Brian Silverman | f7bd1c2 | 2015-12-24 16:07:11 -0800 | [diff] [blame^] | 1 | //===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #ifndef LLVM_ADT_ARRAYREF_H |
| 11 | #define LLVM_ADT_ARRAYREF_H |
| 12 | |
| 13 | #include "llvm/None.h" |
| 14 | #include "llvm/SmallVector.h" |
| 15 | #include <vector> |
| 16 | |
| 17 | #ifndef LLVM_CONSTEXPR |
| 18 | # ifdef _MSC_VER |
| 19 | # if _MSC_VER >= 1900 |
| 20 | # define LLVM_CONSTEXPR constexpr |
| 21 | # else |
| 22 | # define LLVM_CONSTEXPR |
| 23 | # endif |
| 24 | # elif defined(__has_feature) |
| 25 | # if __has_feature(cxx_constexpr) |
| 26 | # define LLVM_CONSTEXPR constexpr |
| 27 | # else |
| 28 | # define LLVM_CONSTEXPR |
| 29 | # endif |
| 30 | # elif defined(__GXX_EXPERIMENTAL_CXX0X__) |
| 31 | # define LLVM_CONSTEXPR constexpr |
| 32 | # elif defined(__has_constexpr) |
| 33 | # define LLVM_CONSTEXPR constexpr |
| 34 | # else |
| 35 | # define LLVM_CONSTEXPR |
| 36 | # endif |
| 37 | # define DEFINED_LLVM_CONSTEXPR |
| 38 | #endif |
| 39 | |
| 40 | namespace llvm { |
| 41 | |
| 42 | /// ArrayRef - Represent a constant reference to an array (0 or more elements |
| 43 | /// consecutively in memory), i.e. a start pointer and a length. It allows |
| 44 | /// various APIs to take consecutive elements easily and conveniently. |
| 45 | /// |
| 46 | /// This class does not own the underlying data, it is expected to be used in |
| 47 | /// situations where the data resides in some other buffer, whose lifetime |
| 48 | /// extends past that of the ArrayRef. For this reason, it is not in general |
| 49 | /// safe to store an ArrayRef. |
| 50 | /// |
| 51 | /// This is intended to be trivially copyable, so it should be passed by |
| 52 | /// value. |
| 53 | template<typename T> |
| 54 | class ArrayRef { |
| 55 | public: |
| 56 | typedef const T *iterator; |
| 57 | typedef const T *const_iterator; |
| 58 | typedef size_t size_type; |
| 59 | |
| 60 | typedef std::reverse_iterator<iterator> reverse_iterator; |
| 61 | |
| 62 | private: |
| 63 | /// The start of the array, in an external buffer. |
| 64 | const T *Data; |
| 65 | |
| 66 | /// The number of elements. |
| 67 | size_type Length; |
| 68 | |
| 69 | public: |
| 70 | /// @name Constructors |
| 71 | /// @{ |
| 72 | |
| 73 | /// Construct an empty ArrayRef. |
| 74 | /*implicit*/ ArrayRef() : Data(nullptr), Length(0) {} |
| 75 | |
| 76 | /// Construct an empty ArrayRef from None. |
| 77 | /*implicit*/ ArrayRef(NoneType) : Data(nullptr), Length(0) {} |
| 78 | |
| 79 | /// Construct an ArrayRef from a single element. |
| 80 | /*implicit*/ ArrayRef(const T &OneElt) |
| 81 | : Data(&OneElt), Length(1) {} |
| 82 | |
| 83 | /// Construct an ArrayRef from a pointer and length. |
| 84 | /*implicit*/ ArrayRef(const T *data, size_t length) |
| 85 | : Data(data), Length(length) {} |
| 86 | |
| 87 | /// Construct an ArrayRef from a range. |
| 88 | ArrayRef(const T *begin, const T *end) |
| 89 | : Data(begin), Length(end - begin) {} |
| 90 | |
| 91 | /// Construct an ArrayRef from a SmallVector. This is templated in order to |
| 92 | /// avoid instantiating SmallVectorTemplateCommon<T> whenever we |
| 93 | /// copy-construct an ArrayRef. |
| 94 | template<typename U> |
| 95 | /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec) |
| 96 | : Data(Vec.data()), Length(Vec.size()) { |
| 97 | } |
| 98 | |
| 99 | /// Construct an ArrayRef from a std::vector. |
| 100 | template<typename A> |
| 101 | /*implicit*/ ArrayRef(const std::vector<T, A> &Vec) |
| 102 | : Data(Vec.data()), Length(Vec.size()) {} |
| 103 | |
| 104 | /// Construct an ArrayRef from a C array. |
| 105 | template <size_t N> |
