Brian Silverman | fad8f55 | 2018-08-04 23:36:19 -0700 | [diff] [blame^] | 1 | ////////////////////////////////////////////////////////////////////////////// |
| 2 | // |
| 3 | // (C) Copyright Ion Gaztanaga 2007-2015. Distributed under the Boost |
| 4 | // Software License, Version 1.0. (See accompanying file |
| 5 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 6 | // |
| 7 | // See http://www.boost.org/libs/container for documentation. |
| 8 | // |
| 9 | ////////////////////////////////////////////////////////////////////////////// |
| 10 | |
| 11 | #include <boost/container/detail/alloc_lib.h> |
| 12 | |
| 13 | #include "errno.h" //dlmalloc bug EINVAL is used in posix_memalign without checking LACKS_ERRNO_H |
| 14 | #include "limits.h" //CHAR_BIT |
| 15 | #ifdef BOOST_CONTAINER_DLMALLOC_FOOTERS |
| 16 | #define FOOTERS 1 |
| 17 | #endif |
| 18 | #define USE_LOCKS 1 |
| 19 | #define MSPACES 1 |
| 20 | #define NO_MALLINFO 1 |
| 21 | #define NO_MALLOC_STATS 1 |
| 22 | |
| 23 | |
| 24 | #if !defined(NDEBUG) |
| 25 | #if !defined(DEBUG) |
| 26 | #define DEBUG 1 |
| 27 | #define DL_DEBUG_DEFINED |
| 28 | #endif |
| 29 | #endif |
| 30 | |
| 31 | #define USE_DL_PREFIX |
| 32 | |
| 33 | #ifdef __GNUC__ |
| 34 | #define FORCEINLINE inline |
| 35 | #endif |
| 36 | #include "dlmalloc_2_8_6.c" |
| 37 | |
| 38 | #ifdef _MSC_VER |
| 39 | #pragma warning (push) |
| 40 | #pragma warning (disable : 4127) |
| 41 | #pragma warning (disable : 4267) |
| 42 | #pragma warning (disable : 4127) |
| 43 | #pragma warning (disable : 4702) |
| 44 | #pragma warning (disable : 4390) /*empty controlled statement found; is this the intent?*/ |
| 45 | #pragma warning (disable : 4251 4231 4660) /*dll warnings*/ |
| 46 | #endif |
| 47 | |
| 48 | #define DL_SIZE_IMPL(p) (chunksize(mem2chunk(p)) - overhead_for(mem2chunk(p))) |
| 49 | |
| 50 | static size_t s_allocated_memory; |
| 51 | |
| 52 | /////////////////////////////////////////////////////////////// |
| 53 | /////////////////////////////////////////////////////////////// |
| 54 | /////////////////////////////////////////////////////////////// |
| 55 | // |
| 56 | // SLIGHTLY MODIFIED DLMALLOC FUNCTIONS |
| 57 | // |
| 58 | /////////////////////////////////////////////////////////////// |
| 59 | /////////////////////////////////////////////////////////////// |
| 60 | /////////////////////////////////////////////////////////////// |
| 61 | |
| 62 | //This function is equal to mspace_free |
| 63 | //replacing PREACTION with 0 and POSTACTION with nothing |
| 64 | static void mspace_free_lockless(mspace msp, void* mem) |
| 65 | { |
| 66 | if (mem != 0) { |
| 67 | mchunkptr p = mem2chunk(mem); |
| 68 | #if FOOTERS |
| 69 | mstate fm = get_mstate_for(p); |
| 70 | msp = msp; /* placate people compiling -Wunused */ |
| 71 | #else /* FOOTERS */ |
| 72 | mstate fm = (mstate)msp; |
| 73 | #endif /* FOOTERS */ |
| 74 | if (!ok_magic(fm)) { |
| 75 | USAGE_ERROR_ACTION(fm, p); |
| 76 | return; |
| 77 | } |
| 78 | if (!0){//PREACTION(fm)) { |
| 79 | check_inuse_chunk(fm, p); |
| 80 | if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { |
| 81 | size_t psize = chunksize(p); |
| 82 | mchunkptr next = chunk_plus_offset(p, psize); |
| 83 | s_allocated_memory -= psize; |
| 84 | if (!pinuse(p)) { |
| 85 | size_t prevsize = p->prev_foot; |
| 86 | if (is_mmapped(p)) { |
| 87 | psize += prevsize + MMAP_FOOT_PAD; |
| 88 | if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) |
| 89 | fm->footprint -= psize; |
| 90 | goto postaction; |
| 91 | } |
| 92 | else { |
| 93 | mchunkptr prev = chunk_minus_offset(p, prevsize); |
| 94 | psize += prevsize; |
| 95 | p = prev; |
| 96 | if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ |
| 97 | if (p != fm->dv) { |
| 98 | unlink_chunk(fm, p, prevsize); |
| 99 | } |
| 100 | else if ((next->head & INUSE_BITS) == INUSE_BITS) { |
| 101 | fm->dvsize = psize; |
| 102 | set_free_with_pinuse(p, psize, next); |
| 103 | goto postaction; |
| 104 | } |
| 105 | } |
| 106 | else |
| 107 | goto erroraction; |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { |
| 112 | if (!cinuse(next)) { /* consolidate forward */ |
| 113 | if (next == fm->top) { |
| 114 | size_t tsize = fm->topsize += psize; |
| 115 | fm->top = p; |
| 116 | p->head = tsize | PINUSE_BIT; |
| 117 | if (p == fm->dv) { |
| 118 | fm->dv = 0; |
| 119 | fm->dvsize = 0; |
| 120 | } |
| 121 | if (should_trim(fm, tsize)) |
| 122 | sys_trim(fm, 0); |
| 123 | goto postaction; |
| 124 | } |
| 125 | else if (next == fm->dv) { |
| 126 | size_t dsize = fm->dvsize += psize; |
| 127 | fm->dv = p; |
| 128 | set_size_and_pinuse_of_free_chunk(p, dsize); |
| 129 | goto postaction; |
| 130 | } |
| 131 | else { |
| 132 | size_t nsize = chunksize(next); |
| 133 | psize += nsize; |
| 134 | unlink_chunk(fm, next, nsize); |
| 135 | set_size_and_pinuse_of_free_chunk(p, psize); |
| 136 | if (p == fm->dv) { |
| 137 | fm->dvsize = psize; |
| 138 | goto postaction; |
| 139 | } |
| 140 | } |
| 141 | } |
| 142 | else |
| 143 | set_free_with_pinuse(p, psize, next); |
| 144 | |
| 145 | if (is_small(psize)) { |
| 146 | insert_small_chunk(fm, p, psize); |
| 147 | check_free_chunk(fm, p); |
| 148 | } |
| 149 | else { |
| 150 | tchunkptr tp = (tchunkptr)p; |
| 151 | insert_large_chunk(fm, tp, psize); |
| 152 | check_free_chunk(fm, p); |
| 153 | if (--fm->release_checks == 0) |
| 154 | release_unused_segments(fm); |
| 155 | } |
| 156 | goto postaction; |
| 157 | } |
| 158 | } |
| 159 | erroraction: |
| 160 | USAGE_ERROR_ACTION(fm, p); |
| 161 | postaction: |
| 162 | ;//POSTACTION(fm); |
| 163 | } |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | //This function is equal to mspace_malloc |
| 168 | //replacing PREACTION with 0 and POSTACTION with nothing |
| 169 | void* mspace_malloc_lockless(mspace msp, size_t bytes) |
| 170 | { |
| 171 | mstate ms = (mstate)msp; |
| 172 | if (!ok_magic(ms)) { |
| 173 | USAGE_ERROR_ACTION(ms,ms); |
| 174 | return 0; |
| 175 | } |
| 176 | if (!0){//PREACTION(ms)) { |
| 177 | void* mem; |
| 178 | size_t nb; |
| 179 | if (bytes <= MAX_SMALL_REQUEST) { |
| 180 | bindex_t idx; |
| 181 | binmap_t smallbits; |
| 182 | nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); |
| 183 | idx = small_index(nb); |
| 184 | smallbits = ms->smallmap >> idx; |
| 185 | |
| 186 | if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ |
| 187 | mchunkptr b, p; |
| 188 | idx += ~smallbits & 1; /* Uses next bin if idx empty */ |
| 189 | b = smallbin_at(ms, idx); |
| 190 | p = b->fd; |
| 191 | assert(chunksize(p) == small_index2size(idx)); |
| 192 | unlink_first_small_chunk(ms, b, p, idx); |
