfg->flags & EVENT_BASE_FLAG_IGNORE_ENV)); |
| 590 | |
| 591 | for (i = 0; eventops[i] && !base->evbase; i++) { |
| 592 | if (cfg != NULL) { |
| 593 | /* determine if this backend should be avoided */ |
| 594 | if (event_config_is_avoided_method(cfg, |
| 595 | eventops[i]->name)) |
| 596 | continue; |
| 597 | if ((eventops[i]->features & cfg->require_features) |
| 598 | != cfg->require_features) |
| 599 | continue; |
| 600 | } |
| 601 | |
| 602 | /* also obey the environment variables */ |
| 603 | if (should_check_environment && |
| 604 | event_is_method_disabled(eventops[i]->name)) |
| 605 | continue; |
| 606 | |
| 607 | base->evsel = eventops[i]; |
| 608 | |
| 609 | base->evbase = base->evsel->init(base); |
| 610 | } |
| 611 | |
| 612 | if (base->evbase == NULL) { |
| 613 | event_warnx("%s: no event mechanism available", |
| 614 | __func__); |
| 615 | base->evsel = NULL; |
| 616 | event_base_free(base); |
| 617 | return NULL; |
| 618 | } |
| 619 | |
| 620 | if (evutil_getenv("EVENT_SHOW_METHOD")) |
| 621 | event_msgx("libevent using: %s", base->evsel->name); |
| 622 | |
| 623 | /* allocate a single active event queue */ |
| 624 | if (event_base_priority_init(base, 1) < 0) { |
| 625 | event_base_free(base); |
| 626 | return NULL; |
| 627 | } |
| 628 | |
| 629 | /* prepare for threading */ |
| 630 | |
| 631 | #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| 632 | if (EVTHREAD_LOCKING_ENABLED() && |
| 633 | (!cfg || !(cfg->flags & EVENT_BASE_FLAG_NOLOCK))) { |
| 634 | int r; |
| 635 | EVTHREAD_ALLOC_LOCK(base->th_base_lock, |
| 636 | EVTHREAD_LOCKTYPE_RECURSIVE); |
| 637 | base->defer_queue.lock = base->th_base_lock; |
| 638 | EVTHREAD_ALLOC_COND(base->current_event_cond); |
| 639 | r = evthread_make_base_notifiable(base); |
| 640 | if (r<0) { |
| 641 | event_warnx("%s: Unable to make base notifiable.", __func__); |
| 642 | event_base_free(base); |
| 643 | return NULL; |
| 644 | } |
| 645 | } |
| 646 | #endif |
| 647 | |
| 648 | #ifdef WIN32 |
| 649 | if (cfg && (cfg->flags & EVENT_BASE_FLAG_STARTUP_IOCP)) |
| 650 | event_base_start_iocp(base, cfg->n_cpus_hint); |
| 651 | #endif |
| 652 | |
| 653 | return (base); |
| 654 | } |
| 655 | |
| 656 | int |
| 657 | event_base_start_iocp(struct event_base *base, int n_cpus) |
| 658 | { |
| 659 | #ifdef WIN32 |
| 660 | if (base->iocp) |
| 661 | return 0; |
| 662 | base->iocp = event_iocp_port_launch(n_cpus); |
| 663 | if (!base->iocp) { |
| 664 | event_warnx("%s: Couldn't launch IOCP", __func__); |
| 665 | return -1; |
| 666 | } |
| 667 | return 0; |
| 668 | #else |
| 669 | return -1; |
| 670 | #endif |
| 671 | } |
| 672 | |
| 673 | void |
| 674 | event_base_stop_iocp(struct event_base *base) |
| 675 | { |
| 676 | #ifdef WIN32 |
| 677 | int rv; |
| 678 | |
| 679 | if (!base->iocp) |
| 680 | return; |
| 681 | rv = event_iocp_shutdown(base->iocp, -1); |
| 682 | EVUTIL_ASSERT(rv >= 0); |
| 683 | base->iocp = NULL; |
| 684 | #endif |
| 685 | } |
| 686 | |
| 687 | void |
| 688 | event_base_free(struct event_base *base) |
| 689 | { |
| 690 | int i, n_deleted=0; |
| 691 | struct event *ev; |
| 692 | /* XXXX grab the lock? If there is contention when one thread frees |
| 693 | * the base, then the contending thread will be very sad soon. */ |
| 694 | |
| 695 | /* event_base_free(NULL) is how to free the current_base if we |
| 696 | * made it with event_init and forgot to hold a reference to it. */ |
| 697 | if (base == NULL && current_base) |
| 698 | base = current_base; |
| 699 | /* If we're freeing current_base, there won't be a current_base. */ |
| 700 | if (base == current_base) |
| 701 | current_base = NULL; |
| 702 | /* Don't actually free NULL. */ |
| 703 | if (base == NULL) { |
| 704 | event_warnx("%s: no base to free", __func__); |
| 705 | return; |
| 706 | } |
| 707 | /* XXX(niels) - check for internal events first */ |
| 708 | |
| 709 | #ifdef WIN32 |
| 710 | event_base_stop_iocp(base); |
| 711 | #endif |
| 712 | |
| 713 | /* threading fds if we have them */ |
| 714 | if (base->th_notify_fd[0] != -1) { |
| 715 | event_del(&base->th_notify); |
| 716 | EVUTIL_CLOSESOCKET(base->th_notify_fd[0]); |
| 717 | if (base->th_notify_fd[1] != -1) |
| 718 | EVUTIL_CLOSESOCKET(base->th_notify_fd[1]); |
| 719 | base->th_notify_fd[0] = -1; |
| 720 | base->th_notify_fd[1] = -1; |
| 721 | event_debug_unassign(&base->th_notify); |
| 722 | } |
| 723 | |
| 724 | /* Delete all non-internal events. */ |
| 725 | for (ev = TAILQ_FIRST(&base->eventqueue); ev; ) { |
| 726 | struct event *next = TAILQ_NEXT(ev, ev_next); |
| 727 | if (!(ev->ev_flags & EVLIST_INTERNAL)) { |
| 728 | event_del(ev); |
| 729 | ++n_deleted; |
| 730 | } |
| 731 | ev = next; |
| 732 | } |
| 733 | while ((ev = min_heap_top(&base->timeheap)) != NULL) { |
| 734 | event_del(ev); |
| 735 | ++n_deleted; |
| 736 | } |
| 737 | for (i = 0; i < base->n_common_timeouts; ++i) { |
| 738 | struct common_timeout_list *ctl = |
| 739 | base->common_timeout_queues[i]; |
| 740 | event_del(&ctl->timeout_event); /* Internal; doesn't count */ |
| 741 | event_debug_unassign(&ctl->timeout_event); |
| 742 | for (ev = TAILQ_FIRST(&ctl->events); ev; ) { |
| 743 | struct event *next = TAILQ_NEXT(ev, |
| 744 | ev_timeout_pos.ev_next_with_common_timeout); |
| 745 | if (!(ev->ev_flags & EVLIST_INTERNAL)) { |
| 746 | event_del(ev); |
| 747 | ++n_deleted; |
| 748 | } |
| 749 | ev = next; |
| 750 | } |
| 751 | mm_free(ctl); |
| 752 | } |
| 753 | if (base->common_timeout_queues) |
| 754 | mm_free(base->common_timeout_queues); |
| 755 | |
| 756 | for (i = 0; i < base->nactivequeues; ++i) { |
| 757 | for (ev = TAILQ_FIRST(&base->activequeues[i]); ev; ) { |
| 758 | struct event *next = TAILQ_NEXT(ev, ev_active_next); |
| 759 | if (!(ev->ev_flags & EVLIST_INTERNAL)) { |
| 760 | event_del(ev); |
| 761 | ++n_deleted; |
| 762 | } |
| 763 | ev = next; |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | if (n_deleted) |
| 768 | event_debug(("%s: %d events were still set in base", |
| 769 | __func__, n_deleted)); |
| 770 | |
| 771 | if (base->evsel != NULL && base->evsel->dealloc != NULL) |
| 772 | base->evsel->dealloc(base); |
| 773 | |
| 774 | for (i = 0; i < base->nactivequeues; ++i) |
| 775 | EVUTIL_ASSERT(TAILQ_EMPTY(&base->activequeues[i])); |
| 776 | |
| 777 | EVUTIL_ASSERT(min_heap_empty(&base->timeheap)); |
| 778 | min_heap_dtor(&base->timeheap); |
| 779 | |
| 780 | mm_free(base->activequeues); |
| 781 | |
| 782 | EVUTIL_ASSERT(TAILQ_EMPTY(&base->eventqueue)); |
| 783 | |
| 784 | evmap_io_clear(&base->io); |
| 785 | evmap_signal_clear(&base->sigmap); |
| 786 | event_changelist_freemem(&base->changelist); |
| 787 | |
| 788 | EVTHREAD_FREE_LOCK(base->th_base_lock, EVTHREAD_LOCKTYPE_RECURSIVE); |
| 789 | EVTHREAD_FREE_COND(base->current_event_cond); |
| 790 | |
| 791 | mm_free(base); |
| 792 | } |
| 793 | |
| 794 | /* reinitialize the event base after a fork */ |
| 795 | int |
| 796 | event_reinit(struct event_base *base) |
| 797 | { |
| 798 | const struct eventop *evsel; |
| 799 | int res = 0; |
| 800 | struct event *ev; |
| 801 | int was_notifiable = 0; |
| 802 | |
| 803 | EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| 804 | |
| 805 | evsel = base->evsel; |
| 806 | |
| 807 | #if 0 |
| 808 | /* Right now, reinit always takes effect, since even if the |
| 809 | backend doesn't require it, the signal socketpair code does. |
| 810 | |
| 811 | XXX |
| 812 | */ |
| 813 | /* check if this event mechanism requires reinit */ |
| 814 | if (!evsel->need_reinit) |
| 815 | goto done; |
| 816 | #endif |
| 817 | |
| 818 | /* prevent internal delete */ |
| 819 | if (base->sig.ev_signal_added) { |
| 820 | /* we cannot call event_del here because the base has |
| 821 | * not been reinitialized yet. */ |
| 822 | event_queue_remove(base, &base->sig.ev_signal, |
| 823 | EVLIST_INSERTED); |
| 824 | if (base->sig.ev_signal.ev_flags & EVLIST_ACTIVE) |
| 825 | event_queue_remove(base, &base->sig.ev_signal, |
| 826 | EVLIST_ACTIVE); |
| 827 | if (base->sig.ev_signal_pair[0] != -1) |
| 828 | EVUTIL_CLOSESOCKET(base->sig.ev_signal_pair[0]); |
| 829 | if (base->sig.ev_signal_pair[1] != -1) |
| 830 | EVUTIL_CLOSESOCKET(base->sig.ev_signal_pair[1]); |
| 831 | base->sig.ev_signal_added = 0; |
| 832 | } |
| 833 | if (base->th_notify_fd[0] != -1) { |
| 834 | /* we cannot call event_del here because the base has |
| 835 | * not been reinitialized yet. */ |
| 836 | was_notifiable = 1; |
| 837 | event_queue_remove(base, &base->th_notify, |
| 838 | EVLIST_INSERTED); |
| 839 | if (base->th_notify.ev_flags & EVLIST_ACTIVE) |
| 840 | event_queue_remove(base, &base->th_notify, |
| 841 | EVLIST_ACTIVE); |
| 842 | base->sig.ev_signal_added = 0; |
| 843 | EVUTIL_CLOSESOCKET(base->th_notify_fd[0]); |
| 844 | if (base->th_notify_fd[1] != -1) |
| 845 | EVUTIL_CLOSESOCKET(base->th_notify_fd[1]); |
| 846 | base->th_notify_fd[0] = -1; |
| 847 | base->th_notify_fd[1] = -1; |
| 848 | event_debug_unassign(&base->th_notify); |
| 849 | } |
| 850 | |
| 851 | if (base->evsel->dealloc != NULL) |
| 852 | base->evsel->dealloc(base); |
| 853 | base->evbase = evsel->init(base); |
| 854 | if (base->evbase == NULL) { |
| 855 | event_errx(1, "%s: could not reinitialize event mechanism", |
| 856 | __func__); |
| 857 | res = -1; |
| 858 | goto done; |
| 859 | } |
| 860 | |
| 861 | event_changelist_freemem(&base->changelist); /* XXX */ |
| 862 | evmap_io_clear(&base->io); |
| 863 | evmap_signal_clear(&base->sigmap); |
| 864 | |
| 865 | TAILQ_FOREACH(ev, &base->eventqueue, ev_next) { |
| 866 | if (ev->ev_events & (EV_READ|EV_WRITE)) { |
| 867 | if (ev == &base->sig.ev_signal) { |
| 868 | /* If we run into the ev_signal event, it's only |
| 869 | * in eventqueue because some signal event was |
| 870 | * added, which made evsig_add re-add ev_signal. |
| 871 | * So don't double-add it. */ |
| 872 | continue; |
| 873 | } |
| 874 | if (evmap_io_add(base, ev->ev_fd, ev) == -1) |
| 875 | res = -1; |
| 876 | } else if (ev->ev_events & EV_SIGNAL) { |
| 877 | if (evmap_signal_add(base, (int)ev->ev_fd, ev) == -1) |
| 878 | res = -1; |
| 879 | } |
| 880 | } |
| 881 | |
| 882 | if (was_notifiable && res == 0) |
| 883 | res = evthread_make_base_notifiable(base); |
