Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | // The computeRoots function included in this is based on materials |
| 11 | // covered by the following copyright and license: |
| 12 | // |
| 13 | // Geometric Tools, LLC |
| 14 | // Copyright (c) 1998-2010 |
| 15 | // Distributed under the Boost Software License, Version 1.0. |
| 16 | // |
| 17 | // Permission is hereby granted, free of charge, to any person or organization |
| 18 | // obtaining a copy of the software and accompanying documentation covered by |
| 19 | // this license (the "Software") to use, reproduce, display, distribute, |
| 20 | // execute, and transmit the Software, and to prepare derivative works of the |
| 21 | // Software, and to permit third-parties to whom the Software is furnished to |
| 22 | // do so, all subject to the following: |
| 23 | // |
| 24 | // The copyright notices in the Software and this entire statement, including |
| 25 | // the above license grant, this restriction and the following disclaimer, |
| 26 | // must be included in all copies of the Software, in whole or in part, and |
| 27 | // all derivative works of the Software, unless such copies or derivative |
| 28 | // works are solely in the form of machine-executable object code generated by |
| 29 | // a source language processor. |
| 30 | // |
| 31 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 32 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 33 | // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT |
| 34 | // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE |
| 35 | // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, |
| 36 | // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| 37 | // DEALINGS IN THE SOFTWARE. |
| 38 | |
| 39 | #include <iostream> |
| 40 | #include <Eigen/Core> |
| 41 | #include <Eigen/Eigenvalues> |
| 42 | #include <Eigen/Geometry> |
| 43 | #include <bench/BenchTimer.h> |
| 44 | |
| 45 | using namespace Eigen; |
| 46 | using namespace std; |
| 47 | |
| 48 | template<typename Matrix, typename Roots> |
| 49 | inline void computeRoots(const Matrix& m, Roots& roots) |
| 50 | { |
| 51 | typedef typename Matrix::Scalar Scalar; |
| 52 | const Scalar s_inv3 = 1.0/3.0; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 53 | const Scalar s_sqrt3 = std::sqrt(Scalar(3.0)); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 54 | |
| 55 | // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The |
| 56 | // eigenvalues are the roots to this equation, all guaranteed to be |
| 57 | // real-valued, because the matrix is symmetric. |
| 58 | Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(0,1)*m(0,2)*m(1,2) - m(0,0)*m(1,2)*m(1,2) - m(1,1)*m(0,2)*m(0,2) - m(2,2)*m(0,1)*m(0,1); |
| 59 | Scalar c1 = m(0,0)*m(1,1) - m(0,1)*m(0,1) + m(0,0)*m(2,2) - m(0,2)*m(0,2) + m(1,1)*m(2,2) - m(1,2)*m(1,2); |
| 60 | Scalar c2 = m(0,0) + m(1,1) + m(2,2); |
| 61 | |
| 62 | // Construct the parameters used in classifying the roots of the equation |
| 63 | // and in solving the equation for the roots in closed form. |
| 64 | Scalar c2_over_3 = c2*s_inv3; |
| 65 | Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3; |
| 66 | if (a_over_3 > Scalar(0)) |
| 67 | a_over_3 = Scalar(0); |
| 68 | |
| 69 | Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1)); |
| 70 | |
| 71 | Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3; |
| 72 | if (q > Scalar(0)) |
| 73 | q = Scalar(0); |
| 74 | |
| 75 | // Compute the eigenvalues by solving for the roots of the polynomial. |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 76 | Scalar rho = std::sqrt(-a_over_3); |
| 77 | Scalar theta = std::atan2(std::sqrt(-q),half_b)*s_inv3; |
| 78 | Scalar cos_theta = std::cos(theta); |
| 79 | Scalar sin_theta = std::sin(theta); |
| 80 | roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta; |
| 81 | roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); |
| 82 | roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 83 | } |
| 84 | |
| 85 | template<typename Matrix, typename Vector> |
| 86 | void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals) |
| 87 | { |
| 88 | typedef typename Matrix::Scalar Scalar; |
| 89 | // Scale the matrix so its entries are in [-1,1]. The scaling is applied |
| 90 | // only when at least one matrix entry has magnitude larger than 1. |
| 91 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 92 | Scalar shift = mat.trace()/3; |
| 93 | Matrix scaledMat = mat; |
| 94 | scaledMat.diagonal().array() -= shift; |