| 106 | /*implicit*/ LLVM_CONSTEXPR ArrayRef(const T (&Arr)[N]) |
| 107 | : Data(Arr), Length(N) {} |
| 108 | |
| 109 | /// Construct an ArrayRef from a std::initializer_list. |
| 110 | /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec) |
| 111 | : Data(Vec.begin() == Vec.end() ? (T*)0 : Vec.begin()), |
| 112 | Length(Vec.size()) {} |
| 113 | |
| 114 | /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to |
| 115 | /// ensure that only ArrayRefs of pointers can be converted. |
| 116 | template <typename U> |
| 117 | ArrayRef(const ArrayRef<U *> &A, |
| 118 | typename std::enable_if< |
| 119 | std::is_convertible<U *const *, T const *>::value>::type* = 0) |
| 120 | : Data(A.data()), Length(A.size()) {} |
| 121 | |
| 122 | /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is |
| 123 | /// templated in order to avoid instantiating SmallVectorTemplateCommon<T> |
| 124 | /// whenever we copy-construct an ArrayRef. |
| 125 | template<typename U, typename DummyT> |
| 126 | /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<U*, DummyT> &Vec, |
| 127 | typename std::enable_if< |
| 128 | std::is_convertible<U *const *, |
| 129 | T const *>::value>::type* = 0) |
| 130 | : Data(Vec.data()), Length(Vec.size()) { |
| 131 | } |
| 132 | |
| 133 | /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE |
| 134 | /// to ensure that only vectors of pointers can be converted. |
| 135 | template<typename U, typename A> |
| 136 | ArrayRef(const std::vector<U *, A> &Vec, |
| 137 | typename std::enable_if< |
| 138 | std::is_convertible<U *const *, T const *>::value>::type* = 0) |
| 139 | : Data(Vec.data()), Length(Vec.size()) {} |
| 140 | |
| 141 | /// @} |
| 142 | /// @name Simple Operations |
| 143 | /// @{ |
| 144 | |
| 145 | iterator begin() const { return Data; } |
| 146 | iterator end() const { return Data + Length; } |
| 147 | |
| 148 | reverse_iterator rbegin() const { return reverse_iterator(end()); } |
| 149 | reverse_iterator rend() const { return reverse_iterator(begin()); } |
| 150 | |
| 151 | /// empty - Check if the array is empty. |
| 152 | bool empty() const { return Length == 0; } |
| 153 | |
| 154 | const T *data() const { return Data; } |
| 155 | |
| 156 | /// size - Get the array size. |
| 157 | size_t size() const { return Length; } |
| 158 | |
| 159 | /// front - Get the first element. |
| 160 | const T &front() const { |
| 161 | assert(!empty()); |
| 162 | return Data[0]; |
| 163 | } |
| 164 | |
| 165 | /// back - Get the last element. |
| 166 | const T &back() const { |
| 167 | assert(!empty()); |
| 168 | return Data[Length-1]; |
| 169 | } |
| 170 | |
| 171 | // copy - Allocate copy in Allocator and return ArrayRef<T> to it. |
| 172 | template <typename Allocator> ArrayRef<T> copy(Allocator &A) { |
| 173 | T *Buff = A.template Allocate<T>(Length); |
| 174 | std::copy(begin(), end(), Buff); |
| 175 | return ArrayRef<T>(Buff, Length); |
| 176 | } |
| 177 | |
| 178 | /// equals - Check for element-wise equality. |
| 179 | bool equals(ArrayRef RHS) const { |
| 180 | if (Length != RHS.Length) |
| 181 | return false; |
| 182 | if (Length == 0) |
| 183 | return true; |
| 184 | return std::equal(begin(), end(), RHS.begin()); |
| 185 | } |
| 186 | |
| 187 | /// slice(n) - Chop off the first N elements of the array. |
| 188 | ArrayRef<T> slice(unsigned N) const { |
| 189 | assert(N <= size() && "Invalid specifier"); |
| 190 | return ArrayRef<T>(data()+N, size()-N); |
| 191 | } |
| 192 | |
| 193 | /// slice(n, m) - Chop off the first N elements of the array, and keep M |
| 194 | /// elements in the array. |
| 195 | ArrayRef<T> slice(unsigned N, unsigned M) const { |
| 196 | assert(N+M <= size() && "Invalid specifier"); |