| 884 | |
| 885 | done: |
| 886 | EVBASE_RELEASE_LOCK(base, th_base_lock); |
| 887 | return (res); |
| 888 | } |
| 889 | |
| 890 | const char ** |
| 891 | event_get_supported_methods(void) |
| 892 | { |
| 893 | static const char **methods = NULL; |
| 894 | const struct eventop **method; |
| 895 | const char **tmp; |
| 896 | int i = 0, k; |
| 897 | |
| 898 | /* count all methods */ |
| 899 | for (method = &eventops[0]; *method != NULL; ++method) { |
| 900 | ++i; |
| 901 | } |
| 902 | |
| 903 | /* allocate one more than we need for the NULL pointer */ |
| 904 | tmp = mm_calloc((i + 1), sizeof(char *)); |
| 905 | if (tmp == NULL) |
| 906 | return (NULL); |
| 907 | |
| 908 | /* populate the array with the supported methods */ |
| 909 | for (k = 0, i = 0; eventops[k] != NULL; ++k) { |
| 910 | tmp[i++] = eventops[k]->name; |
| 911 | } |
| 912 | tmp[i] = NULL; |
| 913 | |
| 914 | if (methods != NULL) |
| 915 | mm_free((char**)methods); |
| 916 | |
| 917 | methods = tmp; |
| 918 | |
| 919 | return (methods); |
| 920 | } |
| 921 | |
| 922 | struct event_config * |
| 923 | event_config_new(void) |
| 924 | { |
| 925 | struct event_config *cfg = mm_calloc(1, sizeof(*cfg)); |
| 926 | |
| 927 | if (cfg == NULL) |
| 928 | return (NULL); |
| 929 | |
| 930 | TAILQ_INIT(&cfg->entries); |
| 931 | |
| 932 | return (cfg); |
| 933 | } |
| 934 | |
| 935 | static void |
| 936 | event_config_entry_free(struct event_config_entry *entry) |
| 937 | { |
| 938 | if (entry->avoid_method != NULL) |
| 939 | mm_free((char *)entry->avoid_method); |
| 940 | mm_free(entry); |
| 941 | } |
| 942 | |
| 943 | void |
| 944 | event_config_free(struct event_config *cfg) |
| 945 | { |
| 946 | struct event_config_entry *entry; |
| 947 | |
| 948 | while ((entry = TAILQ_FIRST(&cfg->entries)) != NULL) { |
| 949 | TAILQ_REMOVE(&cfg->entries, entry, next); |
| 950 | event_config_entry_free(entry); |
| 951 | } |
| 952 | mm_free(cfg); |
| 953 | } |
| 954 | |
| 955 | int |
| 956 | event_config_set_flag(struct event_config *cfg, int flag) |
| 957 | { |
| 958 | if (!cfg) |
| 959 | return -1; |
| 960 | cfg->flags |= flag; |
| 961 | return 0; |
| 962 | } |
| 963 | |
| 964 | int |
| 965 | event_config_avoid_method(struct event_config *cfg, const char *method) |
| 966 | { |
| 967 | struct event_config_entry *entry = mm_malloc(sizeof(*entry)); |
| 968 | if (entry == NULL) |
| 969 | return (-1); |
| 970 | |
| 971 | if ((entry->avoid_method = mm_strdup(method)) == NULL) { |
| 972 | mm_free(entry); |
| 973 | return (-1); |
| 974 | } |
| 975 | |
| 976 | TAILQ_INSERT_TAIL(&cfg->entries, entry, next); |
| 977 | |
| 978 | return (0); |
| 979 | } |
| 980 | |
| 981 | int |
| 982 | event_config_require_features(struct event_config *cfg, |
| 983 | int features) |
| 984 | { |
| 985 | if (!cfg) |
| 986 | return (-1); |
| 987 | cfg->require_features = features; |
| 988 | return (0); |
| 989 | } |
| 990 | |
| 991 | int |
| 992 | event_config_set_num_cpus_hint(struct event_config *cfg, int cpus) |
| 993 | { |
| 994 | if (!cfg) |
| 995 | return (-1); |
| 996 | cfg->n_cpus_hint = cpus; |
| 997 | return (0); |
| 998 | } |
| 999 | |
| 1000 | int |
| 1001 | event_priority_init(int npriorities) |
| 1002 | { |
| 1003 | return event_base_priority_init(current_base, npriorities); |
| 1004 | } |
| 1005 | |
| 1006 | int |
| 1007 | event_base_priority_init(struct event_base *base, int npriorities) |
| 1008 | { |
| 1009 | int i; |
| 1010 | |
| 1011 | if (N_ACTIVE_CALLBACKS(base) || npriorities < 1 |
| 1012 | || npriorities >= EVENT_MAX_PRIORITIES) |
| 1013 | return (-1); |
| 1014 | |
| 1015 | if (npriorities == base->nactivequeues) |
| 1016 | return (0); |
| 1017 | |
| 1018 | if (base->nactivequeues) { |
| 1019 | mm_free(base->activequeues); |
| 1020 | base->nactivequeues = 0; |
| 1021 | } |
| 1022 | |
| 1023 | /* Allocate our priority queues */ |
| 1024 | base->activequeues = (struct event_list *) |
| 1025 | mm_calloc(npriorities, sizeof(struct event_list)); |
| 1026 | if (base->activequeues == NULL) { |
| 1027 | event_warn("%s: calloc", __func__); |
| 1028 | return (-1); |
| 1029 | } |
| 1030 | base->nactivequeues = npriorities; |
| 1031 | |
| 1032 | for (i = 0; i < base->nactivequeues; ++i) { |
| 1033 | TAILQ_INIT(&base->activequeues[i]); |
| 1034 | } |
| 1035 | |
| 1036 | return (0); |
| 1037 | } |
| 1038 | |
| 1039 | /* Returns true iff we're currently watching any events. */ |
| 1040 | static int |
| 1041 | event_haveevents(struct event_base *base) |
| 1042 | { |
| 1043 | /* Caller must hold th_base_lock */ |
| 1044 | return (base->virtual_event_count > 0 || base->event_count > 0); |
| 1045 | } |
| 1046 | |
| 1047 | /* "closure" function called when processing active signal events */ |
| 1048 | static inline void |
| 1049 | event_signal_closure(struct event_base *base, struct event *ev) |
| 1050 | { |
| 1051 | short ncalls; |
| 1052 | int should_break; |
| 1053 | |
| 1054 | /* Allows deletes to work */ |
| 1055 | ncalls = ev->ev_ncalls; |
| 1056 | if (ncalls != 0) |
| 1057 | ev->ev_pncalls = &ncalls; |
| 1058 | EVBASE_RELEASE_LOCK(base, th_base_lock); |
| 1059 | while (ncalls) { |
| 1060 | ncalls--; |
| 1061 | ev->ev_ncalls = ncalls; |
| 1062 | if (ncalls == 0) |
| 1063 | ev->ev_pncalls = NULL; |
| 1064 | (*ev->ev_callback)(ev->ev_fd, ev->ev_res, ev->ev_arg); |
| 1065 | |
| 1066 | EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| 1067 | should_break = base->event_break; |
| 1068 | EVBASE_RELEASE_LOCK(base, th_base_lock); |
| 1069 | |
| 1070 | if (should_break) { |
| 1071 | if (ncalls != 0) |
| 1072 | ev->ev_pncalls = NULL; |
| 1073 | return; |
| 1074 | } |
| 1075 | } |
| 1076 | } |
| 1077 | |
| 1078 | /* Common timeouts are special timeouts that are handled as queues rather than |
| 1079 | * in the minheap. This is more efficient than the minheap if we happen to |
| 1080 | * know that we're going to get several thousands of timeout events all with |
| 1081 | * the same timeout value. |
| 1082 | * |
| 1083 | * Since all our timeout handling code assumes timevals can be copied, |
| 1084 | * assigned, etc, we can't use "magic pointer" to encode these common |
| 1085 | * timeouts. Searching through a list to see if every timeout is common could |
| 1086 | * also get inefficient. Instead, we take advantage of the fact that tv_usec |
| 1087 | * is 32 bits long, but only uses 20 of those bits (since it can never be over |
| 1088 | * 999999.) We use the top bits to encode 4 bites of magic number, and 8 bits |
| 1089 | * of index into the event_base's aray of common timeouts. |
| 1090 | */ |
| 1091 | |
| 1092 | #define MICROSECONDS_MASK COMMON_TIMEOUT_MICROSECONDS_MASK |
| 1093 | #define COMMON_TIMEOUT_IDX_MASK 0x0ff00000 |
| 1094 | #define COMMON_TIMEOUT_IDX_SHIFT 20 |
| 1095 | #define COMMON_TIMEOUT_MASK 0xf0000000 |
| 1096 | #define COMMON_TIMEOUT_MAGIC 0x50000000 |
| 1097 | |
| 1098 | #define COMMON_TIMEOUT_IDX(tv) \ |
| 1099 | (((tv)->tv_usec & COMMON_TIMEOUT_IDX_MASK)>>COMMON_TIMEOUT_IDX_SHIFT) |
| 1100 | |
| 1101 | /** Return true iff if 'tv' is a common timeout in 'base' */ |
| 1102 | static inline int |
| 1103 | is_common_timeout(const struct timeval *tv, |
| 1104 | const struct event_base *base) |
| 1105 | { |
| 1106 | int idx; |
| 1107 | if ((tv->tv_usec & COMMON_TIMEOUT_MASK) != COMMON_TIMEOUT_MAGIC) |
| 1108 | return 0; |
| 1109 | idx = COMMON_TIMEOUT_IDX(tv); |
| 1110 | return idx < base->n_common_timeouts; |
| 1111 | } |
| 1112 | |
| 1113 | /* True iff tv1 and tv2 have the same common-timeout index, or if neither |
| 1114 | * one is a common timeout. */ |
| 1115 | static inline int |
| 1116 | is_same_common_timeout(const struct timeval *tv1, const struct timeval *tv2) |
| 1117 | { |
| 1118 | return (tv1->tv_usec & ~MICROSECONDS_MASK) == |
| 1119 | (tv2->tv_usec & ~MICROSECONDS_MASK); |
| 1120 | } |
| 1121 | |
| 1122 | /** Requires that 'tv' is a common timeout. Return the corresponding |
| 1123 | * common_timeout_list. */ |
| 1124 | static inline struct common_timeout_list * |
| 1125 | get_common_timeout_list(struct event_base *base, const struct timeval *tv) |
| 1126 | { |
| 1127 | return base->common_timeout_queues[COMMON_TIMEOUT_IDX(tv)]; |
| 1128 | } |
| 1129 | |
| 1130 | #if 0 |
| 1131 | static inline int |
| 1132 | common_timeout_ok(const struct timeval *tv, |
| 1133 | struct event_base *base) |
| 1134 | { |
| 1135 | const struct timeval *expect = |
| 1136 | &get_common_timeout_list(base, tv)->duration; |
| 1137 | return tv->tv_sec == expect->tv_sec && |
| 1138 | tv->tv_usec == expect->tv_usec; |
| 1139 | } |
| 1140 | #endif |
| 1141 | |
| 1142 | /* Add the timeout for the first event in given common timeout list to the |
| 1143 | * event_base's minheap. */ |
| 1144 | static void |
| 1145 | common_timeout_schedule(struct common_timeout_list *ctl, |
| 1146 | const struct timeval *now, struct event *head) |
| 1147 | { |
| 1148 | struct timeval timeout = head->ev_timeout; |
| 1149 | timeout.tv_usec &= MICROSECONDS_MASK; |
| 1150 | event_add_internal(&ctl->timeout_event, &timeout, 1); |
| 1151 | } |
| 1152 | |
| 1153 | /* Callback: invoked when the timeout for a common timeout queue triggers. |
| 1154 | * This means that (at least) the first event in that queue should be run, |
| 1155 | * and the timeout should be rescheduled if there are more events. */ |
| 1156 | static void |
| 1157 | common_timeout_callback(evutil_socket_t fd, short what, void *arg) |
| 1158 | { |
| 1159 | struct timeval now; |
| 1160 | struct common_timeout_list *ctl = arg; |
| 1161 | struct event_base *base = ctl->base; |
| 1162 | struct event *ev = NULL; |
| 1163 | EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| 1164 | gettime(base, &now); |
| 1165 | while (1) { |
| 1166 | ev = TAILQ_FIRST(&ctl->events); |
| 1167 | if (!ev || ev->ev_timeout.tv_sec > now.tv_sec || |
| 1168 | (ev->ev_timeout.tv_sec == now.tv_sec && |
| 1169 | (ev->ev_timeout.tv_usec&MICROSECONDS_MASK) > now.tv_usec)) |
| 1170 | break; |
| 1171 | event_del_internal(ev); |
| 1172 | event_active_nolock(ev, EV_TIMEOUT, 1); |
| 1173 | } |
| 1174 | if (ev) |
| 1175 | common_timeout_schedule(ctl, &now, ev); |
| 1176 | EVBASE_RELEASE_LOCK(base, th_base_lock); |
| 1177 | } |
| 1178 | |
