blob: 1575efba88782acb9039ed5f5749cd873a4f9528 [file] [log] [blame]
James Kuszmaul1057ce82019-02-09 17:58:24 -08001#ifndef Y2019_CONTROL_LOOPS_DRIVETRAIN_LOCALIZATER_H_
2#define Y2019_CONTROL_LOOPS_DRIVETRAIN_LOCALIZATER_H_
3
4#include <cmath>
5#include <memory>
6
7#include "frc971/control_loops/pose.h"
James Kuszmaulf4ede202020-02-14 08:47:40 -08008#include "frc971/control_loops/drivetrain/camera.h"
James Kuszmaul1057ce82019-02-09 17:58:24 -08009#include "frc971/control_loops/drivetrain/hybrid_ekf.h"
10
11namespace y2019 {
12namespace control_loops {
13
14template <int num_cameras, int num_targets, int num_obstacles,
15 int max_targets_per_frame, typename Scalar = double>
16class TypedLocalizer
17 : public ::frc971::control_loops::drivetrain::HybridEkf<Scalar> {
18 public:
James Kuszmaulf4ede202020-02-14 08:47:40 -080019 typedef frc971::control_loops::TypedCamera<num_targets, num_obstacles, Scalar>
20 Camera;
James Kuszmaul1057ce82019-02-09 17:58:24 -080021 typedef typename Camera::TargetView TargetView;
22 typedef typename Camera::Pose Pose;
James Kuszmaulf4ede202020-02-14 08:47:40 -080023 typedef typename frc971::control_loops::Target Target;
James Kuszmaul1057ce82019-02-09 17:58:24 -080024 typedef ::frc971::control_loops::drivetrain::HybridEkf<Scalar> HybridEkf;
25 typedef typename HybridEkf::State State;
26 typedef typename HybridEkf::StateSquare StateSquare;
27 typedef typename HybridEkf::Input Input;
28 typedef typename HybridEkf::Output Output;
29 using HybridEkf::kNInputs;
30 using HybridEkf::kNOutputs;
31 using HybridEkf::kNStates;
32
33 // robot_pose should be the object that is used by the cameras, such that when
34 // we update robot_pose, the cameras will change what they report the relative
35 // position of the targets as.
36 // Note that the parameters for the cameras should be set to allow slightly
37 // larger fields of view and slightly longer range than the true cameras so
38 // that we can identify potential matches for targets even when we have slight
39 // modelling errors.
40 TypedLocalizer(
41 const ::frc971::control_loops::drivetrain::DrivetrainConfig<Scalar>
42 &dt_config,
43 Pose *robot_pose)
44 : ::frc971::control_loops::drivetrain::HybridEkf<Scalar>(dt_config),
45 robot_pose_(robot_pose) {}
46
47 // Performs a kalman filter correction with a single camera frame, consisting
48 // of up to max_targets_per_frame targets and taken at time t.
49 // camera is the Camera used to take the images.
50 void UpdateTargets(
51 const Camera &camera,
52 const ::aos::SizedArray<TargetView, max_targets_per_frame> &targets,
53 ::aos::monotonic_clock::time_point t) {
54 if (targets.empty()) {
55 return;
56 }
57
James Kuszmaul6f941b72019-03-08 18:12:25 -080058 if (!SanitizeTargets(targets)) {
Austin Schuhf257f3c2019-10-27 21:00:43 -070059 AOS_LOG(ERROR, "Throwing out targets due to in insane values.\n");
James Kuszmaul6f941b72019-03-08 18:12:25 -080060 return;
61 }
62
James Kuszmaul1057ce82019-02-09 17:58:24 -080063 if (t > HybridEkf::latest_t()) {
Austin Schuhf257f3c2019-10-27 21:00:43 -070064 AOS_LOG(ERROR,
65 "target observations must be older than most recent encoder/gyro "
66 "update.\n");
James Kuszmaul1057ce82019-02-09 17:58:24 -080067 return;
68 }
69
70 Output z;
71 Eigen::Matrix<Scalar, kNOutputs, kNOutputs> R;
72 TargetViewToMatrices(targets[0], &z, &R);
73
74 // In order to perform the correction steps for the targets, we will
75 // separately perform a Correct step for each following target.
76 // This way, we can have the first correction figure out the mappings
77 // between targets in the image and targets on the field, and then re-use
78 // those mappings for all the remaining corrections.
