blob: 58f3a52ef4031173ed2d4f5229cc3d1e5ba7647a [file] [log] [blame]
Brian Silvermanf7bd1c22015-12-24 16:07:11 -08001//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DenseMap class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_DENSEMAP_H
15#define LLVM_ADT_DENSEMAP_H
16
17#include "llvm/DenseMapInfo.h"
18#include "llvm/EpochTracker.h"
19#include "llvm/AlignOf.h"
20#include "llvm/Compiler.h"
21#include "llvm/MathExtras.h"
22#include "llvm/type_traits.h"
23#include <algorithm>
24#include <cassert>
25#include <climits>
26#include <cstddef>
27#include <cstring>
28#include <iterator>
29#include <new>
30#include <utility>
31
32namespace llvm {
33
34namespace detail {
35// We extend a pair to allow users to override the bucket type with their own
36// implementation without requiring two members.
37template <typename KeyT, typename ValueT>
38struct DenseMapPair : public std::pair<KeyT, ValueT> {
39 KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
40 const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
41 ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
42 const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
43};
44} // namespace detail
45
46template <
47 typename KeyT, typename ValueT, typename KeyInfoT = DenseMapInfo<KeyT>,
48 typename Bucket = detail::DenseMapPair<KeyT, ValueT>, bool IsConst = false>
49class DenseMapIterator;
50
51template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
52 typename BucketT>
53class DenseMapBase : public DebugEpochBase {
54public:
55 typedef unsigned size_type;
56 typedef KeyT key_type;
57 typedef ValueT mapped_type;
58 typedef BucketT value_type;
59
60 typedef DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT> iterator;
61 typedef DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>
62 const_iterator;
63 inline iterator begin() {
64 // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
65 return empty() ? end() : iterator(getBuckets(), getBucketsEnd(), *this);
66 }
67 inline iterator end() {
68 return iterator(getBucketsEnd(), getBucketsEnd(), *this, true);
69 }
70 inline const_iterator begin() const {
71 return empty() ? end()
72 : const_iterator(getBuckets(), getBucketsEnd(), *this);
73 }
74 inline const_iterator end() const {
75 return const_iterator(getBucketsEnd(), getBucketsEnd(), *this, true);
76 }
77
78 bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const {
79 return getNumEntries() == 0;
80 }
81 unsigned size() const { return getNumEntries(); }
82
83 /// Grow the densemap so that it has at least Size buckets. Does not shrink
84 void resize(size_type Size) {
85 incrementEpoch();
86 if (Size > getNumBuckets())
87 grow(Size);
88 }
89
90 void clear() {
91 incrementEpoch();
92 if (getNumEntries() == 0 && getNumTombstones() == 0) return;
93
94 // If the capacity of the array is huge, and the # elements used is small,
95 // shrink the array.
96 if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
97 shrink_and_clear();
98 return;
99 }
100
101 const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
102 unsigned NumEntries = getNumEntries();
103 for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
104 if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
105 if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
106 P->getSecond().~ValueT();
107 --NumEntries;
108 }
109 P->getFirst() = EmptyKey;
110 }
111 }
112 assert(NumEntries == 0 && "Node count imbalance!");
113 setNumEntries(0);
114 setNumTombstones(0);
115 }
116
117 /// Return 1 if the specified key is in the map, 0 otherwise.
118 size_type count(const KeyT &Val) const {
119 const BucketT *TheBucket;
120 return LookupBucketFor(Val, TheBucket) ? 1 : 0;
121 }
122
123 iterator find(const KeyT &Val) {
124 BucketT *TheBucket;
125 if (LookupBucketFor(Val, TheBucket))
126 return iterator(TheBucket, getBucketsEnd(), *this, true);
127 return end();
128 }
129 const_iterator find(const KeyT &Val) const {
130 const BucketT *TheBucket;
131 if (LookupBucketFor(Val, TheBucket))
132 return const_iterator(TheBucket, getBucketsEnd(), *this, true);
133 return end();
134 }
135
136 /// Alternate version of find() which allows a different, and possibly
137 /// less expensive, key type.
138 /// The DenseMapInfo is responsible for supplying methods
139 /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
140 /// type used.