| 193 | set_inuse_and_pinuse(ms, p, small_index2size(idx)); |
| 194 | mem = chunk2mem(p); |
| 195 | check_malloced_chunk(ms, mem, nb); |
| 196 | goto postaction; |
| 197 | } |
| 198 | |
| 199 | else if (nb > ms->dvsize) { |
| 200 | if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ |
| 201 | mchunkptr b, p, r; |
| 202 | size_t rsize; |
| 203 | bindex_t i; |
| 204 | binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); |
| 205 | binmap_t leastbit = least_bit(leftbits); |
| 206 | compute_bit2idx(leastbit, i); |
| 207 | b = smallbin_at(ms, i); |
| 208 | p = b->fd; |
| 209 | assert(chunksize(p) == small_index2size(i)); |
| 210 | unlink_first_small_chunk(ms, b, p, i); |
| 211 | rsize = small_index2size(i) - nb; |
| 212 | /* Fit here cannot be remainderless if 4byte sizes */ |
| 213 | if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) |
| 214 | set_inuse_and_pinuse(ms, p, small_index2size(i)); |
| 215 | else { |
| 216 | set_size_and_pinuse_of_inuse_chunk(ms, p, nb); |
| 217 | r = chunk_plus_offset(p, nb); |
| 218 | set_size_and_pinuse_of_free_chunk(r, rsize); |
| 219 | replace_dv(ms, r, rsize); |
| 220 | } |
| 221 | mem = chunk2mem(p); |
| 222 | check_malloced_chunk(ms, mem, nb); |
| 223 | goto postaction; |
| 224 | } |
| 225 | |
| 226 | else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { |
| 227 | check_malloced_chunk(ms, mem, nb); |
| 228 | goto postaction; |
| 229 | } |
| 230 | } |
| 231 | } |
| 232 | else if (bytes >= MAX_REQUEST) |
| 233 | nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ |
| 234 | else { |
| 235 | nb = pad_request(bytes); |
| 236 | if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { |
| 237 | check_malloced_chunk(ms, mem, nb); |
| 238 | goto postaction; |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | if (nb <= ms->dvsize) { |
| 243 | size_t rsize = ms->dvsize - nb; |
| 244 | mchunkptr p = ms->dv; |
| 245 | if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ |
| 246 | mchunkptr r = ms->dv = chunk_plus_offset(p, nb); |
| 247 | ms->dvsize = rsize; |
| 248 | set_size_and_pinuse_of_free_chunk(r, rsize); |
| 249 | set_size_and_pinuse_of_inuse_chunk(ms, p, nb); |
| 250 | } |
| 251 | else { /* exhaust dv */ |
| 252 | size_t dvs = ms->dvsize; |
| 253 | ms->dvsize = 0; |
| 254 | ms->dv = 0; |
| 255 | set_inuse_and_pinuse(ms, p, dvs); |
| 256 | } |
| 257 | mem = chunk2mem(p); |
| 258 | check_malloced_chunk(ms, mem, nb); |
| 259 | goto postaction; |
| 260 | } |
| 261 | |
| 262 | else if (nb < ms->topsize) { /* Split top */ |
| 263 | size_t rsize = ms->topsize -= nb; |
| 264 | mchunkptr p = ms->top; |
| 265 | mchunkptr r = ms->top = chunk_plus_offset(p, nb); |
| 266 | r->head = rsize | PINUSE_BIT; |
| 267 | set_size_and_pinuse_of_inuse_chunk(ms, p, nb); |
| 268 | mem = chunk2mem(p); |
| 269 | check_top_chunk(ms, ms->top); |
| 270 | check_malloced_chunk(ms, mem, nb); |
| 271 | goto postaction; |
| 272 | } |
| 273 | |
| 274 | mem = sys_alloc(ms, nb); |
| 275 | |
| 276 | postaction: |
| 277 | ;//POSTACTION(ms); |
| 278 | return mem; |
| 279 | } |
| 280 | |
| 281 | return 0; |
| 282 | } |
| 283 | |
| 284 | //This function is equal to try_realloc_chunk but handling |
| 285 | //minimum and desired bytes |
| 286 | static mchunkptr try_realloc_chunk_with_min(mstate m, mchunkptr p, size_t min_nb, size_t des_nb, int can_move) |
| 287 | { |
| 288 | mchunkptr newp = 0; |
| 289 | size_t oldsize = chunksize(p); |
| 290 | mchunkptr next = chunk_plus_offset(p, oldsize); |
| 291 | if (RTCHECK(ok_address(m, p) && ok_inuse(p) && |
| 292 | ok_next(p, next) && ok_pinuse(next))) { |
| 293 | if (is_mmapped(p)) { |
| 294 | newp = mmap_resize(m, p, des_nb, can_move); |
| 295 | if(!newp) //mmap does not return how many bytes we could reallocate, so go the minimum |
| 296 | newp = mmap_resize(m, p, min_nb, can_move); |
| 297 | } |
| 298 | else if (oldsize >= min_nb) { /* already big enough */ |
| 299 | size_t nb = oldsize >= des_nb ? des_nb : oldsize; |
| 300 | size_t rsize = oldsize - nb; |
| 301 | if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */ |
| 302 | mchunkptr r = chunk_plus_offset(p, nb); |
| 303 | set_inuse(m, p, nb); |
| 304 | set_inuse(m, r, rsize); |
| 305 | dispose_chunk(m, r, rsize); |
| 306 | } |
| 307 | newp = p; |
| 308 | } |
| 309 | else if (next == m->top) { /* extend into top */ |
| 310 | if (oldsize + m->topsize > min_nb) { |
| 311 | size_t nb = (oldsize + m->topsize) > des_nb ? des_nb : (oldsize + m->topsize - MALLOC_ALIGNMENT); |
| 312 | size_t newsize = oldsize + m->topsize; |
| 313 | size_t newtopsize = newsize - nb; |
| 314 | mchunkptr newtop = chunk_plus_offset(p, nb); |
| 315 | set_inuse(m, p, nb); |
| 316 | newtop->head = newtopsize |PINUSE_BIT; |
| 317 | m->top = newtop; |
| 318 | m->topsize = newtopsize; |
| 319 | newp = p; |
| 320 | } |
| 321 | } |
| 322 | else if (next == m->dv) { /* extend into dv */ |
| 323 | size_t dvs = m->dvsize; |
| 324 | if (oldsize + dvs >= min_nb) { |
| 325 | size_t nb = (oldsize + dvs) >= des_nb ? des_nb : (oldsize + dvs); |
| 326 | size_t dsize = oldsize + dvs - nb; |
| 327 | if (dsize >= MIN_CHUNK_SIZE) { |
| 328 | mchunkptr r = chunk_plus_offset(p, nb); |
| 329 | mchunkptr n = chunk_plus_offset(r, dsize); |
| 330 | set_inuse(m, p, nb); |
| 331 | set_size_and_pinuse_of_free_chunk(r, dsize); |
| 332 | clear_pinuse(n); |
| 333 | m->dvsize = dsize; |
| 334 | m->dv = r; |
| 335 | } |
| 336 | else { /* exhaust dv */ |
| 337 | size_t newsize = oldsize + dvs; |
| 338 | set_inuse(m, p, newsize); |
| 339 | m->dvsize = 0; |
| 340 | m->dv = 0; |
| 341 | } |
| 342 | newp = p; |
| 343 | } |
| 344 | } |
| 345 | else if (!cinuse(next)) { /* extend into next free chunk */ |
| 346 | size_t nextsize = chunksize(next); |
| 347 | if (oldsize + nextsize >= min_nb) { |
| 348 | size_t nb = (oldsize + nextsize) >= des_nb ? des_nb : (oldsize + nextsize); |
| 349 | size_t rsize = oldsize + nextsize - nb; |
| 350 | unlink_chunk(m, next, nextsize); |
| 351 | if (rsize < MIN_CHUNK_SIZE) { |
| 352 | size_t newsize = oldsize + nextsize; |
| 353 | set_inuse(m, p, newsize); |
| 354 | } |
| 355 | else { |
| 356 | mchunkptr r = chunk_plus_offset(p, nb); |
| 357 | set_inuse(m, p, nb); |
| 358 | set_inuse(m, r, rsize); |
| 359 | dispose_chunk(m, r, rsize); |
| 360 | } |
| 361 | newp = p; |
| 362 | } |
| 363 | } |
| 364 | } |
| 365 | else { |
| 366 | USAGE_ERROR_ACTION(m, chunk2mem(p)); |
| 367 | } |
| 368 | return newp; |
| 369 | } |
| 370 | |
| 371 | #define BOOST_ALLOC_PLUS_MEMCHAIN_MEM_JUMP_NEXT(THISMEM, NEXTMEM) \ |
| 372 | *((void**)(THISMEM)) = *((void**)((NEXTMEM))) |
| 373 | |