79 // As such, we need to store the EKF functions that the remaining targets
80 // will need in arrays:
81 ::aos::SizedArray<::std::function<Output(const State &, const Input &)>,
82 max_targets_per_frame> h_functions;
83 ::aos::SizedArray<::std::function<Eigen::Matrix<Scalar, kNOutputs,
84 kNStates>(const State &)>,
85 max_targets_per_frame> dhdx_functions;
86 HybridEkf::Correct(
87 z, nullptr,
88 ::std::bind(&TypedLocalizer::MakeH, this, camera, targets, &h_functions,
89 &dhdx_functions, ::std::placeholders::_1,
90 ::std::placeholders::_2, ::std::placeholders::_3,
91 ::std::placeholders::_4),
92 {}, {}, R, t);
93 // Fetch cache:
94 for (size_t ii = 1; ii < targets.size(); ++ii) {
95 TargetViewToMatrices(targets[ii], &z, &R);
96 HybridEkf::Correct(z, nullptr, {}, h_functions[ii], dhdx_functions[ii], R,
97 t);
98 }
99 }
100
101 private:
102 // The threshold to use for completely rejecting potentially bad target
103 // matches.
104 // TODO(james): Tune
Austin Schuh113a85d2019-03-28 17:18:08 -0700105 static constexpr Scalar kRejectionScore = 1.0;
James Kuszmaul1057ce82019-02-09 17:58:24 -0800106
James Kuszmaul6f941b72019-03-08 18:12:25 -0800107 // Checks that the targets coming in make some sense--mostly to prevent NaNs
108 // or the such from propagating.
109 bool SanitizeTargets(
110 const ::aos::SizedArray<TargetView, max_targets_per_frame> &targets) {
111 for (const TargetView &view : targets) {
112 const typename TargetView::Reading reading = view.reading;
113 if (!(::std::isfinite(reading.heading) &&
114 ::std::isfinite(reading.distance) &&
115 ::std::isfinite(reading.skew) && ::std::isfinite(reading.height))) {
Austin Schuhf257f3c2019-10-27 21:00:43 -0700116 AOS_LOG(ERROR, "Got non-finite values in target.\n");
James Kuszmaul6f941b72019-03-08 18:12:25 -0800117 return false;
118 }
119 if (reading.distance < 0) {
Austin Schuhf257f3c2019-10-27 21:00:43 -0700120 AOS_LOG(ERROR, "Got negative distance.\n");
James Kuszmaul6f941b72019-03-08 18:12:25 -0800121 return false;
122 }
123 if (::std::abs(::aos::math::NormalizeAngle(reading.skew)) > M_PI_2) {
Austin Schuhf257f3c2019-10-27 21:00:43 -0700124 AOS_LOG(ERROR, "Got skew > pi / 2.\n");
James Kuszmaul6f941b72019-03-08 18:12:25 -0800125 return false;
126 }
127 }
128 return true;
129 }
130
James Kuszmaul1057ce82019-02-09 17:58:24 -0800131 // Computes the measurement (z) and noise covariance (R) matrices for a given
132 // TargetView.
133 void TargetViewToMatrices(const TargetView &view, Output *z,
134 Eigen::Matrix<Scalar, kNOutputs, kNOutputs> *R) {
James Kuszmaul6f941b72019-03-08 18:12:25 -0800135 *z << view.reading.heading, view.reading.distance,
136 ::aos::math::NormalizeAngle(view.reading.skew);
James Kuszmaul1057ce82019-02-09 17:58:24 -0800137 // TODO(james): R should account as well for our confidence in the target
138 // matching. However, handling that properly requires thing a lot more about
139 // the probabilities.
140 R->setZero();
141 R->diagonal() << ::std::pow(view.noise.heading, 2),
142 ::std::pow(view.noise.distance, 2), ::std::pow(view.noise.skew, 2);
143 }
144
145 // This is the function that will be called once the Ekf has inserted the
146 // measurement into the right spot in the measurement queue and needs the
147 // output functions to actually perform the corrections.
148 // Specifically, this will take the estimate of the state at that time and
149 // figure out how the targets seen by the camera best map onto the actual
150 // targets on the field.
151 // It then fills in the h and dhdx functions that are called by the Ekf.