141 template<class LookupKeyT>
142 iterator find_as(const LookupKeyT &Val) {
143 BucketT *TheBucket;
144 if (LookupBucketFor(Val, TheBucket))
145 return iterator(TheBucket, getBucketsEnd(), *this, true);
146 return end();
147 }
148 template<class LookupKeyT>
149 const_iterator find_as(const LookupKeyT &Val) const {
150 const BucketT *TheBucket;
151 if (LookupBucketFor(Val, TheBucket))
152 return const_iterator(TheBucket, getBucketsEnd(), *this, true);
153 return end();
154 }
155
156 /// lookup - Return the entry for the specified key, or a default
157 /// constructed value if no such entry exists.
158 ValueT lookup(const KeyT &Val) const {
159 const BucketT *TheBucket;
160 if (LookupBucketFor(Val, TheBucket))
161 return TheBucket->getSecond();
162 return ValueT();
163 }
164
165 // Inserts key,value pair into the map if the key isn't already in the map.
166 // If the key is already in the map, it returns false and doesn't update the
167 // value.
168 std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
169 BucketT *TheBucket;
170 if (LookupBucketFor(KV.first, TheBucket))
171 return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
172 false); // Already in map.
173
174 // Otherwise, insert the new element.
175 TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
176 return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
177 true);
178 }
179
180 // Inserts key,value pair into the map if the key isn't already in the map.
181 // If the key is already in the map, it returns false and doesn't update the
182 // value.
183 std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
184 BucketT *TheBucket;
185 if (LookupBucketFor(KV.first, TheBucket))
186 return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
187 false); // Already in map.
188
189 // Otherwise, insert the new element.
190 TheBucket = InsertIntoBucket(std::move(KV.first),
191 std::move(KV.second),
192 TheBucket);
193 return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
194 true);
195 }
196
197 /// insert - Range insertion of pairs.
198 template<typename InputIt>
199 void insert(InputIt I, InputIt E) {
200 for (; I != E; ++I)
201 insert(*I);
202 }
203
204
205 bool erase(const KeyT &Val) {
206 BucketT *TheBucket;
207 if (!LookupBucketFor(Val, TheBucket))
208 return false; // not in map.
209
210 TheBucket->getSecond().~ValueT();
211 TheBucket->getFirst() = getTombstoneKey();
212 decrementNumEntries();
213 incrementNumTombstones();
214 return true;
215 }
216 void erase(iterator I) {
217 BucketT *TheBucket = &*I;
218 TheBucket->getSecond().~ValueT();
219 TheBucket->getFirst() = getTombstoneKey();
220 decrementNumEntries();
221 incrementNumTombstones();
222 }
223
224 value_type& FindAndConstruct(const KeyT &Key) {
225 BucketT *TheBucket;
226 if (LookupBucketFor(Key, TheBucket))
227 return *TheBucket;
228
229 return *InsertIntoBucket(Key, ValueT(), TheBucket);
230 }
231
232 ValueT &operator[](const KeyT &Key) {
233 return FindAndConstruct(Key).second;
234 }
235
236 value_type& FindAndConstruct(KeyT &&Key) {
237 BucketT *TheBucket;
238 if (LookupBucketFor(Key, TheBucket))
239 return *TheBucket;
240
241 return *InsertIntoBucket(std::move(Key), ValueT(), TheBucket);
242 }
243
244 ValueT &operator[](KeyT &&Key) {
245 return FindAndConstruct(std::move(Key)).second;
246 }
247
248 /// isPointerIntoBucketsArray - Return true if the specified pointer points
249 /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
250 /// value in the DenseMap).
251 bool isPointerIntoBucketsArray(const void *Ptr) const {
252 return Ptr >= getBuckets() && Ptr < getBucketsEnd();
253 }
254
255 /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
256 /// array. In conjunction with the previous method, this can be used to
257 /// determine whether an insertion caused the DenseMap to reallocate.
258 const void *getPointerIntoBucketsArray() const { return getBuckets(); }
259
260protected:
261 DenseMapBase() = default;
262
263 void destroyAll() {
264 if (getNumBuckets() == 0) // Nothing to do.