| 1179 | #define MAX_COMMON_TIMEOUTS 256 |
| 1180 | |
| 1181 | const struct timeval * |
| 1182 | event_base_init_common_timeout(struct event_base *base, |
| 1183 | const struct timeval *duration) |
| 1184 | { |
| 1185 | int i; |
| 1186 | struct timeval tv; |
| 1187 | const struct timeval *result=NULL; |
| 1188 | struct common_timeout_list *new_ctl; |
| 1189 | |
| 1190 | EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| 1191 | if (duration->tv_usec > 1000000) { |
| 1192 | memcpy(&tv, duration, sizeof(struct timeval)); |
| 1193 | if (is_common_timeout(duration, base)) |
| 1194 | tv.tv_usec &= MICROSECONDS_MASK; |
| 1195 | tv.tv_sec += tv.tv_usec / 1000000; |
| 1196 | tv.tv_usec %= 1000000; |
| 1197 | duration = &tv; |
| 1198 | } |
| 1199 | for (i = 0; i < base->n_common_timeouts; ++i) { |
| 1200 | const struct common_timeout_list *ctl = |
| 1201 | base->common_timeout_queues[i]; |
| 1202 | if (duration->tv_sec == ctl->duration.tv_sec && |
| 1203 | duration->tv_usec == |
| 1204 | (ctl->duration.tv_usec & MICROSECONDS_MASK)) { |
| 1205 | EVUTIL_ASSERT(is_common_timeout(&ctl->duration, base)); |
| 1206 | result = &ctl->duration; |
| 1207 | goto done; |
| 1208 | } |
| 1209 | } |
| 1210 | if (base->n_common_timeouts == MAX_COMMON_TIMEOUTS) { |
| 1211 | event_warnx("%s: Too many common timeouts already in use; " |
| 1212 | "we only support %d per event_base", __func__, |
| 1213 | MAX_COMMON_TIMEOUTS); |
| 1214 | goto done; |
| 1215 | } |
| 1216 | if (base->n_common_timeouts_allocated == base->n_common_timeouts) { |
| 1217 | int n = base->n_common_timeouts < 16 ? 16 : |
| 1218 | base->n_common_timeouts*2; |
| 1219 | struct common_timeout_list **newqueues = |
| 1220 | mm_realloc(base->common_timeout_queues, |
| 1221 | n*sizeof(struct common_timeout_queue *)); |
| 1222 | if (!newqueues) { |
| 1223 | event_warn("%s: realloc",__func__); |
| 1224 | goto done; |
| 1225 | } |
| 1226 | base->n_common_timeouts_allocated = n; |
| 1227 | base->common_timeout_queues = newqueues; |
| 1228 | } |
| 1229 | new_ctl = mm_calloc(1, sizeof(struct common_timeout_list)); |
| 1230 | if (!new_ctl) { |
| 1231 | event_warn("%s: calloc",__func__); |
| 1232 | goto done; |
| 1233 | } |
| 1234 | TAILQ_INIT(&new_ctl->events); |
| 1235 | new_ctl->duration.tv_sec = duration->tv_sec; |
| 1236 | new_ctl->duration.tv_usec = |
| 1237 | duration->tv_usec | COMMON_TIMEOUT_MAGIC | |
| 1238 | (base->n_common_timeouts << COMMON_TIMEOUT_IDX_SHIFT); |
| 1239 | evtimer_assign(&new_ctl->timeout_event, base, |
| 1240 | common_timeout_callback, new_ctl); |
| 1241 | new_ctl->timeout_event.ev_flags |= EVLIST_INTERNAL; |
| 1242 | event_priority_set(&new_ctl->timeout_event, 0); |
| 1243 | new_ctl->base = base; |
| 1244 | base->common_timeout_queues[base->n_common_timeouts++] = new_ctl; |
| 1245 | result = &new_ctl->duration; |
| 1246 | |
| 1247 | done: |
| 1248 | if (result) |
| 1249 | EVUTIL_ASSERT(is_common_timeout(result, base)); |
| 1250 | |
| 1251 | EVBASE_RELEASE_LOCK(base, th_base_lock); |
| 1252 | return result; |
| 1253 | } |
| 1254 | |
| 1255 | /* Closure function invoked when we're activating a persistent event. */ |
| 1256 | static inline void |
| 1257 | event_persist_closure(struct event_base *base, struct event *ev) |
| 1258 | { |
| 1259 | // Define our callback, we use this to store our callback before it's executed |
| 1260 | void (*evcb_callback)(evutil_socket_t, short, void *); |
| 1261 | |
| 1262 | // Other fields of *ev that must be stored before executing |
| 1263 | evutil_socket_t evcb_fd; |
| 1264 | short evcb_res; |
| 1265 | void *evcb_arg; |
| 1266 | |
| 1267 | /* reschedule the persistent event if we have a timeout. */ |
| 1268 | if (ev->ev_io_timeout.tv_sec || ev->ev_io_timeout.tv_usec) { |
| 1269 | /* If there was a timeout, we want it to run at an interval of |
| 1270 | * ev_io_timeout after the last time it was _scheduled_ for, |
| 1271 | * not ev_io_timeout after _now_. If it fired for another |
| 1272 | * reason, though, the timeout ought to start ticking _now_. */ |
| 1273 | struct timeval run_at, relative_to, delay, now; |
| 1274 | ev_uint32_t usec_mask = 0; |
| 1275 | EVUTIL_ASSERT(is_same_common_timeout(&ev->ev_timeout, |
| 1276 | &ev->ev_io_timeout)); |
| 1277 | gettime(base, &now); |
| 1278 | if (is_common_timeout(&ev->ev_timeout, base)) { |
| 1279 | delay = ev->ev_io_timeout; |
| 1280 | usec_mask = delay.tv_usec & ~MICROSECONDS_MASK; |
| 1281 | delay.tv_usec &= MICROSECONDS_MASK; |
| 1282 | if (ev->ev_res & EV_TIMEOUT) { |
| 1283 | relative_to = ev->ev_timeout; |
| 1284 | relative_to.tv_usec &= MICROSECONDS_MASK; |
| 1285 | } else { |
| 1286 | relative_to = now; |
| 1287 | } |
| 1288 | } else { |
| 1289 | delay = ev->ev_io_timeout; |
| 1290 | if (ev->ev_res & EV_TIMEOUT) { |
| 1291 | relative_to = ev->ev_timeout; |
| 1292 | } else { |
| 1293 | relative_to = now; |
| 1294 | } |
| 1295 | } |
| 1296 | evutil_timeradd(&relative_to, &delay, &run_at); |
| 1297 | if (evutil_timercmp(&run_at, &now, <)) { |
| 1298 | /* Looks like we missed at least one invocation due to |
| 1299 | * a clock jump, not running the event loop for a |
| 1300 | * while, really slow callbacks, or |
| 1301 | * something. Reschedule relative to now. |
| 1302 | */ |
| 1303 | evutil_timeradd(&now, &delay, &run_at); |
| 1304 | } |
| 1305 | run_at.tv_usec |= usec_mask; |
| 1306 | event_add_internal(ev, &run_at, 1); |
| 1307 | } |
| 1308 | |
| 1309 | // Save our callback before we release the lock |
| 1310 | evcb_callback = ev->ev_callback; |
| 1311 | evcb_fd = ev->ev_fd; |
| 1312 | evcb_res = ev->ev_res; |
| 1313 | evcb_arg = ev->ev_arg; |
| 1314 | |
| 1315 | // Release the lock |
| 1316 | EVBASE_RELEASE_LOCK(base, th_base_lock); |
| 1317 | |
| 1318 | // Execute the callback |
| 1319 | (evcb_callback)(evcb_fd, evcb_res, evcb_arg); |
| 1320 | } |
| 1321 | |
| 1322 | /* |
| 1323 | Helper for event_process_active to process all the events in a single queue, |
| 1324 | releasing the lock as we go. This function requires that the lock be held |
| 1325 | when it's invoked. Returns -1 if we get a signal or an event_break that |
| 1326 | means we should stop processing any active events now. Otherwise returns |
| 1327 | the number of non-internal events that we processed. |
| 1328 | */ |
| 1329 | static int |
| 1330 | event_process_active_single_queue(struct event_base *base, |
| 1331 | struct event_list *activeq) |
| 1332 | { |
| 1333 | struct event *ev; |
| 1334 | int count = 0; |
| 1335 | |
| 1336 | EVUTIL_ASSERT(activeq != NULL); |
| 1337 | |
| 1338 | for (ev = TAILQ_FIRST(activeq); ev; ev = TAILQ_FIRST(activeq)) { |
| 1339 | if (ev->ev_events & EV_PERSIST) |
| 1340 | event_queue_remove(base, ev, EVLIST_ACTIVE); |
| 1341 | else |
| 1342 | event_del_internal(ev); |
| 1343 | if (!(ev->ev_flags & EVLIST_INTERNAL)) |
| 1344 | ++count; |
| 1345 | |
| 1346 | event_debug(( |
| 1347 | "event_process_active: event: %p, %s%scall %p", |
| 1348 | ev, |
| 1349 | ev->ev_res & EV_READ ? "EV_READ " : " ", |
| 1350 | ev->ev_res & EV_WRITE ? "EV_WRITE " : " ", |
| 1351 | ev->ev_callback)); |
| 1352 | |
| 1353 | #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| 1354 | base->current_event = ev; |
| 1355 | base->current_event_waiters = 0; |
| 1356 | #endif |
| 1357 | |
| 1358 | switch (ev->ev_closure) { |
| 1359 | case EV_CLOSURE_SIGNAL: |
| 1360 | event_signal_closure(base, ev); |
| 1361 | break; |
| 1362 | case EV_CLOSURE_PERSIST: |
| 1363 | event_persist_closure(base, ev); |
| 1364 | break; |
| 1365 | default: |
| 1366 | case EV_CLOSURE_NONE: |
| 1367 | EVBASE_RELEASE_LOCK(base, th_base_lock); |
| 1368 | (*ev->ev_callback)( |
| 1369 | ev->ev_fd, ev->ev_res, ev->ev_arg); |
| 1370 | break; |
| 1371 | } |
| 1372 | |
| 1373 | EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| 1374 | #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| 1375 | base->current_event = NULL; |
| 1376 | if (base->current_event_waiters) { |
| 1377 | base->current_event_waiters = 0; |
| 1378 | EVTHREAD_COND_BROADCAST(base->current_event_cond); |
| 1379 | } |
| 1380 | #endif |
| 1381 | |
| 1382 | if (base->event_break) |
| 1383 | return -1; |
| 1384 | if (base->event_continue) |
| 1385 | break; |
| 1386 | } |
| 1387 | return count; |
| 1388 | } |
| 1389 | |
| 1390 | /* |
| 1391 | Process up to MAX_DEFERRED of the defered_cb entries in 'queue'. If |
| 1392 | *breakptr becomes set to 1, stop. Requires that we start out holding |
| 1393 | the lock on 'queue'; releases the lock around 'queue' for each deferred_cb |
| 1394 | we process. |
| 1395 | */ |
| 1396 | static int |
| 1397 | event_process_deferred_callbacks(struct deferred_cb_queue *queue, int *breakptr) |
| 1398 | { |
| 1399 | int count = 0; |
| 1400 | struct deferred_cb *cb; |
| 1401 | |
| 1402 | #define MAX_DEFERRED 16 |
| 1403 | while ((cb = TAILQ_FIRST(&queue->deferred_cb_list))) { |
| 1404 | cb->queued = 0; |
| 1405 | TAILQ_REMOVE(&queue->deferred_cb_list, cb, cb_next); |
| 1406 | --queue->active_count; |
| 1407 | UNLOCK_DEFERRED_QUEUE(queue); |
| 1408 | |
| 1409 | cb->cb(cb, cb->arg); |
| 1410 | |
| 1411 | LOCK_DEFERRED_QUEUE(queue); |
| 1412 | if (*breakptr) |
| 1413 | return -1; |
| 1414 | if (++count == MAX_DEFERRED) |
| 1415 | break; |
| 1416 | } |
| 1417 | #undef MAX_DEFERRED |
| 1418 | return count; |
| 1419 | } |
| 1420 | |
| 1421 | /* |
| 1422 | * Active events are stored in priority queues. Lower priorities are always |
| 1423 | * process before higher priorities. Low priority events can starve high |
| 1424 | * priority ones. |
| 1425 | */ |
| 1426 | |
| 1427 | static int |
| 1428 | event_process_active(struct event_base *base) |
| 1429 | { |
| 1430 | /* Caller must hold th_base_lock */ |
| 1431 | struct event_list *activeq = NULL; |
| 1432 | int i, c = 0; |
| 1433 | |
| 1434 | for (i = 0; i < base->nactivequeues; ++i) { |
| 1435 | if (TAILQ_FIRST(&base->activequeues[i]) != NULL) { |
| 1436 | base->event_running_priority = i; |
| 1437 | activeq = &base->activequeues[i]; |
| 1438 | c = event_process_active_single_queue(base, activeq); |
| 1439 | if (c < 0) { |
| 1440 | base->event_running_priority = -1; |
| 1441 | return -1; |
| 1442 | } else if (c > 0) |