| 197 | return ArrayRef<T>(data()+N, M); |
| 198 | } |
| 199 | |
| 200 | // \brief Drop the last \p N elements of the array. |
| 201 | ArrayRef<T> drop_back(unsigned N = 1) const { |
| 202 | assert(size() >= N && "Dropping more elements than exist"); |
| 203 | return slice(0, size() - N); |
| 204 | } |
| 205 | |
| 206 | /// @} |
| 207 | /// @name Operator Overloads |
| 208 | /// @{ |
| 209 | const T &operator[](size_t Index) const { |
| 210 | assert(Index < Length && "Invalid index!"); |
| 211 | return Data[Index]; |
| 212 | } |
| 213 | |
| 214 | /// @} |
| 215 | /// @name Expensive Operations |
| 216 | /// @{ |
| 217 | std::vector<T> vec() const { |
| 218 | return std::vector<T>(Data, Data+Length); |
| 219 | } |
| 220 | |
| 221 | /// @} |
| 222 | /// @name Conversion operators |
| 223 | /// @{ |
| 224 | operator std::vector<T>() const { |
| 225 | return std::vector<T>(Data, Data+Length); |
| 226 | } |
| 227 | |
| 228 | /// @} |
| 229 | }; |
| 230 | |
| 231 | /// MutableArrayRef - Represent a mutable reference to an array (0 or more |
| 232 | /// elements consecutively in memory), i.e. a start pointer and a length. It |
| 233 | /// allows various APIs to take and modify consecutive elements easily and |
| 234 | /// conveniently. |
| 235 | /// |
| 236 | /// This class does not own the underlying data, it is expected to be used in |
| 237 | /// situations where the data resides in some other buffer, whose lifetime |
| 238 | /// extends past that of the MutableArrayRef. For this reason, it is not in |
| 239 | /// general safe to store a MutableArrayRef. |
| 240 | /// |
| 241 | /// This is intended to be trivially copyable, so it should be passed by |
| 242 | /// value. |
| 243 | template<typename T> |
| 244 | class MutableArrayRef : public ArrayRef<T> { |
| 245 | public: |
| 246 | typedef T *iterator; |
| 247 | |
| 248 | typedef std::reverse_iterator<iterator> reverse_iterator; |
| 249 | |
| 250 | /// Construct an empty MutableArrayRef. |
| 251 | /*implicit*/ MutableArrayRef() : ArrayRef<T>() {} |
| 252 | |
| 253 | /// Construct an empty MutableArrayRef from None. |
| 254 | /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {} |
| 255 | |
| 256 | /// Construct an MutableArrayRef from a single element. |
| 257 | /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {} |
| 258 | |
| 259 | /// Construct an MutableArrayRef from a pointer and length. |
| 260 | /*implicit*/ MutableArrayRef(T *data, size_t length) |
| 261 | : ArrayRef<T>(data, length) {} |
| 262 | |
| 263 | /// Construct an MutableArrayRef from a range. |
| 264 | MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {} |
| 265 | |
| 266 | /// Construct an MutableArrayRef from a SmallVector. |
| 267 | /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec) |
| 268 | : ArrayRef<T>(Vec) {} |
| 269 | |
| 270 | /// Construct a MutableArrayRef from a std::vector. |
| 271 | /*implicit*/ MutableArrayRef(std::vector<T> &Vec) |
| 272 | : ArrayRef<T>(Vec) {} |
| 273 | |
| 274 | /// Construct an MutableArrayRef from a C array. |
| 275 | template <size_t N> |
| 276 | /*implicit*/ LLVM_CONSTEXPR MutableArrayRef(T (&Arr)[N]) |
| 277 | : ArrayRef<T>(Arr) {} |
| 278 | |
| 279 | T *data() const { return const_cast<T*>(ArrayRef<T>::data()); } |
| 280 | |
| 281 | iterator begin() const { return data(); } |
| 282 | iterator end() const { return data() + this->size(); } |
| 283 | |
| 284 | reverse_iterator rbegin() const { return reverse_iterator(end()); } |
| 285 | reverse_iterator rend() const { return reverse_iterator(begin()); } |
| 286 | |
| 287 | /// front - Get the first element. |
| 288 | T &front() const { |