152 void MakeH(
153 const Camera &camera,
154 const ::aos::SizedArray<TargetView, max_targets_per_frame> &target_views,
155 ::aos::SizedArray<::std::function<Output(const State &, const Input &)>,
156 max_targets_per_frame> *h_functions,
157 ::aos::SizedArray<::std::function<Eigen::Matrix<Scalar, kNOutputs,
158 kNStates>(const State &)>,
159 max_targets_per_frame> *dhdx_functions,
160 const State &X_hat, const StateSquare &P,
161 ::std::function<Output(const State &, const Input &)> *h,
162 ::std::function<
163 Eigen::Matrix<Scalar, kNOutputs, kNStates>(const State &)> *dhdx) {
164 // Because we need to match camera targets ("views") to actual field
165 // targets, and because we want to take advantage of the correlations
166 // between the targets (i.e., if we see two targets in the image, they
167 // probably correspond to different on-field targets), the matching problem
168 // here is somewhat non-trivial. Some of the methods we use only work
169 // because we are dealing with very small N (e.g., handling the correlations
170 // between multiple views has combinatoric complexity, but since N = 3,
171 // it's not an issue).
172 //
173 // High-level steps:
174 // 1) Set the base robot pose for the cameras to the Pose implied by X_hat.
175 // 2) Fetch all the expected target views from the camera.
176 // 3) Determine the "magnitude" of the Kalman correction from each potential
177 // view/target pair.
178 // 4) Match based on the combination of targets with the smallest
179 // corrections.
180 // 5) Calculate h and dhdx for each pair of targets.
181 //
182 // For the "magnitude" of the correction, we do not directly use the
183 // standard Kalman correction formula. Instead, we calculate the correction
184 // we would get from each component of the measurement and take the L2 norm
185 // of those. This prevents situations where a target matches very poorly but
186 // produces an overall correction of near-zero.
187 // TODO(james): I do not know if this is strictly the correct method to
188 // minimize likely error, but should be reasonable.
189 //
190 // For the matching, we do the following (see MatchFrames):
191 // 1. Compute the best max_targets_per_frame matches for each view.
192 // 2. Exhaust every possible combination of view/target pairs and
193 // choose the best one.
194 // When we don't think the camera should be able to see as many targets as
195 // we actually got in the frame, then we do permit doubling/tripling/etc.
196 // up on potential targets once we've exhausted all the targets we think
197 // we can see.
198
199 // Set the current robot pose so that the cameras know where they are
200 // (all the cameras have robot_pose_ as their base):
201 *robot_pose_->mutable_pos() << X_hat(0, 0), X_hat(1, 0), 0.0;
202 robot_pose_->set_theta(X_hat(2, 0));
203
204 // Compute the things we *think* the camera should be seeing.
205 // Note: Because we will not try to match to any targets that are not
206 // returned by this function, we generally want the modelled camera to have
207 // a slightly larger field of view than the real camera, and be able to see
208 // slightly smaller targets.
209 const ::aos::SizedArray<TargetView, num_targets> camera_views =
210 camera.target_views();
211
212 // Each row contains the scores for each pair of target view and camera
213 // target view. Values in each row will not be populated past
214 // camera.target_views().size(); of the rows, only the first
215 // target_views.size() shall be populated.
216 // Higher scores imply a worse match. Zero implies a perfect match.
217 Eigen::Matrix<Scalar, max_targets_per_frame, num_targets> scores;
218 scores.setConstant(::std::numeric_limits<Scalar>::infinity());
219 // Each row contains the indices of the best matches per view, where
220 // index 0 is the best, 1 the second best, and 2 the third, etc.
221 // -1 indicates an unfilled field.
222 Eigen::Matrix<int, max_targets_per_frame, max_targets_per_frame>
223 best_matches;
224 best_matches.setConstant(-1);
225 // The H matrices for each potential matching. This has the same structure
226 // as the scores matrix.
227 ::std::array<::std::array<Eigen::Matrix<Scalar, kNOutputs, kNStates>,
228 max_targets_per_frame>,
229 num_targets> all_H_matrices;
230
231 // Iterate through and fill out the scores for each potential pairing:
232 for (size_t ii = 0; ii < target_views.size(); ++ii) {
233 const TargetView &target_view = target_views[ii];
234 Output z;
235 Eigen::Matrix<Scalar, kNOutputs, kNOutputs> R;
236 TargetViewToMatrices(target_view, &z, &R);
237
238 for (size_t jj = 0; jj < camera_views.size(); ++jj) {
239 // Compute the ckalman update for this step:
240 const TargetView &view = camera_views[jj];
241 const Eigen::Matrix<Scalar, kNOutputs, kNStates> H =
James Kuszmaul46f3a212019-03-10 10:14:24 -0700242 HMatrix(*view.target, camera.pose());
James Kuszmaul1057ce82019-02-09 17:58:24 -0800243 const Eigen::Matrix<Scalar, kNStates, kNOutputs> PH = P * H.transpose();
244 const Eigen::Matrix<Scalar, kNOutputs, kNOutputs> S = H * PH + R;
245 // Note: The inverse here should be very cheap so long as kNOutputs = 3.