| 1443 | break; /* Processed a real event; do not |
| 1444 | * consider lower-priority events */ |
| 1445 | /* If we get here, all of the events we processed |
| 1446 | * were internal. Continue. */ |
| 1447 | } |
| 1448 | } |
| 1449 | |
| 1450 | event_process_deferred_callbacks(&base->defer_queue,&base->event_break); |
| 1451 | base->event_running_priority = -1; |
| 1452 | return c; |
| 1453 | } |
| 1454 | |
| 1455 | /* |
| 1456 | * Wait continuously for events. We exit only if no events are left. |
| 1457 | */ |
| 1458 | |
| 1459 | int |
| 1460 | event_dispatch(void) |
| 1461 | { |
| 1462 | return (event_loop(0)); |
| 1463 | } |
| 1464 | |
| 1465 | int |
| 1466 | event_base_dispatch(struct event_base *event_base) |
| 1467 | { |
| 1468 | return (event_base_loop(event_base, 0)); |
| 1469 | } |
| 1470 | |
| 1471 | const char * |
| 1472 | event_base_get_method(const struct event_base *base) |
| 1473 | { |
| 1474 | EVUTIL_ASSERT(base); |
| 1475 | return (base->evsel->name); |
| 1476 | } |
| 1477 | |
| 1478 | /** Callback: used to implement event_base_loopexit by telling the event_base |
| 1479 | * that it's time to exit its loop. */ |
| 1480 | static void |
| 1481 | event_loopexit_cb(evutil_socket_t fd, short what, void *arg) |
| 1482 | { |
| 1483 | struct event_base *base = arg; |
| 1484 | base->event_gotterm = 1; |
| 1485 | } |
| 1486 | |
| 1487 | int |
| 1488 | event_loopexit(const struct timeval *tv) |
| 1489 | { |
| 1490 | return (event_once(-1, EV_TIMEOUT, event_loopexit_cb, |
| 1491 | current_base, tv)); |
| 1492 | } |
| 1493 | |
| 1494 | int |
| 1495 | event_base_loopexit(struct event_base *event_base, const struct timeval *tv) |
| 1496 | { |
| 1497 | return (event_base_once(event_base, -1, EV_TIMEOUT, event_loopexit_cb, |
| 1498 | event_base, tv)); |
| 1499 | } |
| 1500 | |
| 1501 | int |
| 1502 | event_loopbreak(void) |
| 1503 | { |
| 1504 | return (event_base_loopbreak(current_base)); |
| 1505 | } |
| 1506 | |
| 1507 | int |
| 1508 | event_base_loopbreak(struct event_base *event_base) |
| 1509 | { |
| 1510 | int r = 0; |
| 1511 | if (event_base == NULL) |
| 1512 | return (-1); |
| 1513 | |
| 1514 | EVBASE_ACQUIRE_LOCK(event_base, th_base_lock); |
| 1515 | event_base->event_break = 1; |
| 1516 | |
| 1517 | if (EVBASE_NEED_NOTIFY(event_base)) { |
| 1518 | r = evthread_notify_base(event_base); |
| 1519 | } else { |
| 1520 | r = (0); |
| 1521 | } |
| 1522 | EVBASE_RELEASE_LOCK(event_base, th_base_lock); |
| 1523 | return r; |
| 1524 | } |
| 1525 | |
| 1526 | int |
| 1527 | event_base_got_break(struct event_base *event_base) |
| 1528 | { |
| 1529 | int res; |
| 1530 | EVBASE_ACQUIRE_LOCK(event_base, th_base_lock); |
| 1531 | res = event_base->event_break; |
| 1532 | EVBASE_RELEASE_LOCK(event_base, th_base_lock); |
| 1533 | return res; |
| 1534 | } |
| 1535 | |
| 1536 | int |
| 1537 | event_base_got_exit(struct event_base *event_base) |
| 1538 | { |
| 1539 | int res; |
| 1540 | EVBASE_ACQUIRE_LOCK(event_base, th_base_lock); |
| 1541 | res = event_base->event_gotterm; |
| 1542 | EVBASE_RELEASE_LOCK(event_base, th_base_lock); |
| 1543 | return res; |
| 1544 | } |
| 1545 | |
| 1546 | /* not thread safe */ |
| 1547 | |
| 1548 | int |
| 1549 | event_loop(int flags) |
| 1550 | { |
| 1551 | return event_base_loop(current_base, flags); |
| 1552 | } |
| 1553 | |
| 1554 | int |
| 1555 | event_base_loop(struct event_base *base, int flags) |
| 1556 | { |
| 1557 | const struct eventop *evsel = base->evsel; |
| 1558 | struct timeval tv; |
| 1559 | struct timeval *tv_p; |
| 1560 | int res, done, retval = 0; |
| 1561 | |
| 1562 | /* Grab the lock. We will release it inside evsel.dispatch, and again |
| 1563 | * as we invoke user callbacks. */ |
| 1564 | EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| 1565 | |
| 1566 | if (base->running_loop) { |
| 1567 | event_warnx("%s: reentrant invocation. Only one event_base_loop" |
| 1568 | " can run on each event_base at once.", __func__); |
| 1569 | EVBASE_RELEASE_LOCK(base, th_base_lock); |
| 1570 | return -1; |
| 1571 | } |
| 1572 | |
| 1573 | base->running_loop = 1; |
| 1574 | |
| 1575 | clear_time_cache(base); |
| 1576 | |
| 1577 | if (base->sig.ev_signal_added && base->sig.ev_n_signals_added) |
| 1578 | evsig_set_base(base); |
| 1579 | |
| 1580 | done = 0; |
| 1581 | |
| 1582 | #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| 1583 | base->th_owner_id = EVTHREAD_GET_ID(); |
| 1584 | #endif |
| 1585 | |
| 1586 | base->event_gotterm = base->event_break = 0; |
| 1587 | |
| 1588 | while (!done) { |
| 1589 | base->event_continue = 0; |
| 1590 | |
| 1591 | /* Terminate the loop if we have been asked to */ |
| 1592 | if (base->event_gotterm) { |
| 1593 | break; |
| 1594 | } |
| 1595 | |
| 1596 | if (base->event_break) { |
| 1597 | break; |
| 1598 | } |
| 1599 | |
| 1600 | timeout_correct(base, &tv); |
| 1601 | |
| 1602 | tv_p = &tv; |
| 1603 | if (!N_ACTIVE_CALLBACKS(base) && !(flags & EVLOOP_NONBLOCK)) { |
| 1604 | timeout_next(base, &tv_p); |
| 1605 | } else { |
| 1606 | /* |
| 1607 | * if we have active events, we just poll new events |
| 1608 | * without waiting. |
| 1609 | */ |
| 1610 | evutil_timerclear(&tv); |
| 1611 | } |
| 1612 | |
| 1613 | /* If we have no events, we just exit */ |
| 1614 | if (!event_haveevents(base) && !N_ACTIVE_CALLBACKS(base)) { |
| 1615 | event_debug(("%s: no events registered.", __func__)); |
| 1616 | retval = 1; |
| 1617 | goto done; |
| 1618 | } |
| 1619 | |
| 1620 | /* update last old time */ |
| 1621 | gettime(base, &base->event_tv); |
| 1622 | |
| 1623 | clear_time_cache(base); |
| 1624 | |
| 1625 | res = evsel->dispatch(base, tv_p); |
| 1626 | |
| 1627 | if (res == -1) { |
| 1628 | event_debug(("%s: dispatch returned unsuccessfully.", |
| 1629 | __func__)); |
| 1630 | retval = -1; |
| 1631 | goto done; |
| 1632 | } |
| 1633 | |
| 1634 | update_time_cache(base); |
| 1635 | |
| 1636 | timeout_process(base); |
| 1637 | |
| 1638 | if (N_ACTIVE_CALLBACKS(base)) { |
| 1639 | int n = event_process_active(base); |
| 1640 | if ((flags & EVLOOP_ONCE) |
| 1641 | && N_ACTIVE_CALLBACKS(base) == 0 |
| 1642 | && n != 0) |
| 1643 | done = 1; |
| 1644 | } else if (flags & EVLOOP_NONBLOCK) |
| 1645 | done = 1; |
| 1646 | } |
| 1647 | event_debug(("%s: asked to terminate loop.", __func__)); |
| 1648 | |
| 1649 | done: |
| 1650 | clear_time_cache(base); |
| 1651 | base->running_loop = 0; |
| 1652 | |
| 1653 | EVBASE_RELEASE_LOCK(base, th_base_lock); |
| 1654 | |
| 1655 | return (retval); |
| 1656 | } |
| 1657 | |
| 1658 | /* Sets up an event for processing once */ |
| 1659 | struct event_once { |
| 1660 | struct event ev; |
| 1661 | |
| 1662 | void (*cb)(evutil_socket_t, short, void *); |
| 1663 | void *arg; |
| 1664 | }; |
| 1665 | |
| 1666 | /* One-time callback to implement event_base_once: invokes the user callback, |
| 1667 | * then deletes the allocated storage */ |
| 1668 | static void |
| 1669 | event_once_cb(evutil_socket_t fd, short events, void *arg) |
| 1670 | { |
| 1671 | struct event_once *eonce = arg; |
| 1672 | |
| 1673 | (*eonce->cb)(fd, events, eonce->arg); |
| 1674 | event_debug_unassign(&eonce->ev); |
| 1675 | mm_free(eonce); |
| 1676 | } |
| 1677 | |
| 1678 | /* not threadsafe, event scheduled once. */ |
| 1679 | int |
| 1680 | event_once(evutil_socket_t fd, short events, |
| 1681 | void (*callback)(evutil_socket_t, short, void *), |
| 1682 | void *arg, const struct timeval *tv) |
| 1683 | { |
| 1684 | return event_base_once(current_base, fd, events, callback, arg, tv); |
| 1685 | } |
| 1686 | |
| 1687 | /* Schedules an event once */ |
| 1688 | int |
| 1689 | event_base_once(struct event_base *base, evutil_socket_t fd, short events, |
| 1690 | void (*callback)(evutil_socket_t, short, void *), |
| 1691 | void *arg, const struct timeval *tv) |
| 1692 | { |
| 1693 | struct event_once *eonce; |
| 1694 | struct timeval etv; |
| 1695 | int res = 0; |
| 1696 | |
| 1697 | /* We cannot support signals that just fire once, or persistent |
| 1698 | * events. */ |
| 1699 | if (events & (EV_SIGNAL|EV_PERSIST)) |
| 1700 | return (-1); |
| 1701 | |
| 1702 | if ((eonce = mm_calloc(1, sizeof(struct event_once))) == NULL) |
| 1703 | return (-1); |
| 1704 | |
| 1705 | eonce->cb = callback; |
| 1706 | eonce->arg = arg; |
| 1707 | |
| 1708 | if (events == EV_TIMEOUT) { |
| 1709 | if (tv == NULL) { |
| 1710 | evutil_timerclear(&etv); |
| 1711 | tv = &etv; |
| 1712 | } |
| 1713 | |
| 1714 | evtimer_assign(&eonce->ev, base, event_once_cb, eonce); |
| 1715 | } else if (events & (EV_READ|EV_WRITE)) { |
| 1716 | events &= EV_READ|EV_WRITE; |
| 1717 | |
| 1718 | event_assign(&eonce->ev, base, fd, events, event_once_cb, eonce); |
| 1719 | } else { |
| 1720 | /* Bad event combination */ |
| 1721 | mm_free(eonce); |
| 1722 | return (-1); |
| 1723 | } |
| 1724 | |
| 1725 | if (res == 0) |
| 1726 | res = event_add(&eonce->ev, tv); |
| 1727 | if (res != 0) { |
| 1728 | mm_free(eonce); |
| 1729 | return (res); |
| 1730 | } |
| 1731 | |
| 1732 | return (0); |
| 1733 | } |
| 1734 | |
| 1735 | int |
| 1736 | event_assign(struct event *ev, struct event_base *base, evutil_socket_t fd, short events, void (*callback)(evutil_socket_t, short, void *), void *arg) |
| 1737 | { |
| 1738 | if (!base) |
| 1739 | base = current_base; |
| 1740 | |
| 1741 | _event_debug_assert_not_added(ev); |
| 1742 | |
| 1743 | ev->ev_base = base; |
| 1744 | |
| 1745 | ev->ev_callback = callback; |
| 1746 | ev->ev_arg = arg; |
| 1747 | ev->ev_fd = fd; |
| 1748 | ev->ev_events = events; |
| 1749 | ev->ev_res = 0; |
| 1750 | ev->ev_flags = EVLIST_INIT; |
| 1751 | ev->ev_ncalls = 0; |
| 1752 | ev->ev_pncalls = NULL; |
| 1753 | |
| 1754 | if (events & EV_SIGNAL) { |
| 1755 | if ((events & (EV_READ|EV_WRITE)) != 0) { |
| 1756 | event_warnx("%s: EV_SIGNAL is not compatible with " |
| 1757 | "EV_READ or EV_WRITE", __func__); |
| 1758 | return -1; |
| 1759 | } |
| 1760 | ev->ev_closure = EV_CLOSURE_SIGNAL; |
| 1761 | } else { |
| 1762 | if (events & EV_PERSIST) { |
| 1763 | evutil_timerclear(&ev->ev_io_timeout); |
| 1764 | ev->ev_closure = EV_CLOSURE_PERSIST; |
| 1765 | } else { |
| 1766 | ev->ev_closure = EV_CLOSURE_NONE; |
| 1767 | } |
| 1768 | } |
| 1769 | |