265 return;
266
267 const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
268 for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
269 if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
270 !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
271 P->getSecond().~ValueT();
272 P->getFirst().~KeyT();
273 }
274 }
275
276 void initEmpty() {
277 setNumEntries(0);
278 setNumTombstones(0);
279
280 assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
281 "# initial buckets must be a power of two!");
282 const KeyT EmptyKey = getEmptyKey();
283 for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
284 new (&B->getFirst()) KeyT(EmptyKey);
285 }
286
287 void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
288 initEmpty();
289
290 // Insert all the old elements.
291 const KeyT EmptyKey = getEmptyKey();
292 const KeyT TombstoneKey = getTombstoneKey();
293 for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
294 if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
295 !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
296 // Insert the key/value into the new table.
297 BucketT *DestBucket;
298 bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
299 (void)FoundVal; // silence warning.
300 assert(!FoundVal && "Key already in new map?");
301 DestBucket->getFirst() = std::move(B->getFirst());
302 new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
303 incrementNumEntries();
304
305 // Free the value.
306 B->getSecond().~ValueT();
307 }
308 B->getFirst().~KeyT();
309 }
310 }
311
312 template <typename OtherBaseT>
313 void copyFrom(
314 const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
315 assert(&other != this);
316 assert(getNumBuckets() == other.getNumBuckets());
317
318 setNumEntries(other.getNumEntries());
319 setNumTombstones(other.getNumTombstones());
320
321 if (isPodLike<KeyT>::value && isPodLike<ValueT>::value)
322 memcpy(getBuckets(), other.getBuckets(),
323 getNumBuckets() * sizeof(BucketT));
324 else
325 for (size_t i = 0; i < getNumBuckets(); ++i) {
326 new (&getBuckets()[i].getFirst())
327 KeyT(other.getBuckets()[i].getFirst());
328 if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
329 !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
330 new (&getBuckets()[i].getSecond())
331 ValueT(other.getBuckets()[i].getSecond());
332 }
333 }
334
335 static unsigned getHashValue(const KeyT &Val) {
336 return KeyInfoT::getHashValue(Val);
337 }
338 template<typename LookupKeyT>
339 static unsigned getHashValue(const LookupKeyT &Val) {
340 return KeyInfoT::getHashValue(Val);
341 }
342 static const KeyT getEmptyKey() {
343 return KeyInfoT::getEmptyKey();
344 }
345 static const KeyT getTombstoneKey() {
346 return KeyInfoT::getTombstoneKey();
347 }
348
349private:
350 unsigned getNumEntries() const {
351 return static_cast<const DerivedT *>(this)->getNumEntries();
352 }
353 void setNumEntries(unsigned Num) {
354 static_cast<DerivedT *>(this)->setNumEntries(Num);
355 }
356 void incrementNumEntries() {
357 setNumEntries(getNumEntries() + 1);
358 }
359 void decrementNumEntries() {
360 setNumEntries(getNumEntries() - 1);
361 }
362 unsigned getNumTombstones() const {
363 return static_cast<const DerivedT *>(this)->getNumTombstones();
364 }
365 void setNumTombstones(unsigned Num) {
366 static_cast<DerivedT *>(this)->setNumTombstones(Num);
367 }
368 void incrementNumTombstones() {
369 setNumTombstones(getNumTombstones() + 1);
370 }
371 void decrementNumTombstones() {
372 setNumTombstones(getNumTombstones() - 1);
373 }
374 const BucketT *getBuckets() const {
375 return static_cast<const DerivedT *>(this)->getBuckets();
376 }
377 BucketT *getBuckets() {
378 return static_cast<DerivedT *>(this)->getBuckets();
379 }
380 unsigned getNumBuckets() const {
381 return static_cast<const DerivedT *>(this)->getNumBuckets();
382 }
383 BucketT *getBucketsEnd() {
384 return getBuckets() + getNumBuckets();
385 }
386 const BucketT *getBucketsEnd() const {
387 return getBuckets() + getNumBuckets();
388 }
389
390 void grow(unsigned AtLeast) {
391 static_cast<DerivedT *>(this)->grow(AtLeast);
392 }
393
394 void shrink_and_clear() {
395 static_cast<DerivedT *>(this)->shrink_and_clear();
396 }
397
398
399 BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