246 const Eigen::Matrix<Scalar, kNStates, kNOutputs> K = PH * S.inverse();
247 const Output err = z - Output(view.reading.heading,
248 view.reading.distance, view.reading.skew);
249 // In order to compute the actual score, we want to consider each
250 // component of the error separately, as well as considering the impacts
251 // on the each of the states separately. As such, we calculate what
252 // the separate updates from each error component would be, and sum
253 // the impacts on the states.
254 Output scorer;
255 for (size_t kk = 0; kk < kNOutputs; ++kk) {
256 // TODO(james): squaredNorm or norm or L1-norm? Do we care about the
257 // square root? Do we prefer a quadratic or linear response?
258 scorer(kk, 0) = (K.col(kk) * err(kk, 0)).squaredNorm();
259 }
260 // Compute the overall score--note that we add in a term for the height,
261 // scaled by a manual fudge-factor. The height is not accounted for
262 // in the Kalman update because we are not trying to estimate the height
263 // of the robot directly.
264 Scalar score =
265 scorer.squaredNorm() +
266 ::std::pow((view.reading.height - target_view.reading.height) /
267 target_view.noise.height / 20.0,
268 2);
269 scores(ii, jj) = score;
270 all_H_matrices[ii][jj] = H;
271
272 // Update the best_matches matrix:
273 int insert_target = jj;
274 for (size_t kk = 0; kk < max_targets_per_frame; ++kk) {
275 int idx = best_matches(ii, kk);
276 // Note that -1 indicates an unfilled value.
277 if (idx == -1 || scores(ii, idx) > scores(ii, insert_target)) {
278 best_matches(ii, kk) = insert_target;
279 insert_target = idx;
280 if (idx == -1) {
281 break;
282 }
283 }
284 }
285 }
286 }
287
288 if (camera_views.size() == 0) {
Austin Schuhf257f3c2019-10-27 21:00:43 -0700289 AOS_LOG(DEBUG, "Unable to identify potential target matches.\n");
James Kuszmaul1057ce82019-02-09 17:58:24 -0800290 // If we can't get a match, provide H = zero, which will make this
291 // correction step a nop.
292 *h = [](const State &, const Input &) { return Output::Zero(); };
293 *dhdx = [](const State &) {
294 return Eigen::Matrix<Scalar, kNOutputs, kNStates>::Zero();
295 };
296 for (size_t ii = 0; ii < target_views.size(); ++ii) {
297 h_functions->push_back(*h);
298 dhdx_functions->push_back(*dhdx);
299 }
300 } else {
301 // Go through and brute force the issue of what the best combination of
302 // target matches are. The worst case for this algorithm will be
303 // max_targets_per_frame!, which is awful for any N > ~4, but since
304 // max_targets_per_frame = 3, I'm not really worried.
305 ::std::array<int, max_targets_per_frame> best_frames =
306 MatchFrames(scores, best_matches, target_views.size());
307 for (size_t ii = 0; ii < target_views.size(); ++ii) {
James Kuszmaul6f941b72019-03-08 18:12:25 -0800308 size_t view_idx = best_frames[ii];
309 if (view_idx < 0 || view_idx >= camera_views.size()) {
Austin Schuhf257f3c2019-10-27 21:00:43 -0700310 AOS_LOG(ERROR, "Somehow, the view scorer failed.\n");
James Kuszmaul074429e2019-03-23 16:01:49 -0700311 h_functions->push_back(
312 [](const State &, const Input &) { return Output::Zero(); });
313 dhdx_functions->push_back([](const State &) {
314 return Eigen::Matrix<Scalar, kNOutputs, kNStates>::Zero();
315 });
James Kuszmaul6f941b72019-03-08 18:12:25 -0800316 continue;
317 }
James Kuszmaul1057ce82019-02-09 17:58:24 -0800318 const Eigen::Matrix<Scalar, kNOutputs, kNStates> best_H =
319 all_H_matrices[ii][view_idx];
320 const TargetView best_view = camera_views[view_idx];
321 const TargetView target_view = target_views[ii];
322 const Scalar match_score = scores(ii, view_idx);
323 if (match_score > kRejectionScore) {
Austin Schuhf257f3c2019-10-27 21:00:43 -0700324 AOS_LOG(DEBUG,
325 "Rejecting target at (%f, %f, %f, %f) due to high score.\n",
326 target_view.reading.heading, target_view.reading.distance,
327 target_view.reading.skew, target_view.reading.height);
James Kuszmaul1057ce82019-02-09 17:58:24 -0800328 h_functions->push_back(
329 [](const State &, const Input &) { return Output::Zero(); });
330 dhdx_functions->push_back([](const State &) {
331 return Eigen::Matrix<Scalar, kNOutputs, kNStates>::Zero();
332 });
333 } else {
334 h_functions->push_back([this, &camera, best_view, target_view](
335 const State &X, const Input &) {
336 // This function actually handles determining what the Output should
337 // be at a given state, now that we have chosen the target that
338 // we want to match to.