| 1770 | min_heap_elem_init(ev); |
| 1771 | |
| 1772 | if (base != NULL) { |
| 1773 | /* by default, we put new events into the middle priority */ |
| 1774 | ev->ev_pri = base->nactivequeues / 2; |
| 1775 | } |
| 1776 | |
| 1777 | _event_debug_note_setup(ev); |
| 1778 | |
| 1779 | return 0; |
| 1780 | } |
| 1781 | |
| 1782 | int |
| 1783 | event_base_set(struct event_base *base, struct event *ev) |
| 1784 | { |
| 1785 | /* Only innocent events may be assigned to a different base */ |
| 1786 | if (ev->ev_flags != EVLIST_INIT) |
| 1787 | return (-1); |
| 1788 | |
| 1789 | _event_debug_assert_is_setup(ev); |
| 1790 | |
| 1791 | ev->ev_base = base; |
| 1792 | ev->ev_pri = base->nactivequeues/2; |
| 1793 | |
| 1794 | return (0); |
| 1795 | } |
| 1796 | |
| 1797 | void |
| 1798 | event_set(struct event *ev, evutil_socket_t fd, short events, |
| 1799 | void (*callback)(evutil_socket_t, short, void *), void *arg) |
| 1800 | { |
| 1801 | int r; |
| 1802 | r = event_assign(ev, current_base, fd, events, callback, arg); |
| 1803 | EVUTIL_ASSERT(r == 0); |
| 1804 | } |
| 1805 | |
| 1806 | struct event * |
| 1807 | event_new(struct event_base *base, evutil_socket_t fd, short events, void (*cb)(evutil_socket_t, short, void *), void *arg) |
| 1808 | { |
| 1809 | struct event *ev; |
| 1810 | ev = mm_malloc(sizeof(struct event)); |
| 1811 | if (ev == NULL) |
| 1812 | return (NULL); |
| 1813 | if (event_assign(ev, base, fd, events, cb, arg) < 0) { |
| 1814 | mm_free(ev); |
| 1815 | return (NULL); |
| 1816 | } |
| 1817 | |
| 1818 | return (ev); |
| 1819 | } |
| 1820 | |
| 1821 | void |
| 1822 | event_free(struct event *ev) |
| 1823 | { |
| 1824 | _event_debug_assert_is_setup(ev); |
| 1825 | |
| 1826 | /* make sure that this event won't be coming back to haunt us. */ |
| 1827 | event_del(ev); |
| 1828 | _event_debug_note_teardown(ev); |
| 1829 | mm_free(ev); |
| 1830 | |
| 1831 | } |
| 1832 | |
| 1833 | void |
| 1834 | event_debug_unassign(struct event *ev) |
| 1835 | { |
| 1836 | _event_debug_assert_not_added(ev); |
| 1837 | _event_debug_note_teardown(ev); |
| 1838 | |
| 1839 | ev->ev_flags &= ~EVLIST_INIT; |
| 1840 | } |
| 1841 | |
| 1842 | /* |
| 1843 | * Set's the priority of an event - if an event is already scheduled |
| 1844 | * changing the priority is going to fail. |
| 1845 | */ |
| 1846 | |
| 1847 | int |
| 1848 | event_priority_set(struct event *ev, int pri) |
| 1849 | { |
| 1850 | _event_debug_assert_is_setup(ev); |
| 1851 | |
| 1852 | if (ev->ev_flags & EVLIST_ACTIVE) |
| 1853 | return (-1); |
| 1854 | if (pri < 0 || pri >= ev->ev_base->nactivequeues) |
| 1855 | return (-1); |
| 1856 | |
| 1857 | ev->ev_pri = pri; |
| 1858 | |
| 1859 | return (0); |
| 1860 | } |
| 1861 | |
| 1862 | /* |
| 1863 | * Checks if a specific event is pending or scheduled. |
| 1864 | */ |
| 1865 | |
| 1866 | int |
| 1867 | event_pending(const struct event *ev, short event, struct timeval *tv) |
| 1868 | { |
| 1869 | int flags = 0; |
| 1870 | |
| 1871 | if (EVUTIL_FAILURE_CHECK(ev->ev_base == NULL)) { |
| 1872 | event_warnx("%s: event has no event_base set.", __func__); |
| 1873 | return 0; |
| 1874 | } |
| 1875 | |
| 1876 | EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); |
| 1877 | _event_debug_assert_is_setup(ev); |
| 1878 | |
| 1879 | if (ev->ev_flags & EVLIST_INSERTED) |
| 1880 | flags |= (ev->ev_events & (EV_READ|EV_WRITE|EV_SIGNAL)); |
| 1881 | if (ev->ev_flags & EVLIST_ACTIVE) |
| 1882 | flags |= ev->ev_res; |
| 1883 | if (ev->ev_flags & EVLIST_TIMEOUT) |
| 1884 | flags |= EV_TIMEOUT; |
| 1885 | |
| 1886 | event &= (EV_TIMEOUT|EV_READ|EV_WRITE|EV_SIGNAL); |
| 1887 | |
| 1888 | /* See if there is a timeout that we should report */ |
| 1889 | if (tv != NULL && (flags & event & EV_TIMEOUT)) { |
| 1890 | struct timeval tmp = ev->ev_timeout; |
| 1891 | tmp.tv_usec &= MICROSECONDS_MASK; |
| 1892 | #if defined(_EVENT_HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) |
| 1893 | /* correctly remamp to real time */ |
| 1894 | evutil_timeradd(&ev->ev_base->tv_clock_diff, &tmp, tv); |
| 1895 | #else |
| 1896 | *tv = tmp; |
| 1897 | #endif |
| 1898 | } |
| 1899 | |
| 1900 | EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); |
| 1901 | |
| 1902 | return (flags & event); |
| 1903 | } |
| 1904 | |
| 1905 | int |
| 1906 | event_initialized(const struct event *ev) |
| 1907 | { |
| 1908 | if (!(ev->ev_flags & EVLIST_INIT)) |
| 1909 | return 0; |
| 1910 | |
| 1911 | return 1; |
| 1912 | } |
| 1913 | |
| 1914 | void |
| 1915 | event_get_assignment(const struct event *event, struct event_base **base_out, evutil_socket_t *fd_out, short *events_out, event_callback_fn *callback_out, void **arg_out) |
| 1916 | { |
| 1917 | _event_debug_assert_is_setup(event); |
| 1918 | |
| 1919 | if (base_out) |
| 1920 | *base_out = event->ev_base; |
| 1921 | if (fd_out) |
| 1922 | *fd_out = event->ev_fd; |
| 1923 | if (events_out) |
| 1924 | *events_out = event->ev_events; |
| 1925 | if (callback_out) |
| 1926 | *callback_out = event->ev_callback; |
| 1927 | if (arg_out) |
| 1928 | *arg_out = event->ev_arg; |
| 1929 | } |
| 1930 | |
| 1931 | size_t |
| 1932 | event_get_struct_event_size(void) |
| 1933 | { |
| 1934 | return sizeof(struct event); |
| 1935 | } |
| 1936 | |
| 1937 | evutil_socket_t |
| 1938 | event_get_fd(const struct event *ev) |
| 1939 | { |
| 1940 | _event_debug_assert_is_setup(ev); |
| 1941 | return ev->ev_fd; |
| 1942 | } |
| 1943 | |
| 1944 | struct event_base * |
| 1945 | event_get_base(const struct event *ev) |
| 1946 | { |
| 1947 | _event_debug_assert_is_setup(ev); |
| 1948 | return ev->ev_base; |
| 1949 | } |
| 1950 | |
| 1951 | short |
| 1952 | event_get_events(const struct event *ev) |
| 1953 | { |
| 1954 | _event_debug_assert_is_setup(ev); |
| 1955 | return ev->ev_events; |
| 1956 | } |
| 1957 | |
| 1958 | event_callback_fn |
| 1959 | event_get_callback(const struct event *ev) |
| 1960 | { |
| 1961 | _event_debug_assert_is_setup(ev); |
| 1962 | return ev->ev_callback; |
| 1963 | } |
| 1964 | |
| 1965 | void * |
| 1966 | event_get_callback_arg(const struct event *ev) |
| 1967 | { |
| 1968 | _event_debug_assert_is_setup(ev); |
| 1969 | return ev->ev_arg; |
| 1970 | } |
| 1971 | |
| 1972 | int |
| 1973 | event_add(struct event *ev, const struct timeval *tv) |
| 1974 | { |
| 1975 | int res; |
| 1976 | |
| 1977 | if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) { |
| 1978 | event_warnx("%s: event has no event_base set.", __func__); |
| 1979 | return -1; |
| 1980 | } |
| 1981 | |
| 1982 | EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); |
| 1983 | |
| 1984 | res = event_add_internal(ev, tv, 0); |
| 1985 | |
| 1986 | EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); |
| 1987 | |
| 1988 | return (res); |
| 1989 | } |
| 1990 | |
| 1991 | /* Helper callback: wake an event_base from another thread. This version |
| 1992 | * works by writing a byte to one end of a socketpair, so that the event_base |
| 1993 | * listening on the other end will wake up as the corresponding event |
| 1994 | * triggers */ |
| 1995 | static int |
| 1996 | evthread_notify_base_default(struct event_base *base) |
| 1997 | { |
| 1998 | char buf[1]; |
| 1999 | int r; |
| 2000 | buf[0] = (char) 0; |
| 2001 | #ifdef WIN32 |
| 2002 | r = send(base->th_notify_fd[1], buf, 1, 0); |
| 2003 | #else |
| 2004 | r = write(base->th_notify_fd[1], buf, 1); |
| 2005 | #endif |
| 2006 | return (r < 0 && errno != EAGAIN) ? -1 : 0; |
| 2007 | } |
| 2008 | |
| 2009 | #if defined(_EVENT_HAVE_EVENTFD) && defined(_EVENT_HAVE_SYS_EVENTFD_H) |
| 2010 | /* Helper callback: wake an event_base from another thread. This version |
| 2011 | * assumes that you have a working eventfd() implementation. */ |
| 2012 | static int |
| 2013 | evthread_notify_base_eventfd(struct event_base *base) |
| 2014 | { |
| 2015 | ev_uint64_t msg = 1; |
| 2016 | int r; |
| 2017 | do { |
| 2018 | r = write(base->th_notify_fd[0], (void*) &msg, sizeof(msg)); |
| 2019 | } while (r < 0 && errno == EAGAIN); |
| 2020 | |
| 2021 | return (r < 0) ? -1 : 0; |
| 2022 | } |
| 2023 | #endif |
| 2024 | |
| 2025 | /** Tell the thread currently running the event_loop for base (if any) that it |
| 2026 | * needs to stop waiting in its dispatch function (if it is) and process all |
| 2027 | * active events and deferred callbacks (if there are any). */ |
| 2028 | static int |
| 2029 | evthread_notify_base(struct event_base *base) |
| 2030 | { |
| 2031 | EVENT_BASE_ASSERT_LOCKED(base); |
| 2032 | if (!base->th_notify_fn) |
| 2033 | return -1; |
| 2034 | if (base->is_notify_pending) |
| 2035 | return 0; |
| 2036 | base->is_notify_pending = 1; |
| 2037 | return base->th_notify_fn(base); |
| 2038 | } |
| 2039 | |
| 2040 | /* Implementation function to add an event. Works just like event_add, |
| 2041 | * except: 1) it requires that we have the lock. 2) if tv_is_absolute is set, |
| 2042 | * we treat tv as an absolute time, not as an interval to add to the current |
| 2043 | * time */ |
| 2044 | static inline int |
| 2045 | event_add_internal(struct event *ev, const struct timeval *tv, |
| 2046 | int tv_is_absolute) |
| 2047 | { |
| 2048 | struct event_base *base = ev->ev_base; |
| 2049 | int res = 0; |
| 2050 | int notify = 0; |
| 2051 | |
| 2052 | EVENT_BASE_ASSERT_LOCKED(base); |
| 2053 | _event_debug_assert_is_setup(ev); |
| 2054 | |
| 2055 | event_debug(( |
| 2056 | "event_add: event: %p (fd "EV_SOCK_FMT"), %s%s%scall %p", |
| 2057 | ev, |
| 2058 | EV_SOCK_ARG(ev->ev_fd), |
| 2059 | ev->ev_events & EV_READ ? "EV_READ " : " ", |
| 2060 | ev->ev_events & EV_WRITE ? "EV_WRITE " : " ", |
| 2061 | tv ? "EV_TIMEOUT " : " ", |
| 2062 | ev->ev_callback)); |
| 2063 | |
| 2064 | EVUTIL_ASSERT(!(ev->ev_flags & ~EVLIST_ALL)); |
| 2065 | |
| 2066 | /* |
| 2067 | * prepare for timeout insertion further below, if we get a |
| 2068 | * failure on any step, we should not change any state. |
| 2069 | */ |
| 2070 | if (tv != NULL && !(ev->ev_flags & EVLIST_TIMEOUT)) { |
| 2071 | if (min_heap_reserve(&base->timeheap, |
| 2072 | 1 + min_heap_size(&base->timeheap)) == -1) |
| 2073 | return (-1); /* ENOMEM == errno */ |
| 2074 | } |
| 2075 | |
| 2076 | /* If the main thread is currently executing a signal event's |