400 BucketT *TheBucket) {
401 TheBucket = InsertIntoBucketImpl(Key, TheBucket);
402
403 TheBucket->getFirst() = Key;
404 new (&TheBucket->getSecond()) ValueT(Value);
405 return TheBucket;
406 }
407
408 BucketT *InsertIntoBucket(const KeyT &Key, ValueT &&Value,
409 BucketT *TheBucket) {
410 TheBucket = InsertIntoBucketImpl(Key, TheBucket);
411
412 TheBucket->getFirst() = Key;
413 new (&TheBucket->getSecond()) ValueT(std::move(Value));
414 return TheBucket;
415 }
416
417 BucketT *InsertIntoBucket(KeyT &&Key, ValueT &&Value, BucketT *TheBucket) {
418 TheBucket = InsertIntoBucketImpl(Key, TheBucket);
419
420 TheBucket->getFirst() = std::move(Key);
421 new (&TheBucket->getSecond()) ValueT(std::move(Value));
422 return TheBucket;
423 }
424
425 BucketT *InsertIntoBucketImpl(const KeyT &Key, BucketT *TheBucket) {
426 incrementEpoch();
427
428 // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
429 // the buckets are empty (meaning that many are filled with tombstones),
430 // grow the table.
431 //
432 // The later case is tricky. For example, if we had one empty bucket with
433 // tons of tombstones, failing lookups (e.g. for insertion) would have to
434 // probe almost the entire table until it found the empty bucket. If the
435 // table completely filled with tombstones, no lookup would ever succeed,
436 // causing infinite loops in lookup.
437 unsigned NewNumEntries = getNumEntries() + 1;
438 unsigned NumBuckets = getNumBuckets();
439 if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
440 this->grow(NumBuckets * 2);
441 LookupBucketFor(Key, TheBucket);
442 NumBuckets = getNumBuckets();
443 } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
444 NumBuckets/8)) {
445 this->grow(NumBuckets);
446 LookupBucketFor(Key, TheBucket);
447 }
448 assert(TheBucket);
449
450 // Only update the state after we've grown our bucket space appropriately
451 // so that when growing buckets we have self-consistent entry count.
452 incrementNumEntries();
453
454 // If we are writing over a tombstone, remember this.
455 const KeyT EmptyKey = getEmptyKey();
456 if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
457 decrementNumTombstones();
458
459 return TheBucket;
460 }
461
462 /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
463 /// FoundBucket. If the bucket contains the key and a value, this returns
464 /// true, otherwise it returns a bucket with an empty marker or tombstone and
465 /// returns false.
466 template<typename LookupKeyT>
467 bool LookupBucketFor(const LookupKeyT &Val,
468 const BucketT *&FoundBucket) const {
469 const BucketT *BucketsPtr = getBuckets();
470 const unsigned NumBuckets = getNumBuckets();
471
472 if (NumBuckets == 0) {
473 FoundBucket = nullptr;
474 return false;
475 }
476
477 // FoundTombstone - Keep track of whether we find a tombstone while probing.
478 const BucketT *FoundTombstone = nullptr;
479 const KeyT EmptyKey = getEmptyKey();
480 const KeyT TombstoneKey = getTombstoneKey();
481 assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
482 !KeyInfoT::isEqual(Val, TombstoneKey) &&
483 "Empty/Tombstone value shouldn't be inserted into map!");
484
485 unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
486 unsigned ProbeAmt = 1;
487 while (1) {
488 const BucketT *ThisBucket = BucketsPtr + BucketNo;
489 // Found Val's bucket? If so, return it.
490 if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
491 FoundBucket = ThisBucket;
492 return true;
493 }
494
495 // If we found an empty bucket, the key doesn't exist in the set.
496 // Insert it and return the default value.
497 if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
498 // If we've already seen a tombstone while probing, fill it in instead
499 // of the empty bucket we eventually probed to.
500 FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
501 return false;
502 }
503
504 // If this is a tombstone, remember it. If Val ends up not in the map, we
505 // prefer to return it than something that would require more probing.
506 if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
507 !FoundTombstone)
508 FoundTombstone = ThisBucket; // Remember the first tombstone found.
509
510 // Otherwise, it's a hash collision or a tombstone, continue quadratic
511 // probing.