| 289 | assert(!this->empty()); |
| 290 | return data()[0]; |
| 291 | } |
| 292 | |
| 293 | /// back - Get the last element. |
| 294 | T &back() const { |
| 295 | assert(!this->empty()); |
| 296 | return data()[this->size()-1]; |
| 297 | } |
| 298 | |
| 299 | /// slice(n) - Chop off the first N elements of the array. |
| 300 | MutableArrayRef<T> slice(unsigned N) const { |
| 301 | assert(N <= this->size() && "Invalid specifier"); |
| 302 | return MutableArrayRef<T>(data()+N, this->size()-N); |
| 303 | } |
| 304 | |
| 305 | /// slice(n, m) - Chop off the first N elements of the array, and keep M |
| 306 | /// elements in the array. |
| 307 | MutableArrayRef<T> slice(unsigned N, unsigned M) const { |
| 308 | assert(N+M <= this->size() && "Invalid specifier"); |
| 309 | return MutableArrayRef<T>(data()+N, M); |
| 310 | } |
| 311 | |
| 312 | MutableArrayRef<T> drop_back(unsigned N) const { |
| 313 | assert(this->size() >= N && "Dropping more elements than exist"); |
| 314 | return slice(0, this->size() - N); |
| 315 | } |
| 316 | |
| 317 | /// @} |
| 318 | /// @name Operator Overloads |
| 319 | /// @{ |
| 320 | T &operator[](size_t Index) const { |
| 321 | assert(Index < this->size() && "Invalid index!"); |
| 322 | return data()[Index]; |
| 323 | } |
| 324 | }; |
| 325 | |
| 326 | /// @name ArrayRef Convenience constructors |
| 327 | /// @{ |
| 328 | |
| 329 | /// Construct an ArrayRef from a single element. |
| 330 | template<typename T> |
| 331 | ArrayRef<T> makeArrayRef(const T &OneElt) { |
| 332 | return OneElt; |
| 333 | } |
| 334 | |
| 335 | /// Construct an ArrayRef from a pointer and length. |
| 336 | template<typename T> |
| 337 | ArrayRef<T> makeArrayRef(const T *data, size_t length) { |
| 338 | return ArrayRef<T>(data, length); |
| 339 | } |
| 340 | |
| 341 | /// Construct an ArrayRef from a range. |
| 342 | template<typename T> |
| 343 | ArrayRef<T> makeArrayRef(const T *begin, const T *end) { |
| 344 | return ArrayRef<T>(begin, end); |
| 345 | } |
| 346 | |
| 347 | /// Construct an ArrayRef from a SmallVector. |
| 348 | template <typename T> |
| 349 | ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) { |
| 350 | return Vec; |
| 351 | } |
| 352 | |
| 353 | /// Construct an ArrayRef from a SmallVector. |
| 354 | template <typename T, unsigned N> |
| 355 | ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) { |
| 356 | return Vec; |
| 357 | } |
| 358 | |
| 359 | /// Construct an ArrayRef from a std::vector. |
| 360 | template<typename T> |
| 361 | ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) { |
| 362 | return Vec; |
| 363 | } |
| 364 | |
| 365 | /// Construct an ArrayRef from a C array. |
| 366 | template<typename T, size_t N> |
| 367 | ArrayRef<T> makeArrayRef(const T (&Arr)[N]) { |
| 368 | return ArrayRef<T>(Arr); |
| 369 | } |
| 370 | |
| 371 | /// @} |
| 372 | /// @name ArrayRef Comparison Operators |
| 373 | /// @{ |
| 374 | |
| 375 | template<typename T> |
| 376 | inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) { |
| 377 | return LHS.equals(RHS); |
| 378 | } |
| 379 | |
| 380 | template<typename T> |
| 381 | inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) { |
| 382 | return !(LHS == RHS); |
| 383 | } |
| 384 | |
| 385 | /// @} |
| 386 | |
| 387 | // ArrayRefs can be treated like a POD type. |
| 388 | template <typename T> struct isPodLike; |
| 389 | template <typename T> struct isPodLike<ArrayRef<T> > { |
| 390 | static const bool value = true; |
| 391 | }; |
| 392 | } // namespace llvm |
| 393 | |
| 394 | #ifdef DEFINED_LLVM_CONSTEXPR |
| 395 | # undef DEFINED_LLVM_CONSTEXPR |
| 396 | # undef LLVM_CONSTEXPR |
| 397 | #endif |
| 398 | |
| 399 | #endif |