339 *robot_pose_->mutable_pos() << X(0, 0), X(1, 0), 0.0;
340 robot_pose_->set_theta(X(2, 0));
341 const Pose relative_pose =
342 best_view.target->pose().Rebase(&camera.pose());
343 const Scalar heading = relative_pose.heading();
344 const Scalar distance = relative_pose.xy_norm();
James Kuszmaul289756f2019-03-05 21:52:10 -0800345 const Scalar skew = ::aos::math::NormalizeAngle(
346 relative_pose.rel_theta() - heading);
James Kuszmaul1057ce82019-02-09 17:58:24 -0800347 return Output(heading, distance, skew);
348 });
349
350 // TODO(james): Experiment to better understand whether we want to
351 // recalculate H or not.
352 dhdx_functions->push_back(
353 [best_H](const Eigen::Matrix<Scalar, kNStates, 1> &) {
354 return best_H;
355 });
356 }
357 }
358 *h = h_functions->at(0);
359 *dhdx = dhdx_functions->at(0);
360 }
361 }
362
363 Eigen::Matrix<Scalar, kNOutputs, kNStates> HMatrix(
James Kuszmaul46f3a212019-03-10 10:14:24 -0700364 const Target &target, const Pose &camera_pose) {
James Kuszmaul1057ce82019-02-09 17:58:24 -0800365 // To calculate dheading/d{x,y,theta}:
366 // heading = arctan2(target_pos - camera_pos) - camera_theta
367 Eigen::Matrix<Scalar, 3, 1> target_pos = target.pose().abs_pos();
James Kuszmaul46f3a212019-03-10 10:14:24 -0700368 Eigen::Matrix<Scalar, 3, 1> camera_pos = camera_pose.abs_pos();
James Kuszmaul1057ce82019-02-09 17:58:24 -0800369 Scalar diffx = target_pos.x() - camera_pos.x();
370 Scalar diffy = target_pos.y() - camera_pos.y();
371 Scalar norm2 = diffx * diffx + diffy * diffy;
372 Scalar dheadingdx = diffy / norm2;
373 Scalar dheadingdy = -diffx / norm2;
374 Scalar dheadingdtheta = -1.0;
375
376 // To calculate ddistance/d{x,y}:
377 // distance = sqrt(diffx^2 + diffy^2)
378 Scalar distance = ::std::sqrt(norm2);
379 Scalar ddistdx = -diffx / distance;
380 Scalar ddistdy = -diffy / distance;
381
James Kuszmaul289756f2019-03-05 21:52:10 -0800382 // Skew = target.theta - camera.theta - heading
383 // = target.theta - arctan2(target_pos - camera_pos)
384 Scalar dskewdx = -dheadingdx;
385 Scalar dskewdy = -dheadingdy;
James Kuszmaul1057ce82019-02-09 17:58:24 -0800386 Eigen::Matrix<Scalar, kNOutputs, kNStates> H;
387 H.setZero();
388 H(0, 0) = dheadingdx;
389 H(0, 1) = dheadingdy;
390 H(0, 2) = dheadingdtheta;
391 H(1, 0) = ddistdx;
392 H(1, 1) = ddistdy;
James Kuszmaul289756f2019-03-05 21:52:10 -0800393 H(2, 0) = dskewdx;
394 H(2, 1) = dskewdy;
James Kuszmaul1057ce82019-02-09 17:58:24 -0800395 return H;
396 }
397
398 // A helper function for the fuller version of MatchFrames; this just
399 // removes some of the arguments that are only needed during the recursion.