512 BucketNo += ProbeAmt++;
513 BucketNo &= (NumBuckets-1);
514 }
515 }
516
517 template <typename LookupKeyT>
518 bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
519 const BucketT *ConstFoundBucket;
520 bool Result = const_cast<const DenseMapBase *>(this)
521 ->LookupBucketFor(Val, ConstFoundBucket);
522 FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
523 return Result;
524 }
525
526public:
527 /// Return the approximate size (in bytes) of the actual map.
528 /// This is just the raw memory used by DenseMap.
529 /// If entries are pointers to objects, the size of the referenced objects
530 /// are not included.
531 size_t getMemorySize() const {
532 return getNumBuckets() * sizeof(BucketT);
533 }
534};
535
536template <typename KeyT, typename ValueT,
537 typename KeyInfoT = DenseMapInfo<KeyT>,
538 typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
539class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
540 KeyT, ValueT, KeyInfoT, BucketT> {
541 // Lift some types from the dependent base class into this class for
542 // simplicity of referring to them.
543 typedef DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT> BaseT;
544 friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
545
546 BucketT *Buckets;
547 unsigned NumEntries;
548 unsigned NumTombstones;
549 unsigned NumBuckets;
550
551public:
552 explicit DenseMap(unsigned NumInitBuckets = 0) {
553 init(NumInitBuckets);
554 }
555
556 DenseMap(const DenseMap &other) : BaseT() {
557 init(0);
558 copyFrom(other);
559 }
560
561 DenseMap(DenseMap &&other) : BaseT() {
562 init(0);
563 swap(other);
564 }
565
566 template<typename InputIt>
567 DenseMap(const InputIt &I, const InputIt &E) {
568 init(NextPowerOf2(std::distance(I, E)));
569 this->insert(I, E);
570 }
571
572 ~DenseMap() {
573 this->destroyAll();
574 operator delete(Buckets);
575 }
576
577 void swap(DenseMap& RHS) {
578 this->incrementEpoch();
579 RHS.incrementEpoch();
580 std::swap(Buckets, RHS.Buckets);
581 std::swap(NumEntries, RHS.NumEntries);
582 std::swap(NumTombstones, RHS.NumTombstones);
583 std::swap(NumBuckets, RHS.NumBuckets);
584 }
585
586 DenseMap& operator=(const DenseMap& other) {
587 if (&other != this)
588 copyFrom(other);
589 return *this;
590 }
591
592 DenseMap& operator=(DenseMap &&other) {
593 this->destroyAll();
594 operator delete(Buckets);
595 init(0);
596 swap(other);
597 return *this;
598 }
599
600 void copyFrom(const DenseMap& other) {
601 this->destroyAll();
602 operator delete(Buckets);
603 if (allocateBuckets(other.NumBuckets)) {
604 this->BaseT::copyFrom(other);
605 } else {
606 NumEntries = 0;
607 NumTombstones = 0;
608 }
609 }
610
611 void init(unsigned InitBuckets) {
612 if (allocateBuckets(InitBuckets)) {
613 this->BaseT::initEmpty();
614 } else {
615 NumEntries = 0;
616 NumTombstones = 0;
617 }
618 }
619
620 void grow(unsigned AtLeast) {
621 unsigned OldNumBuckets = NumBuckets;
622 BucketT *OldBuckets = Buckets;
623
624 allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
625 assert(Buckets);
626 if (!OldBuckets) {
627 this->BaseT::initEmpty();
628 return;
629 }
630
631 this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
632
633 // Free the old table.
634 operator delete(OldBuckets);
635 }
636
637 void shrink_and_clear() {
638 unsigned OldNumEntries = NumEntries;
639 this->destroyAll();
640
641 // Reduce the number of buckets.