| 2077 | * callback, and we are not the main thread, then we want to wait |
| 2078 | * until the callback is done before we mess with the event, or else |
| 2079 | * we can race on ev_ncalls and ev_pncalls below. */ |
| 2080 | #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| 2081 | if (base->current_event == ev && (ev->ev_events & EV_SIGNAL) |
| 2082 | && !EVBASE_IN_THREAD(base)) { |
| 2083 | ++base->current_event_waiters; |
| 2084 | EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock); |
| 2085 | } |
| 2086 | #endif |
| 2087 | |
| 2088 | if ((ev->ev_events & (EV_READ|EV_WRITE|EV_SIGNAL)) && |
| 2089 | !(ev->ev_flags & (EVLIST_INSERTED|EVLIST_ACTIVE))) { |
| 2090 | if (ev->ev_events & (EV_READ|EV_WRITE)) |
| 2091 | res = evmap_io_add(base, ev->ev_fd, ev); |
| 2092 | else if (ev->ev_events & EV_SIGNAL) |
| 2093 | res = evmap_signal_add(base, (int)ev->ev_fd, ev); |
| 2094 | if (res != -1) |
| 2095 | event_queue_insert(base, ev, EVLIST_INSERTED); |
| 2096 | if (res == 1) { |
| 2097 | /* evmap says we need to notify the main thread. */ |
| 2098 | notify = 1; |
| 2099 | res = 0; |
| 2100 | } |
| 2101 | } |
| 2102 | |
| 2103 | /* |
| 2104 | * we should change the timeout state only if the previous event |
| 2105 | * addition succeeded. |
| 2106 | */ |
| 2107 | if (res != -1 && tv != NULL) { |
| 2108 | struct timeval now; |
| 2109 | int common_timeout; |
| 2110 | |
| 2111 | /* |
| 2112 | * for persistent timeout events, we remember the |
| 2113 | * timeout value and re-add the event. |
| 2114 | * |
| 2115 | * If tv_is_absolute, this was already set. |
| 2116 | */ |
| 2117 | if (ev->ev_closure == EV_CLOSURE_PERSIST && !tv_is_absolute) |
| 2118 | ev->ev_io_timeout = *tv; |
| 2119 | |
| 2120 | /* |
| 2121 | * we already reserved memory above for the case where we |
| 2122 | * are not replacing an existing timeout. |
| 2123 | */ |
| 2124 | if (ev->ev_flags & EVLIST_TIMEOUT) { |
| 2125 | /* XXX I believe this is needless. */ |
| 2126 | if (min_heap_elt_is_top(ev)) |
| 2127 | notify = 1; |
| 2128 | event_queue_remove(base, ev, EVLIST_TIMEOUT); |
| 2129 | } |
| 2130 | |
| 2131 | /* Check if it is active due to a timeout. Rescheduling |
| 2132 | * this timeout before the callback can be executed |
| 2133 | * removes it from the active list. */ |
| 2134 | if ((ev->ev_flags & EVLIST_ACTIVE) && |
| 2135 | (ev->ev_res & EV_TIMEOUT)) { |
| 2136 | if (ev->ev_events & EV_SIGNAL) { |
| 2137 | /* See if we are just active executing |
| 2138 | * this event in a loop |
| 2139 | */ |
| 2140 | if (ev->ev_ncalls && ev->ev_pncalls) { |
| 2141 | /* Abort loop */ |
| 2142 | *ev->ev_pncalls = 0; |
| 2143 | } |
| 2144 | } |
| 2145 | |
| 2146 | event_queue_remove(base, ev, EVLIST_ACTIVE); |
| 2147 | } |
| 2148 | |
| 2149 | gettime(base, &now); |
| 2150 | |
| 2151 | common_timeout = is_common_timeout(tv, base); |
| 2152 | if (tv_is_absolute) { |
| 2153 | ev->ev_timeout = *tv; |
| 2154 | } else if (common_timeout) { |
| 2155 | struct timeval tmp = *tv; |
| 2156 | tmp.tv_usec &= MICROSECONDS_MASK; |
| 2157 | evutil_timeradd(&now, &tmp, &ev->ev_timeout); |
| 2158 | ev->ev_timeout.tv_usec |= |
| 2159 | (tv->tv_usec & ~MICROSECONDS_MASK); |
| 2160 | } else { |
| 2161 | evutil_timeradd(&now, tv, &ev->ev_timeout); |
| 2162 | } |
| 2163 | |
| 2164 | event_debug(( |
| 2165 | "event_add: timeout in %d seconds, call %p", |
| 2166 | (int)tv->tv_sec, ev->ev_callback)); |
| 2167 | |
| 2168 | event_queue_insert(base, ev, EVLIST_TIMEOUT); |
| 2169 | if (common_timeout) { |
| 2170 | struct common_timeout_list *ctl = |
| 2171 | get_common_timeout_list(base, &ev->ev_timeout); |
| 2172 | if (ev == TAILQ_FIRST(&ctl->events)) { |
| 2173 | common_timeout_schedule(ctl, &now, ev); |
| 2174 | } |
| 2175 | } else { |
| 2176 | /* See if the earliest timeout is now earlier than it |
| 2177 | * was before: if so, we will need to tell the main |
| 2178 | * thread to wake up earlier than it would |
| 2179 | * otherwise. */ |
| 2180 | if (min_heap_elt_is_top(ev)) |
| 2181 | notify = 1; |
| 2182 | } |
| 2183 | } |
| 2184 | |
| 2185 | /* if we are not in the right thread, we need to wake up the loop */ |
| 2186 | if (res != -1 && notify && EVBASE_NEED_NOTIFY(base)) |
| 2187 | evthread_notify_base(base); |
| 2188 | |
| 2189 | _event_debug_note_add(ev); |
| 2190 | |
| 2191 | return (res); |
| 2192 | } |
| 2193 | |
| 2194 | int |
| 2195 | event_del(struct event *ev) |
| 2196 | { |
| 2197 | int res; |
| 2198 | |
| 2199 | if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) { |
| 2200 | event_warnx("%s: event has no event_base set.", __func__); |
| 2201 | return -1; |
| 2202 | } |
| 2203 | |
| 2204 | EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); |
| 2205 | |
| 2206 | res = event_del_internal(ev); |
| 2207 | |
| 2208 | EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); |
| 2209 | |
| 2210 | return (res); |
| 2211 | } |
| 2212 | |
| 2213 | /* Helper for event_del: always called with th_base_lock held. */ |
| 2214 | static inline int |
| 2215 | event_del_internal(struct event *ev) |
| 2216 | { |
| 2217 | struct event_base *base; |
| 2218 | int res = 0, notify = 0; |
| 2219 | |
| 2220 | event_debug(("event_del: %p (fd "EV_SOCK_FMT"), callback %p", |
| 2221 | ev, EV_SOCK_ARG(ev->ev_fd), ev->ev_callback)); |
| 2222 | |
| 2223 | /* An event without a base has not been added */ |
| 2224 | if (ev->ev_base == NULL) |
| 2225 | return (-1); |
| 2226 | |
| 2227 | EVENT_BASE_ASSERT_LOCKED(ev->ev_base); |
| 2228 | |
| 2229 | /* If the main thread is currently executing this event's callback, |
| 2230 | * and we are not the main thread, then we want to wait until the |
| 2231 | * callback is done before we start removing the event. That way, |
| 2232 | * when this function returns, it will be safe to free the |
| 2233 | * user-supplied argument. */ |
| 2234 | base = ev->ev_base; |
| 2235 | #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| 2236 | if (base->current_event == ev && !EVBASE_IN_THREAD(base)) { |
| 2237 | ++base->current_event_waiters; |
| 2238 | EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock); |
| 2239 | } |
| 2240 | #endif |
| 2241 | |
| 2242 | EVUTIL_ASSERT(!(ev->ev_flags & ~EVLIST_ALL)); |
| 2243 | |
| 2244 | /* See if we are just active executing this event in a loop */ |
| 2245 | if (ev->ev_events & EV_SIGNAL) { |
| 2246 | if (ev->ev_ncalls && ev->ev_pncalls) { |
| 2247 | /* Abort loop */ |
| 2248 | *ev->ev_pncalls = 0; |
| 2249 | } |
| 2250 | } |
| 2251 | |
| 2252 | if (ev->ev_flags & EVLIST_TIMEOUT) { |
| 2253 | /* NOTE: We never need to notify the main thread because of a |
| 2254 | * deleted timeout event: all that could happen if we don't is |
| 2255 | * that the dispatch loop might wake up too early. But the |
| 2256 | * point of notifying the main thread _is_ to wake up the |
| 2257 | * dispatch loop early anyway, so we wouldn't gain anything by |
| 2258 | * doing it. |
| 2259 | */ |
| 2260 | event_queue_remove(base, ev, EVLIST_TIMEOUT); |
| 2261 | } |
| 2262 | |
| 2263 | if (ev->ev_flags & EVLIST_ACTIVE) |
| 2264 | event_queue_remove(base, ev, EVLIST_ACTIVE); |
| 2265 | |
| 2266 | if (ev->ev_flags & EVLIST_INSERTED) { |
| 2267 | event_queue_remove(base, ev, EVLIST_INSERTED); |
| 2268 | if (ev->ev_events & (EV_READ|EV_WRITE)) |
| 2269 | res = evmap_io_del(base, ev->ev_fd, ev); |
| 2270 | else |
| 2271 | res = evmap_signal_del(base, (int)ev->ev_fd, ev); |
| 2272 | if (res == 1) { |
| 2273 | /* evmap says we need to notify the main thread. */ |
| 2274 | notify = 1; |
| 2275 | res = 0; |
| 2276 | } |
| 2277 | } |
| 2278 | |
| 2279 | /* if we are not in the right thread, we need to wake up the loop */ |
| 2280 | if (res != -1 && notify && EVBASE_NEED_NOTIFY(base)) |
| 2281 | evthread_notify_base(base); |
| 2282 | |
| 2283 | _event_debug_note_del(ev); |
| 2284 | |
| 2285 | return (res); |
| 2286 | } |
| 2287 | |
| 2288 | void |
| 2289 | event_active(struct event *ev, int res, short ncalls) |
| 2290 | { |
| 2291 | if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) { |
| 2292 | event_warnx("%s: event has no event_base set.", __func__); |
| 2293 | return; |
| 2294 | } |
| 2295 | |
| 2296 | EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); |
| 2297 | |
| 2298 | _event_debug_assert_is_setup(ev); |
| 2299 | |
| 2300 | event_active_nolock(ev, res, ncalls); |
| 2301 | |
| 2302 | EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); |
| 2303 | } |
| 2304 | |
| 2305 | |
| 2306 | void |
| 2307 | event_active_nolock(struct event *ev, int res, short ncalls) |
| 2308 | { |
| 2309 | struct event_base *base; |
| 2310 | |
| 2311 | event_debug(("event_active: %p (fd "EV_SOCK_FMT"), res %d, callback %p", |
| 2312 | ev, EV_SOCK_ARG(ev->ev_fd), (int)res, ev->ev_callback)); |
| 2313 | |
| 2314 | |
| 2315 | /* We get different kinds of events, add them together */ |
| 2316 | if (ev->ev_flags & EVLIST_ACTIVE) { |
| 2317 | ev->ev_res |= res; |
| 2318 | return; |
| 2319 | } |
| 2320 | |
| 2321 | base = ev->ev_base; |
| 2322 | |
| 2323 | EVENT_BASE_ASSERT_LOCKED(base); |
| 2324 | |
| 2325 | ev->ev_res = res; |
| 2326 | |
| 2327 | if (ev->ev_pri < base->event_running_priority) |
| 2328 | base->event_continue = 1; |
| 2329 | |
| 2330 | if (ev->ev_events & EV_SIGNAL) { |
| 2331 | #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| 2332 | if (base->current_event == ev && !EVBASE_IN_THREAD(base)) { |
| 2333 | ++base->current_event_waiters; |
| 2334 | EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock); |
| 2335 | } |
| 2336 | #endif |
| 2337 | ev->ev_ncalls = ncalls; |
| 2338 | ev->ev_pncalls = NULL; |
| 2339 | } |
| 2340 | |
| 2341 | event_queue_insert(base, ev, EVLIST_ACTIVE); |
| 2342 | |
| 2343 | if (EVBASE_NEED_NOTIFY(base)) |
| 2344 | evthread_notify_base(base); |
| 2345 | } |
| 2346 | |
| 2347 | void |
| 2348 | event_deferred_cb_init(struct deferred_cb *cb, deferred_cb_fn fn, void *arg) |
| 2349 | { |
| 2350 | memset(cb, 0, sizeof(struct deferred_cb)); |
| 2351 | cb->cb = fn; |
| 2352 | cb->arg = arg; |
| 2353 | } |
| 2354 | |
| 2355 | void |
| 2356 | event_deferred_cb_cancel(struct deferred_cb_queue *queue, |
| 2357 | struct deferred_cb *cb) |
| 2358 | { |