400 // n_views is the number of targets actually seen in the camera image (i.e.,
401 // the number of rows in scores/best_matches that are actually populated).
402 ::std::array<int, max_targets_per_frame> MatchFrames(
403 const Eigen::Matrix<Scalar, max_targets_per_frame, num_targets> &scores,
404 const Eigen::Matrix<int, max_targets_per_frame, max_targets_per_frame> &
405 best_matches,
406 int n_views) {
407 ::std::array<int, max_targets_per_frame> best_set;
James Kuszmaul6f941b72019-03-08 18:12:25 -0800408 best_set.fill(-1);
James Kuszmaul1057ce82019-02-09 17:58:24 -0800409 Scalar best_score;
410 // We start out without having "used" any views/targets:
411 ::aos::SizedArray<bool, max_targets_per_frame> used_views;
412 for (int ii = 0; ii < n_views; ++ii) {
413 used_views.push_back(false);
414 }
415 MatchFrames(scores, best_matches, used_views, {{false}}, &best_set,
416 &best_score);
417 return best_set;
418 }
419
420 // Recursively iterates over every plausible combination of targets/views
421 // that there is and determines the lowest-scoring combination.
422 // used_views and used_targets indicate which rows/columns of the
423 // scores/best_matches matrices should be ignored. When used_views is all
424 // true, that means that we are done recursing.
425 void MatchFrames(
426 const Eigen::Matrix<Scalar, max_targets_per_frame, num_targets> &scores,
427 const Eigen::Matrix<int, max_targets_per_frame, max_targets_per_frame> &
428 best_matches,
429 const ::aos::SizedArray<bool, max_targets_per_frame> &used_views,
430 const ::std::array<bool, num_targets> &used_targets,
431 ::std::array<int, max_targets_per_frame> *best_set, Scalar *best_score) {
432 *best_score = ::std::numeric_limits<Scalar>::infinity();
433 // Iterate by letting each target in the camera frame (that isn't in
434 // used_views) choose it's best match that isn't already taken. We then set
435 // the appropriate flags in used_views and used_targets and call MatchFrames
436 // to let all the other views sort themselves out.
437 for (size_t ii = 0; ii < used_views.size(); ++ii) {
438 if (used_views[ii]) {
439 continue;
440 }
441 int best_match = -1;
442 for (size_t jj = 0; jj < max_targets_per_frame; ++jj) {
443 if (best_matches(ii, jj) == -1) {
444 // If we run out of potential targets from the camera, then there
445 // are more targets in the frame than we think there should be.
446 // In this case, we are going to be doubling/tripling/etc. up
447 // anyhow. So we just give everyone their top choice:
448 // TODO(james): If we ever are dealing with larger numbers of
449 // targets per frame, do something to minimize doubling-up.
450 best_match = best_matches(ii, 0);
451 break;
452 }
453 best_match = best_matches(ii, jj);
454 if (!used_targets[best_match]) {
455 break;
456 }
457 }
458 // If we reach here and best_match = -1, that means that no potential
459 // targets were generated by the camera, and we should never have gotten
460 // here.
Austin Schuhf257f3c2019-10-27 21:00:43 -0700461 AOS_CHECK(best_match != -1);
James Kuszmaul1057ce82019-02-09 17:58:24 -0800462 ::aos::SizedArray<bool, max_targets_per_frame> sub_views = used_views;
463 sub_views[ii] = true;
464 ::std::array<bool, num_targets> sub_targets = used_targets;
465 sub_targets[best_match] = true;
466 ::std::array<int, max_targets_per_frame> sub_best_set;
467 Scalar score;
468 MatchFrames(scores, best_matches, sub_views, sub_targets, &sub_best_set,
469 &score);
470 score += scores(ii, best_match);
471 sub_best_set[ii] = best_match;
472 if (score < *best_score) {
473 *best_score = score;
474 *best_set = sub_best_set;
475 }
476 }
477 // best_score will be infinite if we did not find a result due to there
478 // being no targets that weren't set in used_vies; this is the
479 // base case of the recursion and so we set best_score to zero:
480 if (!::std::isfinite(*best_score)) {
481 *best_score = 0.0;
482 }
483 }
484
485 // The pose that is used by the cameras to determine the location of the robot
486 // and thus the expected view of the targets.
487 Pose *robot_pose_;
488}; // class TypedLocalizer
489
490} // namespace control_loops
491} // namespace y2019
492
493#endif // Y2019_CONTROL_LOOPS_DRIVETRAIN_LOCALIZATER_H_