642 unsigned NewNumBuckets = 0;
643 if (OldNumEntries)
644 NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
645 if (NewNumBuckets == NumBuckets) {
646 this->BaseT::initEmpty();
647 return;
648 }
649
650 operator delete(Buckets);
651 init(NewNumBuckets);
652 }
653
654private:
655 unsigned getNumEntries() const {
656 return NumEntries;
657 }
658 void setNumEntries(unsigned Num) {
659 NumEntries = Num;
660 }
661
662 unsigned getNumTombstones() const {
663 return NumTombstones;
664 }
665 void setNumTombstones(unsigned Num) {
666 NumTombstones = Num;
667 }
668
669 BucketT *getBuckets() const {
670 return Buckets;
671 }
672
673 unsigned getNumBuckets() const {
674 return NumBuckets;
675 }
676
677 bool allocateBuckets(unsigned Num) {
678 NumBuckets = Num;
679 if (NumBuckets == 0) {
680 Buckets = nullptr;
681 return false;
682 }
683
684 Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
685 return true;
686 }
687};
688
689template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
690 typename KeyInfoT = DenseMapInfo<KeyT>,
691 typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
692class SmallDenseMap
693 : public DenseMapBase<
694 SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
695 ValueT, KeyInfoT, BucketT> {
696 // Lift some types from the dependent base class into this class for
697 // simplicity of referring to them.
698 typedef DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT> BaseT;
699 friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
700
701 unsigned Small : 1;
702 unsigned NumEntries : 31;
703 unsigned NumTombstones;
704
705 struct LargeRep {
706 BucketT *Buckets;
707 unsigned NumBuckets;
708 };
709
710 /// A "union" of an inline bucket array and the struct representing
711 /// a large bucket. This union will be discriminated by the 'Small' bit.
712 AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
713
714public:
715 explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
716 init(NumInitBuckets);
717 }
718
719 SmallDenseMap(const SmallDenseMap &other) : BaseT() {
720 init(0);
721 copyFrom(other);
722 }
723
724 SmallDenseMap(SmallDenseMap &&other) : BaseT() {
725 init(0);
726 swap(other);
727 }
728
729 template<typename InputIt>
730 SmallDenseMap(const InputIt &I, const InputIt &E) {
731 init(NextPowerOf2(std::distance(I, E)));
732 this->insert(I, E);
733 }
734
735 ~SmallDenseMap() {
736 this->destroyAll();
737 deallocateBuckets();
738 }
739
740 void swap(SmallDenseMap& RHS) {
741 unsigned TmpNumEntries = RHS.NumEntries;
742 RHS.NumEntries = NumEntries;
743 NumEntries = TmpNumEntries;
744 std::swap(NumTombstones, RHS.NumTombstones);
745
746 const KeyT EmptyKey = this->getEmptyKey();
747 const KeyT TombstoneKey = this->getTombstoneKey();
748 if (Small && RHS.Small) {
749 // If we're swapping inline bucket arrays, we have to cope with some of
750 // the tricky bits of DenseMap's storage system: the buckets are not
751 // fully initialized. Thus we swap every key, but we may have
752 // a one-directional move of the value.
753 for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
754 BucketT *LHSB = &getInlineBuckets()[i],
755 *RHSB = &RHS.getInlineBuckets()[i];
756 bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
757 !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
758 bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
759 !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
760 if (hasLHSValue && hasRHSValue) {
761 // Swap together if we can...
762 std::swap(*LHSB, *RHSB);
763 continue;
764 }
765 // Swap separately and handle any assymetry.
766 std::swap(LHSB->getFirst(), RHSB->getFirst());
767 if (hasLHSValue) {
768 new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
769 LHSB->getSecond().~ValueT();
770 } else if (hasRHSValue) {
771 new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
772 RHSB->getSecond().~ValueT();
773 }
774 }
775 return;
776 }
777 if (!Small && !RHS.Small) {
778 std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
779 std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
780 return;
781 }
782
783 SmallDenseMap &SmallSide = Small ? *this : RHS;
784 SmallDenseMap &LargeSide = Small ? RHS : *this;
785
786 // First stash the large side's rep and move the small side across.
787 LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
788 LargeSide.getLargeRep()->~LargeRep();
789 LargeSide.Small = true;
790 // This is similar to the standard move-from-old-buckets, but the bucket
791 // count hasn't actually rotated in this case. So we have to carefully
792 // move construct the keys and values into their new locations, but there
793 // is no need to re-hash things.