| 2359 | if (!queue) { |
| 2360 | if (current_base) |
| 2361 | queue = ¤t_base->defer_queue; |
| 2362 | else |
| 2363 | return; |
| 2364 | } |
| 2365 | |
| 2366 | LOCK_DEFERRED_QUEUE(queue); |
| 2367 | if (cb->queued) { |
| 2368 | TAILQ_REMOVE(&queue->deferred_cb_list, cb, cb_next); |
| 2369 | --queue->active_count; |
| 2370 | cb->queued = 0; |
| 2371 | } |
| 2372 | UNLOCK_DEFERRED_QUEUE(queue); |
| 2373 | } |
| 2374 | |
| 2375 | void |
| 2376 | event_deferred_cb_schedule(struct deferred_cb_queue *queue, |
| 2377 | struct deferred_cb *cb) |
| 2378 | { |
| 2379 | if (!queue) { |
| 2380 | if (current_base) |
| 2381 | queue = ¤t_base->defer_queue; |
| 2382 | else |
| 2383 | return; |
| 2384 | } |
| 2385 | |
| 2386 | LOCK_DEFERRED_QUEUE(queue); |
| 2387 | if (!cb->queued) { |
| 2388 | cb->queued = 1; |
| 2389 | TAILQ_INSERT_TAIL(&queue->deferred_cb_list, cb, cb_next); |
| 2390 | ++queue->active_count; |
| 2391 | if (queue->notify_fn) |
| 2392 | queue->notify_fn(queue, queue->notify_arg); |
| 2393 | } |
| 2394 | UNLOCK_DEFERRED_QUEUE(queue); |
| 2395 | } |
| 2396 | |
| 2397 | static int |
| 2398 | timeout_next(struct event_base *base, struct timeval **tv_p) |
| 2399 | { |
| 2400 | /* Caller must hold th_base_lock */ |
| 2401 | struct timeval now; |
| 2402 | struct event *ev; |
| 2403 | struct timeval *tv = *tv_p; |
| 2404 | int res = 0; |
| 2405 | |
| 2406 | ev = min_heap_top(&base->timeheap); |
| 2407 | |
| 2408 | if (ev == NULL) { |
| 2409 | /* if no time-based events are active wait for I/O */ |
| 2410 | *tv_p = NULL; |
| 2411 | goto out; |
| 2412 | } |
| 2413 | |
| 2414 | if (gettime(base, &now) == -1) { |
| 2415 | res = -1; |
| 2416 | goto out; |
| 2417 | } |
| 2418 | |
| 2419 | if (evutil_timercmp(&ev->ev_timeout, &now, <=)) { |
| 2420 | evutil_timerclear(tv); |
| 2421 | goto out; |
| 2422 | } |
| 2423 | |
| 2424 | evutil_timersub(&ev->ev_timeout, &now, tv); |
| 2425 | |
| 2426 | EVUTIL_ASSERT(tv->tv_sec >= 0); |
| 2427 | EVUTIL_ASSERT(tv->tv_usec >= 0); |
| 2428 | event_debug(("timeout_next: in %d seconds", (int)tv->tv_sec)); |
| 2429 | |
| 2430 | out: |
| 2431 | return (res); |
| 2432 | } |
| 2433 | |
| 2434 | /* |
| 2435 | * Determines if the time is running backwards by comparing the current time |
| 2436 | * against the last time we checked. Not needed when using clock monotonic. |
| 2437 | * If time is running backwards, we adjust the firing time of every event by |
| 2438 | * the amount that time seems to have jumped. |
| 2439 | */ |
| 2440 | static void |
| 2441 | timeout_correct(struct event_base *base, struct timeval *tv) |
| 2442 | { |
| 2443 | /* Caller must hold th_base_lock. */ |
| 2444 | struct event **pev; |
| 2445 | unsigned int size; |
| 2446 | struct timeval off; |
| 2447 | int i; |
| 2448 | |
| 2449 | if (use_monotonic) |
| 2450 | return; |
| 2451 | |
| 2452 | /* Check if time is running backwards */ |
| 2453 | gettime(base, tv); |
| 2454 | |
| 2455 | if (evutil_timercmp(tv, &base->event_tv, >=)) { |
| 2456 | base->event_tv = *tv; |
| 2457 | return; |
| 2458 | } |
| 2459 | |
| 2460 | event_debug(("%s: time is running backwards, corrected", |
| 2461 | __func__)); |
| 2462 | evutil_timersub(&base->event_tv, tv, &off); |
| 2463 | |
| 2464 | /* |
| 2465 | * We can modify the key element of the node without destroying |
| 2466 | * the minheap property, because we change every element. |
| 2467 | */ |
| 2468 | pev = base->timeheap.p; |
| 2469 | size = base->timeheap.n; |
| 2470 | for (; size-- > 0; ++pev) { |
| 2471 | struct timeval *ev_tv = &(**pev).ev_timeout; |
| 2472 | evutil_timersub(ev_tv, &off, ev_tv); |
| 2473 | } |
| 2474 | for (i=0; i<base->n_common_timeouts; ++i) { |
| 2475 | struct event *ev; |
| 2476 | struct common_timeout_list *ctl = |
| 2477 | base->common_timeout_queues[i]; |
| 2478 | TAILQ_FOREACH(ev, &ctl->events, |
| 2479 | ev_timeout_pos.ev_next_with_common_timeout) { |
| 2480 | struct timeval *ev_tv = &ev->ev_timeout; |
| 2481 | ev_tv->tv_usec &= MICROSECONDS_MASK; |
| 2482 | evutil_timersub(ev_tv, &off, ev_tv); |
| 2483 | ev_tv->tv_usec |= COMMON_TIMEOUT_MAGIC | |
| 2484 | (i<<COMMON_TIMEOUT_IDX_SHIFT); |
| 2485 | } |
| 2486 | } |
| 2487 | |
| 2488 | /* Now remember what the new time turned out to be. */ |
| 2489 | base->event_tv = *tv; |
| 2490 | } |
| 2491 | |
| 2492 | /* Activate every event whose timeout has elapsed. */ |
| 2493 | static void |
| 2494 | timeout_process(struct event_base *base) |
| 2495 | { |
| 2496 | /* Caller must hold lock. */ |
| 2497 | struct timeval now; |
| 2498 | struct event *ev; |
| 2499 | |
| 2500 | if (min_heap_empty(&base->timeheap)) { |
| 2501 | return; |
| 2502 | } |
| 2503 | |
| 2504 | gettime(base, &now); |
| 2505 | |
| 2506 | while ((ev = min_heap_top(&base->timeheap))) { |
| 2507 | if (evutil_timercmp(&ev->ev_timeout, &now, >)) |
| 2508 | break; |
| 2509 | |
| 2510 | /* delete this event from the I/O queues */ |
| 2511 | event_del_internal(ev); |
| 2512 | |
| 2513 | event_debug(("timeout_process: call %p", |
| 2514 | ev->ev_callback)); |
| 2515 | event_active_nolock(ev, EV_TIMEOUT, 1); |
| 2516 | } |
| 2517 | } |
| 2518 | |
| 2519 | /* Remove 'ev' from 'queue' (EVLIST_...) in base. */ |
| 2520 | static void |
| 2521 | event_queue_remove(struct event_base *base, struct event *ev, int queue) |
| 2522 | { |
| 2523 | EVENT_BASE_ASSERT_LOCKED(base); |
| 2524 | |
| 2525 | if (!(ev->ev_flags & queue)) { |
| 2526 | event_errx(1, "%s: %p(fd "EV_SOCK_FMT") not on queue %x", __func__, |
| 2527 | ev, EV_SOCK_ARG(ev->ev_fd), queue); |
| 2528 | return; |
| 2529 | } |
| 2530 | |
| 2531 | if (~ev->ev_flags & EVLIST_INTERNAL) |
| 2532 | base->event_count--; |
| 2533 | |
| 2534 | ev->ev_flags &= ~queue; |
| 2535 | switch (queue) { |
| 2536 | case EVLIST_INSERTED: |
| 2537 | TAILQ_REMOVE(&base->eventqueue, ev, ev_next); |
| 2538 | break; |
| 2539 | case EVLIST_ACTIVE: |
| 2540 | base->event_count_active--; |
| 2541 | TAILQ_REMOVE(&base->activequeues[ev->ev_pri], |
| 2542 | ev, ev_active_next); |
| 2543 | break; |
| 2544 | case EVLIST_TIMEOUT: |
| 2545 | if (is_common_timeout(&ev->ev_timeout, base)) { |
| 2546 | struct common_timeout_list *ctl = |
| 2547 | get_common_timeout_list(base, &ev->ev_timeout); |
| 2548 | TAILQ_REMOVE(&ctl->events, ev, |
| 2549 | ev_timeout_pos.ev_next_with_common_timeout); |
| 2550 | } else { |
| 2551 | min_heap_erase(&base->timeheap, ev); |
| 2552 | } |
| 2553 | break; |
| 2554 | default: |
| 2555 | event_errx(1, "%s: unknown queue %x", __func__, queue); |
| 2556 | } |
| 2557 | } |
| 2558 | |
| 2559 | /* Add 'ev' to the common timeout list in 'ev'. */ |
| 2560 | static void |
| 2561 | insert_common_timeout_inorder(struct common_timeout_list *ctl, |
| 2562 | struct event *ev) |
| 2563 | { |
| 2564 | struct event *e; |
| 2565 | /* By all logic, we should just be able to append 'ev' to the end of |
| 2566 | * ctl->events, since the timeout on each 'ev' is set to {the common |
| 2567 | * timeout} + {the time when we add the event}, and so the events |
| 2568 | * should arrive in order of their timeeouts. But just in case |
| 2569 | * there's some wacky threading issue going on, we do a search from |
| 2570 | * the end of 'ev' to find the right insertion point. |
| 2571 | */ |
| 2572 | TAILQ_FOREACH_REVERSE(e, &ctl->events, |
| 2573 | event_list, ev_timeout_pos.ev_next_with_common_timeout) { |
| 2574 | /* This timercmp is a little sneaky, since both ev and e have |
| 2575 | * magic values in tv_usec. Fortunately, they ought to have |
| 2576 | * the _same_ magic values in tv_usec. Let's assert for that. |
| 2577 | */ |
| 2578 | EVUTIL_ASSERT( |
| 2579 | is_same_common_timeout(&e->ev_timeout, &ev->ev_timeout)); |
| 2580 | if (evutil_timercmp(&ev->ev_timeout, &e->ev_timeout, >=)) { |
| 2581 | TAILQ_INSERT_AFTER(&ctl->events, e, ev, |
| 2582 | ev_timeout_pos.ev_next_with_common_timeout); |
| 2583 | return; |
| 2584 | } |
| 2585 | } |
| 2586 | TAILQ_INSERT_HEAD(&ctl->events, ev, |
| 2587 | ev_timeout_pos.ev_next_with_common_timeout); |
| 2588 | } |
| 2589 | |
| 2590 | static void |
| 2591 | event_queue_insert(struct event_base *base, struct event *ev, int queue) |
| 2592 | { |
| 2593 | EVENT_BASE_ASSERT_LOCKED(base); |
| 2594 | |
| 2595 | if (ev->ev_flags & queue) { |
| 2596 | /* Double insertion is possible for active events */ |
| 2597 | if (queue & EVLIST_ACTIVE) |
| 2598 | return; |
| 2599 | |
| 2600 | event_errx(1, "%s: %p(fd "EV_SOCK_FMT") already on queue %x", __func__, |
| 2601 | ev, EV_SOCK_ARG(ev->ev_fd), queue); |
| 2602 | return; |
| 2603 | } |
| 2604 | |
| 2605 | if (~ev->ev_flags & EVLIST_INTERNAL) |
| 2606 | base->event_count++; |
| 2607 | |
| 2608 | ev->ev_flags |= queue; |
| 2609 | switch (queue) { |
| 2610 | case EVLIST_INSERTED: |
| 2611 | TAILQ_INSERT_TAIL(&base->eventqueue, ev, ev_next); |
| 2612 | break; |
| 2613 | case EVLIST_ACTIVE: |
| 2614 | base->event_count_active++; |
| 2615 | TAILQ_INSERT_TAIL(&base->activequeues[ev->ev_pri], |
| 2616 | ev,ev_active_next); |
| 2617 | break; |
| 2618 | case EVLIST_TIMEOUT: { |
| 2619 | if (is_common_timeout(&ev->ev_timeout, base)) { |
| 2620 | struct common_timeout_list *ctl = |
| 2621 | get_common_timeout_list(base, &ev->ev_timeout); |
| 2622 | insert_common_timeout_inorder(ctl, ev); |
| 2623 | } else |
| 2624 | min_heap_push(&base->timeheap, ev); |
| 2625 | break; |
| 2626 | } |
| 2627 | default: |
| 2628 | event_errx(1, "%s: unknown queue %x", __func__, queue); |
| 2629 | } |
| 2630 | } |
| 2631 | |
| 2632 | /* Functions for debugging */ |
| 2633 | |
| 2634 | const char * |
| 2635 | event_get_version(void) |
| 2636 | { |
| 2637 | return (_EVENT_VERSION); |
| 2638 | } |
| 2639 | |
| 2640 | ev_uint32_t |
| 2641 | event_get_version_number(void) |
| 2642 | { |
| 2643 | return (_EVENT_NUMERIC_VERSION); |
| 2644 | } |
| 2645 | |
| 2646 | /* |
| 2647 | * No thread-safe interface needed - the information should be the same |
| 2648 | * for all threads. |
| 2649 | */ |
| 2650 | |
| 2651 | const char * |
| 2652 | event_get_method(void) |
| 2653 | { |
| 2654 | return (current_base->evsel->name); |
| 2655 | } |
| 2656 | |
| 2657 | #ifndef _EVENT_DISABLE_MM_REPLACEMENT |
| 2658 | static void *(*_mm_malloc_fn)(size_t sz) = NULL; |