| 374 | //This function is based on internal_bulk_free |
| 375 | //replacing iteration over array[] with boost_cont_memchain. |
| 376 | //Instead of returning the unallocated nodes, returns a chain of non-deallocated nodes. |
| 377 | //After forward merging, backwards merging is also tried |
| 378 | static void internal_multialloc_free(mstate m, boost_cont_memchain *pchain) |
| 379 | { |
| 380 | #if FOOTERS |
| 381 | boost_cont_memchain ret_chain; |
| 382 | BOOST_CONTAINER_MEMCHAIN_INIT(&ret_chain); |
| 383 | #endif |
| 384 | if (!PREACTION(m)) { |
| 385 | boost_cont_memchain_it a_it = BOOST_CONTAINER_MEMCHAIN_BEGIN_IT(pchain); |
| 386 | while(!BOOST_CONTAINER_MEMCHAIN_IS_END_IT(pchain, a_it)) { /* Iterate though all memory holded by the chain */ |
| 387 | void* a_mem = BOOST_CONTAINER_MEMIT_ADDR(a_it); |
| 388 | mchunkptr a_p = mem2chunk(a_mem); |
| 389 | size_t psize = chunksize(a_p); |
| 390 | #if FOOTERS |
| 391 | if (get_mstate_for(a_p) != m) { |
| 392 | BOOST_CONTAINER_MEMIT_NEXT(a_it); |
| 393 | BOOST_CONTAINER_MEMCHAIN_PUSH_BACK(&ret_chain, a_mem); |
| 394 | continue; |
| 395 | } |
| 396 | #endif |
| 397 | check_inuse_chunk(m, a_p); |
| 398 | if (RTCHECK(ok_address(m, a_p) && ok_inuse(a_p))) { |
| 399 | while(1) { /* Internal loop to speed up forward and backward merging (avoids some redundant checks) */ |
| 400 | boost_cont_memchain_it b_it = a_it; |
| 401 | BOOST_CONTAINER_MEMIT_NEXT(b_it); |
| 402 | if(!BOOST_CONTAINER_MEMCHAIN_IS_END_IT(pchain, b_it)){ |
| 403 | void *b_mem = BOOST_CONTAINER_MEMIT_ADDR(b_it); |
| 404 | mchunkptr b_p = mem2chunk(b_mem); |
| 405 | if (b_p == next_chunk(a_p)) { /* b chunk is contiguous and next so b's size can be added to a */ |
| 406 | psize += chunksize(b_p); |
| 407 | set_inuse(m, a_p, psize); |
| 408 | BOOST_ALLOC_PLUS_MEMCHAIN_MEM_JUMP_NEXT(a_mem, b_mem); |
| 409 | continue; |
| 410 | } |
| 411 | if(RTCHECK(ok_address(m, b_p) && ok_inuse(b_p))){ |
| 412 | /* b chunk is contiguous and previous so a's size can be added to b */ |
| 413 | if(a_p == next_chunk(b_p)) { |
| 414 | psize += chunksize(b_p); |
| 415 | set_inuse(m, b_p, psize); |
| 416 | a_it = b_it; |
| 417 | a_p = b_p; |
| 418 | a_mem = b_mem; |
| 419 | continue; |
| 420 | } |
| 421 | } |
| 422 | } |
| 423 | /* Normal deallocation starts again in the outer loop */ |
| 424 | a_it = b_it; |
| 425 | s_allocated_memory -= psize; |
| 426 | dispose_chunk(m, a_p, psize); |
| 427 | break; |
| 428 | } |
| 429 | } |
| 430 | else { |
| 431 | CORRUPTION_ERROR_ACTION(m); |
| 432 | break; |
| 433 | } |
| 434 | } |
| 435 | if (should_trim(m, m->topsize)) |
| 436 | sys_trim(m, 0); |
| 437 | POSTACTION(m); |
| 438 | } |
| 439 | #if FOOTERS |
| 440 | { |
| 441 | boost_cont_memchain_it last_pchain = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain); |
| 442 | BOOST_CONTAINER_MEMCHAIN_INIT(pchain); |
| 443 | BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER |
| 444 | (pchain |
| 445 | , last_pchain |
| 446 | , BOOST_CONTAINER_MEMCHAIN_FIRSTMEM(&ret_chain) |
| 447 | , BOOST_CONTAINER_MEMCHAIN_LASTMEM(&ret_chain) |
| 448 | , BOOST_CONTAINER_MEMCHAIN_SIZE(&ret_chain) |
| 449 | ); |
| 450 | } |
| 451 | #endif |
| 452 | } |
| 453 | |
| 454 | /////////////////////////////////////////////////////////////// |
| 455 | /////////////////////////////////////////////////////////////// |
| 456 | /////////////////////////////////////////////////////////////// |
| 457 | // |
| 458 | // NEW FUNCTIONS BASED ON DLMALLOC INTERNALS |
| 459 | // |
| 460 | /////////////////////////////////////////////////////////////// |
| 461 | /////////////////////////////////////////////////////////////// |
| 462 | /////////////////////////////////////////////////////////////// |
| 463 | |
| 464 | #define GET_TRUNCATED_SIZE(ORIG_SIZE, ROUNDTO) ((ORIG_SIZE)/(ROUNDTO)*(ROUNDTO)) |
| 465 | #define GET_ROUNDED_SIZE(ORIG_SIZE, ROUNDTO) ((((ORIG_SIZE)-1)/(ROUNDTO)+1)*(ROUNDTO)) |
| 466 | #define GET_TRUNCATED_PO2_SIZE(ORIG_SIZE, ROUNDTO) ((ORIG_SIZE) & (~(ROUNDTO-1))) |
| 467 | #define GET_ROUNDED_PO2_SIZE(ORIG_SIZE, ROUNDTO) (((ORIG_SIZE - 1) & (~(ROUNDTO-1))) + ROUNDTO) |
| 468 | |
| 469 | /* Greatest common divisor and least common multiple |
| 470 | gcd is an algorithm that calculates the greatest common divisor of two |
| 471 | integers, using Euclid's algorithm. |
| 472 | |
| 473 | Pre: A > 0 && B > 0 |
| 474 | Recommended: A > B*/ |
| 475 | #define CALCULATE_GCD(A, B, OUT)\ |
| 476 | {\ |
| 477 | size_t a = A;\ |
| 478 | size_t b = B;\ |
| 479 | do\ |
| 480 | {\ |
| 481 | size_t tmp = b;\ |
| 482 | b = a % b;\ |
| 483 | a = tmp;\ |
| 484 | } while (b != 0);\ |
| 485 | \ |
| 486 | OUT = a;\ |
| 487 | } |
| 488 | |
| 489 | /* lcm is an algorithm that calculates the least common multiple of two |
| 490 | integers. |
| 491 | |
| 492 | Pre: A > 0 && B > 0 |
| 493 | Recommended: A > B*/ |
| 494 | #define CALCULATE_LCM(A, B, OUT)\ |
| 495 | {\ |
| 496 | CALCULATE_GCD(A, B, OUT);\ |
| 497 | OUT = (A / OUT)*B;\ |
| 498 | } |
| 499 | |
| 500 | static int calculate_lcm_and_needs_backwards_lcmed |
| 501 | (size_t backwards_multiple, size_t received_size, size_t size_to_achieve, |
| 502 | size_t *plcm, size_t *pneeds_backwards_lcmed) |
| 503 | { |
| 504 | /* Now calculate lcm */ |
| 505 | size_t max = backwards_multiple; |
| 506 | size_t min = MALLOC_ALIGNMENT; |
| 507 | size_t needs_backwards; |
| 508 | size_t needs_backwards_lcmed; |
| 509 | size_t lcm; |
| 510 | size_t current_forward; |
| 511 | /*Swap if necessary*/ |
| 512 | if(max < min){ |
| 513 | size_t tmp = min; |
| 514 | min = max; |
| 515 | max = tmp; |
| 516 | } |
| 517 | /*Check if it's power of two*/ |
| 518 | if((backwards_multiple & (backwards_multiple-1)) == 0){ |
| 519 | if(0 != (size_to_achieve & ((backwards_multiple-1)))){ |
| 520 | USAGE_ERROR_ACTION(m, oldp); |
| 521 | return 0; |
| 522 | } |
| 523 | |
| 524 | lcm = max; |
| 525 | /*If we want to use minbytes data to get a buffer between maxbytes |
| 526 | and minbytes if maxbytes can't be achieved, calculate the |
| 527 | biggest of all possibilities*/ |
| 528 | current_forward = GET_TRUNCATED_PO2_SIZE(received_size, backwards_multiple); |
| 529 | needs_backwards = size_to_achieve - current_forward; |
| 530 | assert((needs_backwards % backwards_multiple) == 0); |
| 531 | needs_backwards_lcmed = GET_ROUNDED_PO2_SIZE(needs_backwards, lcm); |
| 532 | *plcm = lcm; |
| 533 | *pneeds_backwards_lcmed = needs_backwards_lcmed; |
| 534 | return 1; |
| 535 | } |
| 536 | /*Check if it's multiple of alignment*/ |
| 537 | else if((backwards_multiple & (MALLOC_ALIGNMENT - 1u)) == 0){ |
| 538 | lcm = backwards_multiple; |