794 for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
795 BucketT *NewB = &LargeSide.getInlineBuckets()[i],
796 *OldB = &SmallSide.getInlineBuckets()[i];
797 new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
798 OldB->getFirst().~KeyT();
799 if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
800 !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
801 new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
802 OldB->getSecond().~ValueT();
803 }
804 }
805
806 // The hard part of moving the small buckets across is done, just move
807 // the TmpRep into its new home.
808 SmallSide.Small = false;
809 new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
810 }
811
812 SmallDenseMap& operator=(const SmallDenseMap& other) {
813 if (&other != this)
814 copyFrom(other);
815 return *this;
816 }
817
818 SmallDenseMap& operator=(SmallDenseMap &&other) {
819 this->destroyAll();
820 deallocateBuckets();
821 init(0);
822 swap(other);
823 return *this;
824 }
825
826 void copyFrom(const SmallDenseMap& other) {
827 this->destroyAll();
828 deallocateBuckets();
829 Small = true;
830 if (other.getNumBuckets() > InlineBuckets) {
831 Small = false;
832 new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
833 }
834 this->BaseT::copyFrom(other);
835 }
836
837 void init(unsigned InitBuckets) {
838 Small = true;
839 if (InitBuckets > InlineBuckets) {
840 Small = false;
841 new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
842 }
843 this->BaseT::initEmpty();
844 }
845
846 void grow(unsigned AtLeast) {
847 if (AtLeast >= InlineBuckets)
848 AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
849
850 if (Small) {
851 if (AtLeast < InlineBuckets)
852 return; // Nothing to do.
853
854 // First move the inline buckets into a temporary storage.
855 AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
856 BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
857 BucketT *TmpEnd = TmpBegin;
858
859 // Loop over the buckets, moving non-empty, non-tombstones into the
860 // temporary storage. Have the loop move the TmpEnd forward as it goes.
861 const KeyT EmptyKey = this->getEmptyKey();
862 const KeyT TombstoneKey = this->getTombstoneKey();
863 for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
864 if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
865 !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
866 assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
867 "Too many inline buckets!");
868 new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
869 new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
870 ++TmpEnd;
871 P->getSecond().~ValueT();
872 }
873 P->getFirst().~KeyT();
874 }
875
876 // Now make this map use the large rep, and move all the entries back
877 // into it.
878 Small = false;
879 new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
880 this->moveFromOldBuckets(TmpBegin, TmpEnd);
881 return;
882 }
883
884 LargeRep OldRep = std::move(*getLargeRep());
885 getLargeRep()->~LargeRep();
886 if (AtLeast <= InlineBuckets) {
887 Small = true;
888 } else {
889 new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
890 }
891
892 this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
893
894 // Free the old table.
895 operator delete(OldRep.Buckets);
896 }
897
898 void shrink_and_clear() {
899 unsigned OldSize = this->size();
900 this->destroyAll();
901
902 // Reduce the number of buckets.
903 unsigned NewNumBuckets = 0;
904 if (OldSize) {
905 NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
906 if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
907 NewNumBuckets = 64;
908 }
909 if ((Small && NewNumBuckets <= InlineBuckets) ||
910 (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
911 this->BaseT::initEmpty();
912 return;
913 }
914
915 deallocateBuckets();
916 init(NewNumBuckets);
917 }
918
919private:
920 unsigned getNumEntries() const {
921 return NumEntries;
922 }
923 void setNumEntries(unsigned Num) {
924 assert(Num < INT_MAX && "Cannot support more than INT_MAX entries");
925 NumEntries = Num;
926 }
927
928 unsigned getNumTombstones() const {
929 return NumTombstones;
930 }
931 void setNumTombstones(unsigned Num) {
932 NumTombstones = Num;
933 }
934
935 const BucketT *getInlineBuckets() const {
936 assert(Small);
937 // Note that this cast does not violate aliasing rules as we assert that
938 // the memory's dynamic type is the small, inline bucket buffer, and the
939 // 'storage.buffer' static type is 'char *'.
940 return reinterpret_cast<const BucketT *>(storage.buffer);
941 }
942 BucketT *getInlineBuckets() {
943 return const_cast<BucketT *>(
944 const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
945 }
946 const LargeRep *getLargeRep() const {
947 assert(!Small);
948 // Note, same rule about aliasing as with getInlineBuckets.
