blob: 5352c650331873a103e63692e51686dad61424cc [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001.. _sec-bibliography:
2
3============
4Bibliography
5============
6
7.. [Agarwal] S. Agarwal, N. Snavely, S. M. Seitz and R. Szeliski,
8 **Bundle Adjustment in the Large**, *Proceedings of the European
9 Conference on Computer Vision*, pp. 29--42, 2010.
10
11.. [Bjorck] A. Bjorck, **Numerical Methods for Least Squares
12 Problems**, SIAM, 1996
13
14.. [Brown] D. C. Brown, **A solution to the general problem of
15 multiple station analytical stereo triangulation**, Technical
16 Report 43, Patrick Airforce Base, Florida, 1958.
17
18.. [ByrdNocedal] R. H. Byrd, J. Nocedal, R. B. Schanbel,
19 **Representations of Quasi-Newton Matrices and their use in Limited
20 Memory Methods**, *Mathematical Programming* 63(4):129–-156, 1994.
21
22.. [ByrdSchnabel] R.H. Byrd, R.B. Schnabel, and G.A. Shultz, **Approximate
23 solution of the trust region problem by minimization over
24 two dimensional subspaces**, *Mathematical programming*,
25 40(1):247263, 1988.
26
27.. [Chen] Y. Chen, T. A. Davis, W. W. Hager, and
28 S. Rajamanickam, **Algorithm 887: CHOLMOD, Supernodal Sparse
29 Cholesky Factorization and Update/Downdate**, *TOMS*, 35(3), 2008.
30
31.. [Conn] A.R. Conn, N.I.M. Gould, and P.L. Toint, **Trust region
32 methods**, *Society for Industrial Mathematics*, 2000.
33
34.. [GolubPereyra] G.H. Golub and V. Pereyra, **The differentiation of
35 pseudo-inverses and nonlinear least squares problems whose
36 variables separate**, *SIAM Journal on numerical analysis*,
37 10(2):413432, 1973.
38
39.. [HartleyZisserman] R.I. Hartley & A. Zisserman, **Multiview
40 Geometry in Computer Vision**, Cambridge University Press, 2004.
41
42.. [KanataniMorris] K. Kanatani and D. D. Morris, **Gauges and gauge
43 transformations for uncertainty description of geometric structure
44 with indeterminacy**, *IEEE Transactions on Information Theory*
45 47(5):2017-2028, 2001.
46
47.. [Keys] R. G. Keys, **Cubic convolution interpolation for digital
48 image processing**, *IEEE Trans. on Acoustics, Speech, and Signal
49 Processing*, 29(6), 1981.
50
51.. [KushalAgarwal] A. Kushal and S. Agarwal, **Visibility based
52 preconditioning for bundle adjustment**, *In Proceedings of the
53 IEEE Conference on Computer Vision and Pattern Recognition*, 2012.
54
55.. [Kanzow] C. Kanzow, N. Yamashita and M. Fukushima,
56 **LevenbergMarquardt methods with strong local convergence
57 properties for solving nonlinear equations with convex
58 constraints**, *Journal of Computational and Applied Mathematics*,
59 177(2):375397, 2005.
60
61.. [Levenberg] K. Levenberg, **A method for the solution of certain
62 nonlinear problems in least squares**, *Quart. Appl. Math*,
63 2(2):164168, 1944.
64
65.. [LiSaad] Na Li and Y. Saad, **MIQR: A multilevel incomplete qr
66 preconditioner for large sparse least squares problems**, *SIAM
67 Journal on Matrix Analysis and Applications*, 28(2):524550, 2007.
68
69.. [Madsen] K. Madsen, H.B. Nielsen, and O. Tingleff, **Methods for
70 nonlinear least squares problems**, 2004.
71
72.. [Mandel] J. Mandel, **On block diagonal and Schur complement
73 preconditioning**, *Numer. Math.*, 58(1):7993, 1990.
74
75.. [Marquardt] D.W. Marquardt, **An algorithm for least squares
76 estimation of nonlinear parameters**, *J. SIAM*, 11(2):431441,
77 1963.
78
79.. [Mathew] T.P.A. Mathew, **Domain decomposition methods for the
80 numerical solution of partial differential equations**, Springer
81 Verlag, 2008.
82
83.. [NashSofer] S.G. Nash and A. Sofer, **Assessing a search direction
84 within a truncated newton method**, *Operations Research Letters*,
85 9(4):219221, 1990.
86
87.. [Nocedal] J. Nocedal, **Updating Quasi-Newton Matrices with Limited
88 Storage**, *Mathematics of Computation*, 35(151): 773--782, 1980.
89
90.. [NocedalWright] J. Nocedal & S. Wright, **Numerical Optimization**,
91 Springer, 2004.
92
93.. [Oren] S. S. Oren, **Self-scaling Variable Metric (SSVM) Algorithms
94 Part II: Implementation and Experiments**, Management Science,
95 20(5), 863-874, 1974.
96
97.. [Press] W. H. Press, S. A. Teukolsky, W. T. Vetterling
98 & B. P. Flannery, **Numerical Recipes**, Cambridge University
99 Press, 2007.
100
101.. [Ridders] C. J. F. Ridders, **Accurate computation of F'(x) and
102 F'(x) F"(x)**, Advances in Engineering Software 4(2), 75-76, 1978.
103
104.. [RuheWedin] A. Ruhe and P.Å. Wedin, **Algorithms for separable
105 nonlinear least squares problems**, Siam Review, 22(3):318–337,
106 1980.
107
108.. [Saad] Y. Saad, **Iterative methods for sparse linear
109 systems**, SIAM, 2003.
110
111.. [Stigler] S. M. Stigler, **Gauss and the invention of least
112 squares**, *The Annals of Statistics*, 9(3):465-474, 1981.
113
114.. [TenenbaumDirector] J. Tenenbaum & B. Director, **How Gauss
115 Determined the Orbit of Ceres**.
116
117.. [TrefethenBau] L.N. Trefethen and D. Bau, **Numerical Linear
118 Algebra**, SIAM, 1997.
119
120.. [Triggs] B. Triggs, P. F. Mclauchlan, R. I. Hartley &
121 A. W. Fitzgibbon, **Bundle Adjustment: A Modern Synthesis**,
122 Proceedings of the International Workshop on Vision Algorithms:
123 Theory and Practice, pp. 298-372, 1999.
124
125.. [Wiberg] T. Wiberg, **Computation of principal components when data
126 are missing**, In Proc. *Second Symp. Computational Statistics*,
127 pages 229–236, 1976.
128
129.. [WrightHolt] S. J. Wright and J. N. Holt, **An Inexact
130 Levenberg Marquardt Method for Large Sparse Nonlinear Least
131 Squares**, *Journal of the Australian Mathematical Society Series
132 B*, 26(4):387–403, 1985.