| 539 | current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple); |
| 540 | //No need to round needs_backwards because backwards_multiple == lcm |
| 541 | needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward; |
| 542 | assert((needs_backwards_lcmed & (MALLOC_ALIGNMENT - 1u)) == 0); |
| 543 | *plcm = lcm; |
| 544 | *pneeds_backwards_lcmed = needs_backwards_lcmed; |
| 545 | return 1; |
| 546 | } |
| 547 | /*Check if it's multiple of the half of the alignmment*/ |
| 548 | else if((backwards_multiple & ((MALLOC_ALIGNMENT/2u) - 1u)) == 0){ |
| 549 | lcm = backwards_multiple*2u; |
| 550 | current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple); |
| 551 | needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward; |
| 552 | if(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1))) |
| 553 | //while(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1))) |
| 554 | needs_backwards_lcmed += backwards_multiple; |
| 555 | assert((needs_backwards_lcmed % lcm) == 0); |
| 556 | *plcm = lcm; |
| 557 | *pneeds_backwards_lcmed = needs_backwards_lcmed; |
| 558 | return 1; |
| 559 | } |
| 560 | /*Check if it's multiple of the quarter of the alignmment*/ |
| 561 | else if((backwards_multiple & ((MALLOC_ALIGNMENT/4u) - 1u)) == 0){ |
| 562 | size_t remainder; |
| 563 | lcm = backwards_multiple*4u; |
| 564 | current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple); |
| 565 | needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward; |
| 566 | //while(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1))) |
| 567 | //needs_backwards_lcmed += backwards_multiple; |
| 568 | if(0 != (remainder = ((needs_backwards_lcmed & (MALLOC_ALIGNMENT-1))>>(MALLOC_ALIGNMENT/8u)))){ |
| 569 | if(backwards_multiple & MALLOC_ALIGNMENT/2u){ |
| 570 | needs_backwards_lcmed += (remainder)*backwards_multiple; |
| 571 | } |
| 572 | else{ |
| 573 | needs_backwards_lcmed += (4-remainder)*backwards_multiple; |
| 574 | } |
| 575 | } |
| 576 | assert((needs_backwards_lcmed % lcm) == 0); |
| 577 | *plcm = lcm; |
| 578 | *pneeds_backwards_lcmed = needs_backwards_lcmed; |
| 579 | return 1; |
| 580 | } |
| 581 | else{ |
| 582 | CALCULATE_LCM(max, min, lcm); |
| 583 | /*If we want to use minbytes data to get a buffer between maxbytes |
| 584 | and minbytes if maxbytes can't be achieved, calculate the |
| 585 | biggest of all possibilities*/ |
| 586 | current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple); |
| 587 | needs_backwards = size_to_achieve - current_forward; |
| 588 | assert((needs_backwards % backwards_multiple) == 0); |
| 589 | needs_backwards_lcmed = GET_ROUNDED_SIZE(needs_backwards, lcm); |
| 590 | *plcm = lcm; |
| 591 | *pneeds_backwards_lcmed = needs_backwards_lcmed; |
| 592 | return 1; |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | static void *internal_grow_both_sides |
| 597 | (mstate m |
| 598 | ,allocation_type command |
| 599 | ,void *oldmem |
| 600 | ,size_t minbytes |
| 601 | ,size_t maxbytes |
| 602 | ,size_t *received_size |
| 603 | ,size_t backwards_multiple |
| 604 | ,int only_preferred_backwards) |
| 605 | { |
| 606 | mchunkptr oldp = mem2chunk(oldmem); |
| 607 | size_t oldsize = chunksize(oldp); |
| 608 | *received_size = oldsize - overhead_for(oldp); |
| 609 | if(minbytes <= *received_size) |
| 610 | return oldmem; |
| 611 | |
| 612 | if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp))) { |
| 613 | if(command & BOOST_CONTAINER_EXPAND_FWD){ |
| 614 | if(try_realloc_chunk_with_min(m, oldp, request2size(minbytes), request2size(maxbytes), 0)){ |
| 615 | check_inuse_chunk(m, oldp); |
| 616 | *received_size = DL_SIZE_IMPL(oldmem); |
| 617 | s_allocated_memory += chunksize(oldp) - oldsize; |
| 618 | return oldmem; |
| 619 | } |
| 620 | } |
| 621 | else{ |
| 622 | *received_size = DL_SIZE_IMPL(oldmem); |
| 623 | if(*received_size >= maxbytes) |
| 624 | return oldmem; |
| 625 | } |
| 626 | /* |
| 627 | Should we check this? |
| 628 | if(backwards_multiple && |
| 629 | (0 != (minbytes % backwards_multiple) && |
| 630 | 0 != (maxbytes % backwards_multiple)) ){ |
| 631 | USAGE_ERROR_ACTION(m, oldp); |
| 632 | return 0; |
| 633 | } |
| 634 | */ |
| 635 | /* We reach here only if forward expansion fails */ |
| 636 | if(!(command & BOOST_CONTAINER_EXPAND_BWD) || pinuse(oldp)){ |
| 637 | return 0; |
| 638 | } |
| 639 | { |
| 640 | size_t prevsize = oldp->prev_foot; |
| 641 | if ((prevsize & USE_MMAP_BIT) != 0){ |
| 642 | /*Return failure the previous chunk was mmapped. |
| 643 | mremap does not allow expanding to a fixed address (MREMAP_MAYMOVE) without |
| 644 | copying (MREMAP_MAYMOVE must be also set).*/ |
| 645 | return 0; |
| 646 | } |
| 647 | else { |
| 648 | mchunkptr prev = chunk_minus_offset(oldp, prevsize); |
| 649 | size_t dsize = oldsize + prevsize; |
| 650 | size_t needs_backwards_lcmed; |
| 651 | size_t lcm; |
| 652 | |
| 653 | /* Let's calculate the number of extra bytes of data before the current |
| 654 | block's begin. The value is a multiple of backwards_multiple |
| 655 | and the alignment*/ |
| 656 | if(!calculate_lcm_and_needs_backwards_lcmed |
| 657 | ( backwards_multiple, *received_size |
| 658 | , only_preferred_backwards ? maxbytes : minbytes |
| 659 | , &lcm, &needs_backwards_lcmed) |
| 660 | || !RTCHECK(ok_address(m, prev))){ |
| 661 | USAGE_ERROR_ACTION(m, oldp); |
| 662 | return 0; |
| 663 | } |
| 664 | /* Check if previous block has enough size */ |
| 665 | else if(prevsize < needs_backwards_lcmed){ |
| 666 | /* preferred size? */ |
| 667 | return 0; |
| 668 | } |
| 669 | /* Now take all next space. This must succeed, as we've previously calculated the correct size */ |
| 670 | if(command & BOOST_CONTAINER_EXPAND_FWD){ |
| 671 | if(!try_realloc_chunk_with_min(m, oldp, request2size(*received_size), request2size(*received_size), 0)){ |
| 672 | assert(0); |
| 673 | } |
| 674 | check_inuse_chunk(m, oldp); |
| 675 | *received_size = DL_SIZE_IMPL(oldmem); |
| 676 | s_allocated_memory += chunksize(oldp) - oldsize; |
| 677 | oldsize = chunksize(oldp); |
| 678 | dsize = oldsize + prevsize; |
| 679 | } |
| 680 | /* We need a minimum size to split the previous one */ |
| 681 | if(prevsize >= (needs_backwards_lcmed + MIN_CHUNK_SIZE)){ |
| 682 | mchunkptr r = chunk_minus_offset(oldp, needs_backwards_lcmed); |
| 683 | size_t rsize = oldsize + needs_backwards_lcmed; |
| 684 | size_t newprevsize = dsize - rsize; |
| 685 | int prev_was_dv = prev == m->dv; |
| 686 | |
| 687 | assert(newprevsize >= MIN_CHUNK_SIZE); |
| 688 | |
| 689 | if (prev_was_dv) { |
| 690 | m->dvsize = newprevsize; |
| 691 | } |