949 return reinterpret_cast<const LargeRep *>(storage.buffer);
950 }
951 LargeRep *getLargeRep() {
952 return const_cast<LargeRep *>(
953 const_cast<const SmallDenseMap *>(this)->getLargeRep());
954 }
955
956 const BucketT *getBuckets() const {
957 return Small ? getInlineBuckets() : getLargeRep()->Buckets;
958 }
959 BucketT *getBuckets() {
960 return const_cast<BucketT *>(
961 const_cast<const SmallDenseMap *>(this)->getBuckets());
962 }
963 unsigned getNumBuckets() const {
964 return Small ? InlineBuckets : getLargeRep()->NumBuckets;
965 }
966
967 void deallocateBuckets() {
968 if (Small)
969 return;
970
971 operator delete(getLargeRep()->Buckets);
972 getLargeRep()->~LargeRep();
973 }
974
975 LargeRep allocateBuckets(unsigned Num) {
976 assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
977 LargeRep Rep = {
978 static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num
979 };
980 return Rep;
981 }
982};
983
984template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
985 bool IsConst>
986class DenseMapIterator : DebugEpochBase::HandleBase {
987 typedef DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true> ConstIterator;
988 friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
989 friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
990
991public:
992 typedef ptrdiff_t difference_type;
993 typedef typename std::conditional<IsConst, const Bucket, Bucket>::type
994 value_type;
995 typedef value_type *pointer;
996 typedef value_type &reference;
997 typedef std::forward_iterator_tag iterator_category;
998private:
999 pointer Ptr, End;
1000public:
1001 DenseMapIterator() : Ptr(nullptr), End(nullptr) {}
1002
1003 DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch,
1004 bool NoAdvance = false)
1005 : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
1006 assert(isHandleInSync() && "invalid construction!");
1007 if (!NoAdvance) AdvancePastEmptyBuckets();
1008 }
1009
1010 // Converting ctor from non-const iterators to const iterators. SFINAE'd out
1011 // for const iterator destinations so it doesn't end up as a user defined copy
1012 // constructor.
1013 template <bool IsConstSrc,
1014 typename = typename std::enable_if<!IsConstSrc && IsConst>::type>
1015 DenseMapIterator(
1016 const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
1017 : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
1018
1019 reference operator*() const {
1020 assert(isHandleInSync() && "invalid iterator access!");
1021 return *Ptr;
1022 }
1023 pointer operator->() const {
1024 assert(isHandleInSync() && "invalid iterator access!");
1025 return Ptr;
1026 }
1027
1028 bool operator==(const ConstIterator &RHS) const {
1029 assert((!Ptr || isHandleInSync()) && "handle not in sync!");
1030 assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1031 assert(getEpochAddress() == RHS.getEpochAddress() &&
1032 "comparing incomparable iterators!");
1033 return Ptr == RHS.Ptr;
1034 }
1035 bool operator!=(const ConstIterator &RHS) const {
1036 assert((!Ptr || isHandleInSync()) && "handle not in sync!");
1037 assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1038 assert(getEpochAddress() == RHS.getEpochAddress() &&
1039 "comparing incomparable iterators!");
1040 return Ptr != RHS.Ptr;
1041 }
1042
1043 inline DenseMapIterator& operator++() { // Preincrement
1044 assert(isHandleInSync() && "invalid iterator access!");
1045 ++Ptr;
1046 AdvancePastEmptyBuckets();
1047 return *this;
1048 }
1049 DenseMapIterator operator++(int) { // Postincrement
1050 assert(isHandleInSync() && "invalid iterator access!");
1051 DenseMapIterator tmp = *this; ++*this; return tmp;
1052 }
1053
1054private:
1055 void AdvancePastEmptyBuckets() {
1056 const KeyT Empty = KeyInfoT::getEmptyKey();
1057 const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1058
1059 while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
1060 KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
1061 ++Ptr;
1062 }
1063};
1064
1065template<typename KeyT, typename ValueT, typename KeyInfoT>
1066static inline size_t
1067capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
1068 return X.getMemorySize();
1069}
1070
1071} // end namespace llvm
1072
1073#endif