| 95 | Scalar scale = scaledMat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff(); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 96 | scale = std::max(scale,Scalar(1)); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 97 | scaledMat/=scale; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 98 | |
| 99 | // Compute the eigenvalues |
| 100 | // scaledMat.setZero(); |
| 101 | computeRoots(scaledMat,evals); |
| 102 | |
| 103 | // compute the eigen vectors |
| 104 | // **here we assume 3 differents eigenvalues** |
| 105 | |
| 106 | // "optimized version" which appears to be slower with gcc! |
| 107 | // Vector base; |
| 108 | // Scalar alpha, beta; |
| 109 | // base << scaledMat(1,0) * scaledMat(2,1), |
| 110 | // scaledMat(1,0) * scaledMat(2,0), |
| 111 | // -scaledMat(1,0) * scaledMat(1,0); |
| 112 | // for(int k=0; k<2; ++k) |
| 113 | // { |
| 114 | // alpha = scaledMat(0,0) - evals(k); |
| 115 | // beta = scaledMat(1,1) - evals(k); |
| 116 | // evecs.col(k) = (base + Vector(-beta*scaledMat(2,0), -alpha*scaledMat(2,1), alpha*beta)).normalized(); |
| 117 | // } |
| 118 | // evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized(); |
| 119 | |
| 120 | // // naive version |
| 121 | // Matrix tmp; |
| 122 | // tmp = scaledMat; |
| 123 | // tmp.diagonal().array() -= evals(0); |
| 124 | // evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized(); |
| 125 | // |
| 126 | // tmp = scaledMat; |
| 127 | // tmp.diagonal().array() -= evals(1); |
| 128 | // evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized(); |
| 129 | // |
| 130 | // tmp = scaledMat; |
| 131 | // tmp.diagonal().array() -= evals(2); |
| 132 | // evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized(); |
| 133 | |
| 134 | // a more stable version: |
| 135 | if((evals(2)-evals(0))<=Eigen::NumTraits<Scalar>::epsilon()) |
| 136 | { |
| 137 | evecs.setIdentity(); |
| 138 | } |
| 139 | else |
| 140 | { |
| 141 | Matrix tmp; |
| 142 | tmp = scaledMat; |
| 143 | tmp.diagonal ().array () -= evals (2); |
| 144 | evecs.col (2) = tmp.row (0).cross (tmp.row (1)).normalized (); |
| 145 | |
| 146 | tmp = scaledMat; |
| 147 | tmp.diagonal ().array () -= evals (1); |
| 148 | evecs.col(1) = tmp.row (0).cross(tmp.row (1)); |
| 149 | Scalar n1 = evecs.col(1).norm(); |
| 150 | if(n1<=Eigen::NumTraits<Scalar>::epsilon()) |
| 151 | evecs.col(1) = evecs.col(2).unitOrthogonal(); |
| 152 | else |
| 153 | evecs.col(1) /= n1; |
| 154 | |
| 155 | // make sure that evecs[1] is orthogonal to evecs[2] |
| 156 | evecs.col(1) = evecs.col(2).cross(evecs.col(1).cross(evecs.col(2))).normalized(); |
| 157 | evecs.col(0) = evecs.col(2).cross(evecs.col(1)); |
| 158 | } |
| 159 | |
| 160 | // Rescale back to the original size. |
| 161 | evals *= scale; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 162 | evals.array()+=shift; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 163 | } |
| 164 | |
| 165 | int main() |
| 166 | { |
| 167 | BenchTimer t; |
| 168 | int tries = 10; |
| 169 | int rep = 400000; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 170 | typedef Matrix3d Mat; |
| 171 | typedef Vector3d Vec; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 172 | Mat A = Mat::Random(3,3); |
| 173 | A = A.adjoint() * A; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 174 | // Mat Q = A.householderQr().householderQ(); |
| 175 | // A = Q * Vec(2.2424567,2.2424566,7.454353).asDiagonal() * Q.transpose(); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 176 | |
| 177 | SelfAdjointEigenSolver<Mat> eig(A); |
| 178 | BENCH(t, tries, rep, eig.compute(A)); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 179 | std::cout << "Eigen iterative: " << t.best() << "s\n"; |
| 180 | |
| 181 | BENCH(t, tries, rep, eig.computeDirect(A)); |
| 182 | std::cout << "Eigen direct : " << t.best() << "s\n"; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 183 | |
| 184 | Mat evecs; |
| 185 | Vec evals; |
| 186 | BENCH(t, tries, rep, eigen33(A,evecs,evals)); |
| 187 | std::cout << "Direct: " << t.best() << "s\n\n"; |
| 188 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 189 | // std::cerr << "Eigenvalue/eigenvector diffs:\n"; |
| 190 | // std::cerr << (evals - eig.eigenvalues()).transpose() << "\n"; |
| 191 | // for(int k=0;k<3;++k) |
| 192 | // if(evecs.col(k).dot(eig.eigenvectors().col(k))<0) |
| 193 | // evecs.col(k) = -evecs.col(k); |
| 194 | // std::cerr << evecs - eig.eigenvectors() << "\n\n"; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 195 | } |