| 692 | else{/* if ((next->head & INUSE_BITS) == INUSE_BITS) { */ |
| 693 | unlink_chunk(m, prev, prevsize); |
| 694 | insert_chunk(m, prev, newprevsize); |
| 695 | } |
| 696 | |
| 697 | set_size_and_pinuse_of_free_chunk(prev, newprevsize); |
| 698 | clear_pinuse(r); |
| 699 | set_inuse(m, r, rsize); |
| 700 | check_malloced_chunk(m, chunk2mem(r), rsize); |
| 701 | *received_size = chunksize(r) - overhead_for(r); |
| 702 | s_allocated_memory += chunksize(r) - oldsize; |
| 703 | return chunk2mem(r); |
| 704 | } |
| 705 | /* Check if there is no place to create a new block and |
| 706 | the whole new block is multiple of the backwards expansion multiple */ |
| 707 | else if(prevsize >= needs_backwards_lcmed && !(prevsize % lcm)) { |
| 708 | /* Just merge the whole previous block */ |
| 709 | /* prevsize is multiple of lcm (and backwards_multiple)*/ |
| 710 | *received_size += prevsize; |
| 711 | |
| 712 | if (prev != m->dv) { |
| 713 | unlink_chunk(m, prev, prevsize); |
| 714 | } |
| 715 | else{ |
| 716 | m->dvsize = 0; |
| 717 | m->dv = 0; |
| 718 | } |
| 719 | set_inuse(m, prev, dsize); |
| 720 | check_malloced_chunk(m, chunk2mem(prev), dsize); |
| 721 | s_allocated_memory += chunksize(prev) - oldsize; |
| 722 | return chunk2mem(prev); |
| 723 | } |
| 724 | else{ |
| 725 | /* Previous block was big enough but there is no room |
| 726 | to create an empty block and taking the whole block does |
| 727 | not fulfill alignment requirements */ |
| 728 | return 0; |
| 729 | } |
| 730 | } |
| 731 | } |
| 732 | } |
| 733 | else{ |
| 734 | USAGE_ERROR_ACTION(m, oldmem); |
| 735 | return 0; |
| 736 | } |
| 737 | return 0; |
| 738 | } |
| 739 | |
| 740 | /* This is similar to mmap_resize but: |
| 741 | * Only to shrink |
| 742 | * It takes min and max sizes |
| 743 | * Takes additional 'do_commit' argument to obtain the final |
| 744 | size before doing the real shrink operation. |
| 745 | */ |
| 746 | static int internal_mmap_shrink_in_place(mstate m, mchunkptr oldp, size_t nbmin, size_t nbmax, size_t *received_size, int do_commit) |
| 747 | { |
| 748 | size_t oldsize = chunksize(oldp); |
| 749 | *received_size = oldsize; |
| 750 | #if HAVE_MREMAP |
| 751 | if (is_small(nbmax)) /* Can't shrink mmap regions below small size */ |
| 752 | return 0; |
| 753 | { |
| 754 | size_t effective_min = nbmin > MIN_LARGE_SIZE ? nbmin : MIN_LARGE_SIZE; |
| 755 | /* Keep old chunk if big enough but not too big */ |
| 756 | if (oldsize >= effective_min + SIZE_T_SIZE && |
| 757 | (oldsize - effective_min) <= (mparams.granularity << 1)) |
| 758 | return 0; |
| 759 | /* Now calculate new sizes */ |
| 760 | { |
| 761 | size_t offset = oldp->prev_foot; |
| 762 | size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; |
| 763 | size_t newmmsize = mmap_align(effective_min + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); |
| 764 | *received_size = newmmsize; |
| 765 | if(!do_commit){ |
| 766 | const int flags = 0; /* placate people compiling -Wunused */ |
| 767 | char* cp = (char*)CALL_MREMAP((char*)oldp - offset, |
| 768 | oldmmsize, newmmsize, flags); |
| 769 | /*This must always succeed */ |
| 770 | if(!cp){ |
| 771 | USAGE_ERROR_ACTION(m, m); |
| 772 | return 0; |
| 773 | } |
| 774 | { |
| 775 | mchunkptr newp = (mchunkptr)(cp + offset); |
| 776 | size_t psize = newmmsize - offset - MMAP_FOOT_PAD; |
| 777 | newp->head = psize; |
| 778 | mark_inuse_foot(m, newp, psize); |
| 779 | chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; |
| 780 | chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; |
| 781 | |
| 782 | if (cp < m->least_addr) |
| 783 | m->least_addr = cp; |
| 784 | if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) |
| 785 | m->max_footprint = m->footprint; |
| 786 | check_mmapped_chunk(m, newp); |
| 787 | } |
| 788 | } |
| 789 | } |
| 790 | return 1; |
| 791 | } |
| 792 | #else //#if HAVE_MREMAP |
| 793 | (void)m; |
| 794 | (void)oldp; |
| 795 | (void)nbmin; |
| 796 | (void)nbmax; |
| 797 | (void)received_size; |
| 798 | (void)do_commit; |
| 799 | return 0; |
| 800 | #endif //#if HAVE_MREMAP |
| 801 | } |
| 802 | |
| 803 | static int internal_shrink(mstate m, void* oldmem, size_t minbytes, size_t maxbytes, size_t *received_size, int do_commit) |
| 804 | { |
| 805 | *received_size = chunksize(mem2chunk(oldmem)) - overhead_for(mem2chunk(oldmem)); |
| 806 | if (minbytes >= MAX_REQUEST || maxbytes >= MAX_REQUEST) { |
| 807 | MALLOC_FAILURE_ACTION; |
| 808 | return 0; |
| 809 | } |
| 810 | else if(minbytes < MIN_REQUEST){ |
| 811 | minbytes = MIN_REQUEST; |
| 812 | } |
| 813 | if (minbytes > maxbytes) { |
| 814 | return 0; |
| 815 | } |
| 816 | |
| 817 | { |
| 818 | mchunkptr oldp = mem2chunk(oldmem); |
| 819 | size_t oldsize = chunksize(oldp); |
| 820 | mchunkptr next = chunk_plus_offset(oldp, oldsize); |
| 821 | void* extra = 0; |
| 822 | |
| 823 | /* Try to either shrink or extend into top. Else malloc-copy-free*/ |
| 824 | if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp) && |
| 825 | ok_next(oldp, next) && ok_pinuse(next))) { |
| 826 | size_t nbmin = request2size(minbytes); |
| 827 | size_t nbmax = request2size(maxbytes); |
| 828 | |
| 829 | if (nbmin > oldsize){ |
| 830 | /* Return error if old size is too small */ |
| 831 | } |
| 832 | else if (is_mmapped(oldp)){ |
| 833 | return internal_mmap_shrink_in_place(m, oldp, nbmin, nbmax, received_size, do_commit); |
| 834 | } |
| 835 | else{ // nbmin <= oldsize /* already big enough*/ |
| 836 | size_t nb = nbmin; |
| 837 | size_t rsize = oldsize - nb; |
| 838 | if (rsize >= MIN_CHUNK_SIZE) { |
| 839 | if(do_commit){ |
| 840 | mchunkptr remainder = chunk_plus_offset(oldp, nb); |
| 841 | set_inuse(m, oldp, nb); |
| 842 | set_inuse(m, remainder, rsize); |
| 843 | extra = chunk2mem(remainder); |
| 844 | } |
| 845 | *received_size = nb - overhead_for(oldp); |
| 846 | if(!do_commit) |
| 847 | return 1; |
| 848 | } |
| 849 | } |
| 850 | } |
| 851 | else { |
| 852 | USAGE_ERROR_ACTION(m, oldmem); |
| 853 | return 0; |
| 854 | } |
| 855 | |
| 856 | if (extra != 0 && do_commit) { |
| 857 | mspace_free_lockless(m, extra); |
| 858 | check_inuse_chunk(m, oldp); |
| 859 | return 1; |
| 860 | } |
| 861 | else { |
| 862 | return 0; |
| 863 | } |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | |
| 868 | #define INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM 4096 |
| 869 | |
| 870 | #define SQRT_MAX_SIZE_T (((size_t)-1)>>(sizeof(size_t)*CHAR_BIT/2)) |
| 871 | |
| 872 | static int internal_node_multialloc |
| 873 | (mstate m, size_t n_elements, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain) { |