| 2659 | static void *(*_mm_realloc_fn)(void *p, size_t sz) = NULL; |
| 2660 | static void (*_mm_free_fn)(void *p) = NULL; |
| 2661 | |
| 2662 | void * |
| 2663 | event_mm_malloc_(size_t sz) |
| 2664 | { |
| 2665 | if (_mm_malloc_fn) |
| 2666 | return _mm_malloc_fn(sz); |
| 2667 | else |
| 2668 | return malloc(sz); |
| 2669 | } |
| 2670 | |
| 2671 | void * |
| 2672 | event_mm_calloc_(size_t count, size_t size) |
| 2673 | { |
| 2674 | if (_mm_malloc_fn) { |
| 2675 | size_t sz = count * size; |
| 2676 | void *p = _mm_malloc_fn(sz); |
| 2677 | if (p) |
| 2678 | memset(p, 0, sz); |
| 2679 | return p; |
| 2680 | } else |
| 2681 | return calloc(count, size); |
| 2682 | } |
| 2683 | |
| 2684 | char * |
| 2685 | event_mm_strdup_(const char *str) |
| 2686 | { |
| 2687 | if (_mm_malloc_fn) { |
| 2688 | size_t ln = strlen(str); |
| 2689 | void *p = _mm_malloc_fn(ln+1); |
| 2690 | if (p) |
| 2691 | memcpy(p, str, ln+1); |
| 2692 | return p; |
| 2693 | } else |
| 2694 | #ifdef WIN32 |
| 2695 | return _strdup(str); |
| 2696 | #else |
| 2697 | return strdup(str); |
| 2698 | #endif |
| 2699 | } |
| 2700 | |
| 2701 | void * |
| 2702 | event_mm_realloc_(void *ptr, size_t sz) |
| 2703 | { |
| 2704 | if (_mm_realloc_fn) |
| 2705 | return _mm_realloc_fn(ptr, sz); |
| 2706 | else |
| 2707 | return realloc(ptr, sz); |
| 2708 | } |
| 2709 | |
| 2710 | void |
| 2711 | event_mm_free_(void *ptr) |
| 2712 | { |
| 2713 | if (_mm_free_fn) |
| 2714 | _mm_free_fn(ptr); |
| 2715 | else |
| 2716 | free(ptr); |
| 2717 | } |
| 2718 | |
| 2719 | void |
| 2720 | event_set_mem_functions(void *(*malloc_fn)(size_t sz), |
| 2721 | void *(*realloc_fn)(void *ptr, size_t sz), |
| 2722 | void (*free_fn)(void *ptr)) |
| 2723 | { |
| 2724 | _mm_malloc_fn = malloc_fn; |
| 2725 | _mm_realloc_fn = realloc_fn; |
| 2726 | _mm_free_fn = free_fn; |
| 2727 | } |
| 2728 | #endif |
| 2729 | |
| 2730 | #if defined(_EVENT_HAVE_EVENTFD) && defined(_EVENT_HAVE_SYS_EVENTFD_H) |
| 2731 | static void |
| 2732 | evthread_notify_drain_eventfd(evutil_socket_t fd, short what, void *arg) |
| 2733 | { |
| 2734 | ev_uint64_t msg; |
| 2735 | ev_ssize_t r; |
| 2736 | struct event_base *base = arg; |
| 2737 | |
| 2738 | r = read(fd, (void*) &msg, sizeof(msg)); |
| 2739 | if (r<0 && errno != EAGAIN) { |
| 2740 | event_sock_warn(fd, "Error reading from eventfd"); |
| 2741 | } |
| 2742 | EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| 2743 | base->is_notify_pending = 0; |
| 2744 | EVBASE_RELEASE_LOCK(base, th_base_lock); |
| 2745 | } |
| 2746 | #endif |
| 2747 | |
| 2748 | static void |
| 2749 | evthread_notify_drain_default(evutil_socket_t fd, short what, void *arg) |
| 2750 | { |
| 2751 | unsigned char buf[1024]; |
| 2752 | struct event_base *base = arg; |
| 2753 | #ifdef WIN32 |
| 2754 | while (recv(fd, (char*)buf, sizeof(buf), 0) > 0) |
| 2755 | ; |
| 2756 | #else |
| 2757 | while (read(fd, (char*)buf, sizeof(buf)) > 0) |
| 2758 | ; |
| 2759 | #endif |
| 2760 | |
| 2761 | EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| 2762 | base->is_notify_pending = 0; |
| 2763 | EVBASE_RELEASE_LOCK(base, th_base_lock); |
| 2764 | } |
| 2765 | |
| 2766 | int |
| 2767 | evthread_make_base_notifiable(struct event_base *base) |
| 2768 | { |
| 2769 | void (*cb)(evutil_socket_t, short, void *) = evthread_notify_drain_default; |
| 2770 | int (*notify)(struct event_base *) = evthread_notify_base_default; |
| 2771 | |
| 2772 | /* XXXX grab the lock here? */ |
| 2773 | if (!base) |
| 2774 | return -1; |
| 2775 | |
| 2776 | if (base->th_notify_fd[0] >= 0) |
| 2777 | return 0; |
| 2778 | |
| 2779 | #if defined(_EVENT_HAVE_EVENTFD) && defined(_EVENT_HAVE_SYS_EVENTFD_H) |
| 2780 | #ifndef EFD_CLOEXEC |
| 2781 | #define EFD_CLOEXEC 0 |
| 2782 | #endif |
| 2783 | base->th_notify_fd[0] = eventfd(0, EFD_CLOEXEC); |
| 2784 | if (base->th_notify_fd[0] >= 0) { |
| 2785 | evutil_make_socket_closeonexec(base->th_notify_fd[0]); |
| 2786 | notify = evthread_notify_base_eventfd; |
| 2787 | cb = evthread_notify_drain_eventfd; |
| 2788 | } |
| 2789 | #endif |
| 2790 | #if defined(_EVENT_HAVE_PIPE) |
| 2791 | if (base->th_notify_fd[0] < 0) { |
| 2792 | if ((base->evsel->features & EV_FEATURE_FDS)) { |
| 2793 | if (pipe(base->th_notify_fd) < 0) { |
| 2794 | event_warn("%s: pipe", __func__); |
| 2795 | } else { |
| 2796 | evutil_make_socket_closeonexec(base->th_notify_fd[0]); |
| 2797 | evutil_make_socket_closeonexec(base->th_notify_fd[1]); |
| 2798 | } |
| 2799 | } |
| 2800 | } |
| 2801 | #endif |
| 2802 | |
| 2803 | #ifdef WIN32 |
| 2804 | #define LOCAL_SOCKETPAIR_AF AF_INET |
| 2805 | #else |
| 2806 | #define LOCAL_SOCKETPAIR_AF AF_UNIX |
| 2807 | #endif |
| 2808 | if (base->th_notify_fd[0] < 0) { |
| 2809 | if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, |
| 2810 | base->th_notify_fd) == -1) { |
| 2811 | event_sock_warn(-1, "%s: socketpair", __func__); |
| 2812 | return (-1); |
| 2813 | } else { |
| 2814 | evutil_make_socket_closeonexec(base->th_notify_fd[0]); |
| 2815 | evutil_make_socket_closeonexec(base->th_notify_fd[1]); |
| 2816 | } |
| 2817 | } |
| 2818 | |
| 2819 | evutil_make_socket_nonblocking(base->th_notify_fd[0]); |
| 2820 | |
| 2821 | base->th_notify_fn = notify; |
| 2822 | |
| 2823 | /* |
| 2824 | Making the second socket nonblocking is a bit subtle, given that we |
| 2825 | ignore any EAGAIN returns when writing to it, and you don't usally |
| 2826 | do that for a nonblocking socket. But if the kernel gives us EAGAIN, |
| 2827 | then there's no need to add any more data to the buffer, since |
| 2828 | the main thread is already either about to wake up and drain it, |
| 2829 | or woken up and in the process of draining it. |
| 2830 | */ |
| 2831 | if (base->th_notify_fd[1] > 0) |
| 2832 | evutil_make_socket_nonblocking(base->th_notify_fd[1]); |
| 2833 | |
| 2834 | /* prepare an event that we can use for wakeup */ |
| 2835 | event_assign(&base->th_notify, base, base->th_notify_fd[0], |
| 2836 | EV_READ|EV_PERSIST, cb, base); |
| 2837 | |
| 2838 | /* we need to mark this as internal event */ |
| 2839 | base->th_notify.ev_flags |= EVLIST_INTERNAL; |
| 2840 | event_priority_set(&base->th_notify, 0); |
| 2841 | |
| 2842 | return event_add(&base->th_notify, NULL); |
| 2843 | } |
| 2844 | |
| 2845 | void |
| 2846 | event_base_dump_events(struct event_base *base, FILE *output) |
| 2847 | { |
| 2848 | struct event *e; |
| 2849 | int i; |
| 2850 | fprintf(output, "Inserted events:\n"); |
| 2851 | TAILQ_FOREACH(e, &base->eventqueue, ev_next) { |
| 2852 | fprintf(output, " %p [fd "EV_SOCK_FMT"]%s%s%s%s%s\n", |
| 2853 | (void*)e, EV_SOCK_ARG(e->ev_fd), |
| 2854 | (e->ev_events&EV_READ)?" Read":"", |
| 2855 | (e->ev_events&EV_WRITE)?" Write":"", |
| 2856 | (e->ev_events&EV_SIGNAL)?" Signal":"", |
| 2857 | (e->ev_events&EV_TIMEOUT)?" Timeout":"", |
| 2858 | (e->ev_events&EV_PERSIST)?" Persist":""); |
| 2859 | |
| 2860 | } |
| 2861 | for (i = 0; i < base->nactivequeues; ++i) { |
| 2862 | if (TAILQ_EMPTY(&base->activequeues[i])) |
| 2863 | continue; |
| 2864 | fprintf(output, "Active events [priority %d]:\n", i); |
| 2865 | TAILQ_FOREACH(e, &base->eventqueue, ev_next) { |
| 2866 | fprintf(output, " %p [fd "EV_SOCK_FMT"]%s%s%s%s\n", |
| 2867 | (void*)e, EV_SOCK_ARG(e->ev_fd), |
| 2868 | (e->ev_res&EV_READ)?" Read active":"", |
| 2869 | (e->ev_res&EV_WRITE)?" Write active":"", |
| 2870 | (e->ev_res&EV_SIGNAL)?" Signal active":"", |
| 2871 | (e->ev_res&EV_TIMEOUT)?" Timeout active":""); |
| 2872 | } |
| 2873 | } |
| 2874 | } |
| 2875 | |
| 2876 | void |
| 2877 | event_base_add_virtual(struct event_base *base) |
| 2878 | { |
| 2879 | EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| 2880 | base->virtual_event_count++; |
| 2881 | EVBASE_RELEASE_LOCK(base, th_base_lock); |
| 2882 | } |
| 2883 | |
| 2884 | void |
| 2885 | event_base_del_virtual(struct event_base *base) |
| 2886 | { |
| 2887 | EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| 2888 | EVUTIL_ASSERT(base->virtual_event_count > 0); |
| 2889 | base->virtual_event_count--; |
| 2890 | if (base->virtual_event_count == 0 && EVBASE_NEED_NOTIFY(base)) |
| 2891 | evthread_notify_base(base); |
| 2892 | EVBASE_RELEASE_LOCK(base, th_base_lock); |
| 2893 | } |
| 2894 | |
| 2895 | #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| 2896 | int |
| 2897 | event_global_setup_locks_(const int enable_locks) |
| 2898 | { |
| 2899 | #ifndef _EVENT_DISABLE_DEBUG_MODE |
| 2900 | EVTHREAD_SETUP_GLOBAL_LOCK(_event_debug_map_lock, 0); |
| 2901 | #endif |
| 2902 | if (evsig_global_setup_locks_(enable_locks) < 0) |
| 2903 | return -1; |
| 2904 | if (evutil_secure_rng_global_setup_locks_(enable_locks) < 0) |
| 2905 | return -1; |
| 2906 | return 0; |
| 2907 | } |
| 2908 | #endif |
| 2909 | |
| 2910 | void |
| 2911 | event_base_assert_ok(struct event_base *base) |
| 2912 | { |
| 2913 | int i; |
| 2914 | EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| 2915 | evmap_check_integrity(base); |
| 2916 | |
| 2917 | /* Check the heap property */ |
| 2918 | for (i = 1; i < (int)base->timeheap.n; ++i) { |
| 2919 | int parent = (i - 1) / 2; |
| 2920 | struct event *ev, *p_ev; |
| 2921 | ev = base->timeheap.p[i]; |
| 2922 | p_ev = base->timeheap.p[parent]; |
| 2923 | EVUTIL_ASSERT(ev->ev_flags & EV_TIMEOUT); |
| 2924 | EVUTIL_ASSERT(evutil_timercmp(&p_ev->ev_timeout, &ev->ev_timeout, <=)); |
| 2925 | EVUTIL_ASSERT(ev->ev_timeout_pos.min_heap_idx == i); |
| 2926 | } |
| 2927 | |
| 2928 | /* Check that the common timeouts are fine */ |
| 2929 | for (i = 0; i < base->n_common_timeouts; ++i) { |
| 2930 | struct common_timeout_list *ctl = base->common_timeout_queues[i]; |
| 2931 | struct event *last=NULL, *ev; |
| 2932 | TAILQ_FOREACH(ev, &ctl->events, ev_timeout_pos.ev_next_with_common_timeout) { |
| 2933 | if (last) |
| 2934 | EVUTIL_ASSERT(evutil_timercmp(&last->ev_timeout, &ev->ev_timeout, <=)); |
| 2935 | EVUTIL_ASSERT(ev->ev_flags & EV_TIMEOUT); |
| 2936 | EVUTIL_ASSERT(is_common_timeout(&ev->ev_timeout,base)); |
| 2937 | EVUTIL_ASSERT(COMMON_TIMEOUT_IDX(&ev->ev_timeout) == i); |
| 2938 | last = ev; |
| 2939 | } |
| 2940 | } |
| 2941 | |
| 2942 | EVBASE_RELEASE_LOCK(base, th_base_lock); |
| 2943 | } |