| 874 | void* mem; /* malloced aggregate space */ |
| 875 | mchunkptr p; /* corresponding chunk */ |
| 876 | size_t remainder_size; /* remaining bytes while splitting */ |
| 877 | flag_t was_enabled; /* to disable mmap */ |
| 878 | size_t elements_per_segment = 0; |
| 879 | size_t element_req_size = request2size(element_size); |
| 880 | boost_cont_memchain_it prev_last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain); |
| 881 | |
| 882 | /*Error if wrong element_size parameter */ |
| 883 | if( !element_size || |
| 884 | /*OR Error if n_elements less thatn contiguous_elements */ |
| 885 | ((contiguous_elements + 1) > (DL_MULTIALLOC_DEFAULT_CONTIGUOUS + 1) && n_elements < contiguous_elements) || |
| 886 | /* OR Error if integer overflow */ |
| 887 | (SQRT_MAX_SIZE_T < (element_req_size | contiguous_elements) && |
| 888 | (MAX_SIZE_T/element_req_size) < contiguous_elements)){ |
| 889 | return 0; |
| 890 | } |
| 891 | switch(contiguous_elements){ |
| 892 | case DL_MULTIALLOC_DEFAULT_CONTIGUOUS: |
| 893 | { |
| 894 | /* Default contiguous, just check that we can store at least one element */ |
| 895 | elements_per_segment = INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM/element_req_size; |
| 896 | elements_per_segment += (size_t)(!elements_per_segment); |
| 897 | } |
| 898 | break; |
| 899 | case DL_MULTIALLOC_ALL_CONTIGUOUS: |
| 900 | /* All elements should be allocated in a single call */ |
| 901 | elements_per_segment = n_elements; |
| 902 | break; |
| 903 | default: |
| 904 | /* Allocate in chunks of "contiguous_elements" */ |
| 905 | elements_per_segment = contiguous_elements; |
| 906 | } |
| 907 | |
| 908 | { |
| 909 | size_t i; |
| 910 | size_t next_i; |
| 911 | /* |
| 912 | Allocate the aggregate chunk. First disable direct-mmapping so |
| 913 | malloc won't use it, since we would not be able to later |
| 914 | free/realloc space internal to a segregated mmap region. |
| 915 | */ |
| 916 | was_enabled = use_mmap(m); |
| 917 | disable_mmap(m); |
| 918 | for(i = 0; i != n_elements; i = next_i) |
| 919 | { |
| 920 | size_t accum_size; |
| 921 | size_t n_elements_left = n_elements - i; |
| 922 | next_i = i + ((n_elements_left < elements_per_segment) ? n_elements_left : elements_per_segment); |
| 923 | accum_size = element_req_size*(next_i - i); |
| 924 | |
| 925 | mem = mspace_malloc_lockless(m, accum_size - CHUNK_OVERHEAD); |
| 926 | if (mem == 0){ |
| 927 | BOOST_CONTAINER_MEMIT_NEXT(prev_last_it); |
| 928 | while(i--){ |
| 929 | void *addr = BOOST_CONTAINER_MEMIT_ADDR(prev_last_it); |
| 930 | BOOST_CONTAINER_MEMIT_NEXT(prev_last_it); |
| 931 | mspace_free_lockless(m, addr); |
| 932 | } |
| 933 | if (was_enabled) |
| 934 | enable_mmap(m); |
| 935 | return 0; |
| 936 | } |
| 937 | p = mem2chunk(mem); |
| 938 | remainder_size = chunksize(p); |
| 939 | s_allocated_memory += remainder_size; |
| 940 | |
| 941 | assert(!is_mmapped(p)); |
| 942 | { /* split out elements */ |
| 943 | void *mem_orig = mem; |
| 944 | boost_cont_memchain_it last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain); |
| 945 | size_t num_elements = next_i-i; |
| 946 | |
| 947 | size_t num_loops = num_elements - 1; |
| 948 | remainder_size -= element_req_size*num_loops; |
| 949 | while(num_loops--){ |
| 950 | void **mem_prev = ((void**)mem); |
| 951 | set_size_and_pinuse_of_inuse_chunk(m, p, element_req_size); |
| 952 | p = chunk_plus_offset(p, element_req_size); |
| 953 | mem = chunk2mem(p); |
| 954 | *mem_prev = mem; |
| 955 | } |
| 956 | set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); |
| 957 | BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER(pchain, last_it, mem_orig, mem, num_elements); |
| 958 | } |
| 959 | } |
| 960 | if (was_enabled) |
| 961 | enable_mmap(m); |
| 962 | } |
| 963 | return 1; |
| 964 | } |
| 965 | |
| 966 | static int internal_multialloc_arrays |
| 967 | (mstate m, size_t n_elements, const size_t* sizes, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain) { |
| 968 | void* mem; /* malloced aggregate space */ |
| 969 | mchunkptr p; /* corresponding chunk */ |
| 970 | size_t remainder_size; /* remaining bytes while splitting */ |
| 971 | flag_t was_enabled; /* to disable mmap */ |
| 972 | size_t size; |
| 973 | size_t boost_cont_multialloc_segmented_malloc_size; |
| 974 | size_t max_size; |
| 975 | |
| 976 | /* Check overflow */ |
| 977 | if(!element_size){ |
| 978 | return 0; |
| 979 | } |
| 980 | max_size = MAX_REQUEST/element_size; |
| 981 | /* Different sizes*/ |
| 982 | switch(contiguous_elements){ |
| 983 | case DL_MULTIALLOC_DEFAULT_CONTIGUOUS: |
| 984 | /* Use default contiguous mem */ |
| 985 | boost_cont_multialloc_segmented_malloc_size = INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM; |
| 986 | break; |
| 987 | case DL_MULTIALLOC_ALL_CONTIGUOUS: |
| 988 | boost_cont_multialloc_segmented_malloc_size = MAX_REQUEST + CHUNK_OVERHEAD; |
| 989 | break; |
| 990 | default: |
| 991 | if(max_size < contiguous_elements){ |
| 992 | return 0; |
| 993 | } |
| 994 | else{ |
| 995 | /* The suggested buffer is just the the element count by the size */ |
| 996 | boost_cont_multialloc_segmented_malloc_size = element_size*contiguous_elements; |
| 997 | } |
| 998 | } |
| 999 | |
| 1000 | { |
| 1001 | size_t i; |
| 1002 | size_t next_i; |
| 1003 | /* |
| 1004 | Allocate the aggregate chunk. First disable direct-mmapping so |
| 1005 | malloc won't use it, since we would not be able to later |
| 1006 | free/realloc space internal to a segregated mmap region. |
| 1007 | */ |
| 1008 | was_enabled = use_mmap(m); |
| 1009 | disable_mmap(m); |
| 1010 | for(i = 0, next_i = 0; i != n_elements; i = next_i) |
| 1011 | { |
| 1012 | int error = 0; |
| 1013 | size_t accum_size; |
| 1014 | for(accum_size = 0; next_i != n_elements; ++next_i){ |
| 1015 | size_t cur_array_size = sizes[next_i]; |
| 1016 | if(max_size < cur_array_size){ |
| 1017 | error = 1; |
| 1018 | break; |
| 1019 | } |
| 1020 | else{ |
| 1021 | size_t reqsize = request2size(cur_array_size*element_size); |
| 1022 | if(((boost_cont_multialloc_segmented_malloc_size - CHUNK_OVERHEAD) - accum_size) < reqsize){ |
| 1023 | if(!accum_size){ |
| 1024 | accum_size += reqsize; |
| 1025 | ++next_i; |
| 1026 | } |
| 1027 | break; |
| 1028 | } |
| 1029 | accum_size += reqsize; |
| 1030 | } |
| 1031 | } |
| 1032 | |
| 1033 | mem = error ? 0 : mspace_malloc_lockless(m, accum_size - CHUNK_OVERHEAD); |
| 1034 | if (mem == 0){ |
| 1035 | boost_cont_memchain_it it = BOOST_CONTAINER_MEMCHAIN_BEGIN_IT(pchain); |
| 1036 | while(i--){ |
| 1037 | void *addr = BOOST_CONTAINER_MEMIT_ADDR(it); |
| 1038 | BOOST_CONTAINER_MEMIT_NEXT(it); |
| 1039 | mspace_free_lockless(m, addr); |
| 1040 | } |
| 1041 | if (was_enabled) |
| 1042 | enable_mmap(m); |
| 1043 | return 0; |
| 1044 | } |
| 1045 | p = mem2chunk(mem); |
| 1046 | remainder_size = chunksize(p); |
| 1047 | s_allocated_memory += remainder_size; |
| 1048 | |
| 1049 | assert(!is_mmapped(p)); |
| 1050 | |
| 1051 | { /* split out elements */ |
| 1052 | void *mem_orig = mem; |
| 1053 | boost_cont_memchain_it last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain); |
| 1054 | size_t num_elements = next_i-i; |
| 1055 | |
| 1056 | for(++i; i != next_i; ++i) { |
| 1057 | void **mem_prev = ((void**)mem); |
| 1058 | size = request2size(sizes[i]*element_size); |
| 1059 | remainder_size -= size; |
| 1060 | set_size_and_pinuse_of_inuse_chunk(m, p, size); |
| 1061 | p = chunk_plus_offset(p, size); |
| 1062 | mem = chunk2mem(p); |
| 1063 | *mem_prev = mem; |
| 1064 | } |
| 1065 | set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); |
| 1066 | BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER(pchain, last_it, mem_orig, mem, num_elements); |
| 1067 | } |
| 1068 | } |
| 1069 | if (was_enabled) |
| 1070 | enable_mmap(m); |
| 1071 | } |
| 1072 | return 1; |
| 1073 | } |
| 1074 | |
| 1075 | int boost_cont_multialloc_arrays |
| 1076 | (size_t n_elements, const size_t *sizes, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain) |
| 1077 | { |
| 1078 | int ret = 0; |
| 1079 | mstate ms = (mstate)gm; |
| 1080 | ensure_initialization(); |
| 1081 | if (!ok_magic(ms)) { |
| 1082 | USAGE_ERROR_ACTION(ms,ms); |
| 1083 | } |
| 1084 | else if (!PREACTION(ms)) { |
| 1085 | ret = internal_multialloc_arrays(ms, n_elements, sizes, element_size, contiguous_elements, pchain); |
| 1086 | POSTACTION(ms); |
| 1087 | } |
| 1088 | return ret; |
| 1089 | } |
| 1090 | |
| 1091 | |
| 1092 | /*Doug Lea malloc extensions*/ |
| 1093 | static boost_cont_malloc_stats_t get_malloc_stats(mstate m) |
| 1094 | { |
| 1095 | boost_cont_malloc_stats_t ret = { 0, 0, 0 }; |
| 1096 | ensure_initialization(); |
| 1097 | if (!PREACTION(m)) { |
| 1098 | size_t maxfp = 0; |
| 1099 | size_t fp = 0; |
| 1100 | size_t used = 0; |
| 1101 | check_malloc_state(m); |
| 1102 | if (is_initialized(m)) { |
| 1103 | msegmentptr s = &m->seg; |
| 1104 | maxfp = m->max_footprint; |
| 1105 | fp = m->footprint; |
| 1106 | used = fp - (m->topsize + TOP_FOOT_SIZE); |
| 1107 | |
| 1108 | while (s != 0) { |
| 1109 | mchunkptr q = align_as_chunk(s->base); |
| 1110 | while (segment_holds(s, q) && |
| 1111 | q != m->top && q->head != FENCEPOST_HEAD) { |
| 1112 | if (!cinuse(q)) |
| 1113 | used -= chunksize(q); |
| 1114 | q = next_chunk(q); |
| 1115 | } |
| 1116 | s = s->next; |
| 1117 | } |
| 1118 | } |
| 1119 | |
| 1120 | ret.max_system_bytes = maxfp; |
| 1121 | ret.system_bytes = fp; |
| 1122 | ret.in_use_bytes = used; |
| 1123 | POSTACTION(m); |
| 1124 | } |
| 1125 | return ret; |
| 1126 | } |
| 1127 | |
| 1128 | size_t boost_cont_size(const void *p) |
| 1129 | { return DL_SIZE_IMPL(p); } |
| 1130 | |
| 1131 | void* boost_cont_malloc(size_t bytes) |
| 1132 | { |
| 1133 | size_t received_bytes; |
| 1134 | ensure_initialization(); |
| 1135 | return boost_cont_allocation_command |
| 1136 | (BOOST_CONTAINER_ALLOCATE_NEW, 1, bytes, bytes, &received_bytes, 0).first; |
| 1137 | } |
| 1138 | |
| 1139 | void boost_cont_free(void* mem) |
| 1140 | { |
| 1141 | mstate ms = (mstate)gm; |
| 1142 | if (!ok_magic(ms)) { |
| 1143 | USAGE_ERROR_ACTION(ms,ms); |
| 1144 | } |
| 1145 | else if (!PREACTION(ms)) { |
| 1146 | mspace_free_lockless(ms, mem); |
| 1147 | POSTACTION(ms); |
| 1148 | } |
| 1149 | } |
| 1150 | |
| 1151 | void* boost_cont_memalign(size_t bytes, size_t alignment) |
| 1152 | { |
| 1153 | void *addr; |
| 1154 | ensure_initialization(); |
| 1155 | addr = mspace_memalign(gm, alignment, bytes); |
| 1156 | if(addr){ |
| 1157 | s_allocated_memory += chunksize(mem2chunk(addr)); |
| 1158 | } |
| 1159 | return addr; |
| 1160 | } |
| 1161 | |
| 1162 | int boost_cont_multialloc_nodes |
| 1163 | (size_t n_elements, size_t elem_size, size_t contiguous_elements, boost_cont_memchain *pchain) |
| 1164 | { |
| 1165 | int ret = 0; |
| 1166 | mstate ms = (mstate)gm; |
| 1167 | ensure_initialization(); |
| 1168 | if (!ok_magic(ms)) { |
| 1169 | USAGE_ERROR_ACTION(ms,ms); |
| 1170 | } |
| 1171 | else if (!PREACTION(ms)) { |
| 1172 | ret = internal_node_multialloc(ms, n_elements, elem_size, contiguous_elements, pchain); |
| 1173 | POSTACTION(ms); |
| 1174 | } |
| 1175 | return ret; |
| 1176 | } |
| 1177 | |
| 1178 | size_t boost_cont_footprint() |
| 1179 | { |
| 1180 | return ((mstate)gm)->footprint; |
| 1181 | } |
| 1182 | |
| 1183 | size_t boost_cont_allocated_memory() |
| 1184 | { |
| 1185 | size_t alloc_mem = 0; |
| 1186 | mstate m = (mstate)gm; |
| 1187 | ensure_initialization(); |
| 1188 | if (!ok_magic(ms)) { |
| 1189 | USAGE_ERROR_ACTION(ms,ms); |
| 1190 | } |
| 1191 | |
| 1192 | |
| 1193 | if (!PREACTION(m)) { |
| 1194 | check_malloc_state(m); |
| 1195 | if (is_initialized(m)) { |
| 1196 | size_t nfree = SIZE_T_ONE; /* top always free */ |
| 1197 | size_t mfree = m->topsize + TOP_FOOT_SIZE; |
| 1198 | size_t sum = mfree; |
| 1199 | msegmentptr s = &m->seg; |
| 1200 | while (s != 0) { |
| 1201 | mchunkptr q = align_as_chunk(s->base); |
| 1202 | while (segment_holds(s, q) && |
| 1203 | q != m->top && q->head != FENCEPOST_HEAD) { |
| 1204 | size_t sz = chunksize(q); |
| 1205 | sum += sz; |
| 1206 | if (!is_inuse(q)) { |
| 1207 | mfree += sz; |
| 1208 | ++nfree; |
| 1209 | } |
| 1210 | q = next_chunk(q); |
| 1211 | } |
| 1212 | s = s->next; |
| 1213 | } |
| 1214 | { |
| 1215 | size_t uordblks = m->footprint - mfree; |
| 1216 | if(nfree) |
| 1217 | alloc_mem = (size_t)(uordblks - (nfree-1)*TOP_FOOT_SIZE); |
| 1218 | else |
| 1219 | alloc_mem = uordblks; |
| 1220 | } |
| 1221 | } |
| 1222 | |
| 1223 | POSTACTION(m); |
| 1224 | } |
| 1225 | return alloc_mem; |
| 1226 | } |
| 1227 | |
| 1228 | size_t boost_cont_chunksize(const void *p) |
| 1229 | { return chunksize(mem2chunk(p)); } |
| 1230 | |
| 1231 | int boost_cont_all_deallocated() |
| 1232 | { return !s_allocated_memory; } |
| 1233 | |
| 1234 | boost_cont_malloc_stats_t boost_cont_malloc_stats() |
| 1235 | { |
| 1236 | mstate ms = (mstate)gm; |
| 1237 | if (ok_magic(ms)) { |
| 1238 | return get_malloc_stats(ms); |
| 1239 | } |
| 1240 | else { |
| 1241 | boost_cont_malloc_stats_t r = { 0, 0, 0 }; |
| 1242 | USAGE_ERROR_ACTION(ms,ms); |
| 1243 | return r; |
| 1244 | } |
| 1245 | } |
| 1246 | |
| 1247 | size_t boost_cont_in_use_memory() |
| 1248 | { return s_allocated_memory; } |
| 1249 | |
| 1250 | int boost_cont_trim(size_t pad) |
| 1251 | { |
| 1252 | ensure_initialization(); |
| 1253 | return dlmalloc_trim(pad); |
| 1254 | } |
| 1255 | |
| 1256 | int boost_cont_grow |
| 1257 | (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received) |
| 1258 | { |
| 1259 | mstate ms = (mstate)gm; |
| 1260 | if (!ok_magic(ms)) { |
| 1261 | USAGE_ERROR_ACTION(ms,ms); |
| 1262 | return 0; |
| 1263 | } |
| 1264 | |
| 1265 | if (!PREACTION(ms)) { |
| 1266 | mchunkptr p = mem2chunk(oldmem); |
| 1267 | size_t oldsize = chunksize(p); |
| 1268 | p = try_realloc_chunk_with_min(ms, p, request2size(minbytes), request2size(maxbytes), 0); |
| 1269 | POSTACTION(ms); |
| 1270 | if(p){ |
| 1271 | check_inuse_chunk(ms, p); |
| 1272 | *received = DL_SIZE_IMPL(oldmem); |
| 1273 | s_allocated_memory += chunksize(p) - oldsize; |
| 1274 | } |
| 1275 | return 0 != p; |
| 1276 | } |
| 1277 | return 0; |
| 1278 | } |
| 1279 | |
| 1280 | int boost_cont_shrink |
| 1281 | (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received, int do_commit) |
| 1282 | { |
| 1283 | mstate ms = (mstate)gm; |
| 1284 | if (!ok_magic(ms)) { |
| 1285 | USAGE_ERROR_ACTION(ms,ms); |
| 1286 | return 0; |
| 1287 | } |
| 1288 | |
| 1289 | if (!PREACTION(ms)) { |
| 1290 | int ret = internal_shrink(ms, oldmem, minbytes, maxbytes, received, do_commit); |
| 1291 | POSTACTION(ms); |
| 1292 | return 0 != ret; |
| 1293 | } |
| 1294 | return 0; |
| 1295 | } |
| 1296 | |
| 1297 | |
| 1298 | void* boost_cont_alloc |
| 1299 | (size_t minbytes, size_t preferred_bytes, size_t *received_bytes) |
| 1300 | { |
| 1301 | //ensure_initialization provided by boost_cont_allocation_command |
| 1302 | return boost_cont_allocation_command |
| 1303 | (BOOST_CONTAINER_ALLOCATE_NEW, 1, minbytes, preferred_bytes, received_bytes, 0).first; |
| 1304 | } |
| 1305 | |
| 1306 | void boost_cont_multidealloc(boost_cont_memchain *pchain) |
| 1307 | { |
| 1308 | mstate ms = (mstate)gm; |
| 1309 | if (!ok_magic(ms)) { |
| 1310 | (void)ms; |
| 1311 | USAGE_ERROR_ACTION(ms,ms); |
| 1312 | } |
| 1313 | internal_multialloc_free(ms, pchain); |
| 1314 | } |
| 1315 | |
| 1316 | int boost_cont_malloc_check() |
| 1317 | { |
| 1318 | #ifdef DEBUG |
| 1319 | mstate ms = (mstate)gm; |
| 1320 | ensure_initialization(); |
| 1321 | if (!ok_magic(ms)) { |
| 1322 | (void)ms; |
| 1323 | USAGE_ERROR_ACTION(ms,ms); |
| 1324 | return 0; |
| 1325 | } |
| 1326 | check_malloc_state(ms); |
| 1327 | return 1; |
| 1328 | #else |
| 1329 | return 1; |
| 1330 | #endif |
| 1331 | } |
| 1332 | |
| 1333 | |
| 1334 | boost_cont_command_ret_t boost_cont_allocation_command |
| 1335 | (allocation_type command, size_t sizeof_object, size_t limit_size |
| 1336 | , size_t preferred_size, size_t *received_size, void *reuse_ptr) |
| 1337 | { |
| 1338 | boost_cont_command_ret_t ret = { 0, 0 }; |
| 1339 | ensure_initialization(); |
| 1340 | if(command & (BOOST_CONTAINER_SHRINK_IN_PLACE | BOOST_CONTAINER_TRY_SHRINK_IN_PLACE)){ |
| 1341 | int success = boost_cont_shrink( reuse_ptr, preferred_size, limit_size |
| 1342 | , received_size, (command & BOOST_CONTAINER_SHRINK_IN_PLACE)); |
| 1343 | ret.first = success ? reuse_ptr : 0; |
| 1344 | return ret; |
| 1345 | } |
| 1346 | |
| 1347 | *received_size = 0; |
| 1348 | |
| 1349 | if(limit_size > preferred_size) |
| 1350 | return ret; |
| 1351 | |
| 1352 | { |
| 1353 | mstate ms = (mstate)gm; |
| 1354 | |
| 1355 | /*Expand in place*/ |
| 1356 | if (!PREACTION(ms)) { |
| 1357 | #if FOOTERS |
| 1358 | if(reuse_ptr){ |
| 1359 | mstate m = get_mstate_for(mem2chunk(reuse_ptr)); |
| 1360 | if (!ok_magic(m)) { |
| 1361 | USAGE_ERROR_ACTION(m, reuse_ptr); |
| 1362 | return ret; |
| 1363 | } |
| 1364 | } |
| 1365 | #endif |
| 1366 | if(reuse_ptr && (command & (BOOST_CONTAINER_EXPAND_FWD | BOOST_CONTAINER_EXPAND_BWD))){ |
| 1367 | void *r = internal_grow_both_sides |
| 1368 | ( ms, command, reuse_ptr, limit_size |
| 1369 | , preferred_size, received_size, sizeof_object, 1); |
| 1370 | if(r){ |
| 1371 | ret.first = r; |
| 1372 | ret.second = 1; |
| 1373 | goto postaction; |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | if(command & BOOST_CONTAINER_ALLOCATE_NEW){ |
| 1378 | void *addr = mspace_malloc_lockless(ms, preferred_size); |
| 1379 | if(!addr) addr = mspace_malloc_lockless(ms, limit_size); |
| 1380 | if(addr){ |
| 1381 | s_allocated_memory += chunksize(mem2chunk(addr)); |
| 1382 | *received_size = DL_SIZE_IMPL(addr); |
| 1383 | } |
| 1384 | ret.first = addr; |
| 1385 | ret.second = 0; |
| 1386 | if(addr){ |
| 1387 | goto postaction; |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | //Now try to expand both sides with min size |
| 1392 | if(reuse_ptr && (command & (BOOST_CONTAINER_EXPAND_FWD | BOOST_CONTAINER_EXPAND_BWD))){ |
| 1393 | void *r = internal_grow_both_sides |
| 1394 | ( ms, command, reuse_ptr, limit_size |
| 1395 | , preferred_size, received_size, sizeof_object, 0); |
| 1396 | if(r){ |
| 1397 | ret.first = r; |
| 1398 | ret.second = 1; |
| 1399 | goto postaction; |
| 1400 | } |
| 1401 | } |
| 1402 | postaction: |
| 1403 | POSTACTION(ms); |
| 1404 | } |
| 1405 | } |
| 1406 | return ret; |
| 1407 | } |
| 1408 | |
| 1409 | int boost_cont_mallopt(int param_number, int value) |
| 1410 | { |
| 1411 | return change_mparam(param_number, value); |
| 1412 | } |
| 1413 | |
| 1414 | void *boost_cont_sync_create() |
| 1415 | { |
| 1416 | void *p = boost_cont_malloc(sizeof(MLOCK_T)); |
| 1417 | if(p){ |
| 1418 | if(0 != INITIAL_LOCK((MLOCK_T*)p)){ |
| 1419 | boost_cont_free(p); |
| 1420 | p = 0; |
| 1421 | } |
| 1422 | } |
| 1423 | return p; |
| 1424 | } |
| 1425 | |
| 1426 | void boost_cont_sync_destroy(void *sync) |
| 1427 | { |
| 1428 | if(sync){ |
| 1429 | (void)DESTROY_LOCK((MLOCK_T*)sync); |
| 1430 | boost_cont_free(sync); |
| 1431 | } |
| 1432 | } |
| 1433 | |
| 1434 | int boost_cont_sync_lock(void *sync) |
| 1435 | { return 0 == (ACQUIRE_LOCK((MLOCK_T*)sync)); } |
| 1436 | |
| 1437 | void boost_cont_sync_unlock(void *sync) |
| 1438 | { RELEASE_LOCK((MLOCK_T*)sync); } |
| 1439 | |
| 1440 | int boost_cont_global_sync_lock() |
| 1441 | { |
| 1442 | int ret; |
| 1443 | ensure_initialization(); |
| 1444 | ret = ACQUIRE_MALLOC_GLOBAL_LOCK(); |
| 1445 | return 0 == ret; |
| 1446 | } |
| 1447 | |
| 1448 | void boost_cont_global_sync_unlock() |
| 1449 | { |
| 1450 | RELEASE_MALLOC_GLOBAL_LOCK() |
| 1451 | } |
| 1452 | |
| 1453 | //#ifdef DL_DEBUG_DEFINED |
| 1454 | // #undef DEBUG |
| 1455 | //#endif |
| 1456 | |
| 1457 | #ifdef _MSC_VER |
| 1458 | #pragma warning (pop) |
| 1459 | #endif |