Brian Silverman | 8649792 | 2018-02-10 19:28:39 -0500 | [diff] [blame] | 1 | /* Function return value location for Linux/AArch64 ABI. |
| 2 | Copyright (C) 2013 Red Hat, Inc. |
| 3 | This file is part of elfutils. |
| 4 | |
| 5 | This file is free software; you can redistribute it and/or modify |
| 6 | it under the terms of either |
| 7 | |
| 8 | * the GNU Lesser General Public License as published by the Free |
| 9 | Software Foundation; either version 3 of the License, or (at |
| 10 | your option) any later version |
| 11 | |
| 12 | or |
| 13 | |
| 14 | * the GNU General Public License as published by the Free |
| 15 | Software Foundation; either version 2 of the License, or (at |
| 16 | your option) any later version |
| 17 | |
| 18 | or both in parallel, as here. |
| 19 | |
| 20 | elfutils is distributed in the hope that it will be useful, but |
| 21 | WITHOUT ANY WARRANTY; without even the implied warranty of |
| 22 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 23 | General Public License for more details. |
| 24 | |
| 25 | You should have received copies of the GNU General Public License and |
| 26 | the GNU Lesser General Public License along with this program. If |
| 27 | not, see <http://www.gnu.org/licenses/>. */ |
| 28 | |
| 29 | #ifdef HAVE_CONFIG_H |
| 30 | # include <config.h> |
| 31 | #endif |
| 32 | |
| 33 | #include <stdio.h> |
| 34 | #include <inttypes.h> |
| 35 | |
| 36 | #include <assert.h> |
| 37 | #include <dwarf.h> |
| 38 | |
| 39 | #define BACKEND aarch64_ |
| 40 | #include "libebl_CPU.h" |
| 41 | |
| 42 | static int |
| 43 | skip_until (Dwarf_Die *child, int tag) |
| 44 | { |
| 45 | int i; |
| 46 | while (DWARF_TAG_OR_RETURN (child) != tag) |
| 47 | if ((i = dwarf_siblingof (child, child)) != 0) |
| 48 | /* If there are no members, then this is not a HFA. Errors |
| 49 | are propagated. */ |
| 50 | return i; |
| 51 | return 0; |
| 52 | } |
| 53 | |
| 54 | static int |
| 55 | dwarf_bytesize_aux (Dwarf_Die *die, Dwarf_Word *sizep) |
| 56 | { |
| 57 | int bits; |
| 58 | if (((bits = 8 * dwarf_bytesize (die)) < 0 |
| 59 | && (bits = dwarf_bitsize (die)) < 0) |
| 60 | || bits % 8 != 0) |
| 61 | return -1; |
| 62 | |
| 63 | *sizep = bits / 8; |
| 64 | return 0; |
| 65 | } |
| 66 | |
| 67 | /* HFA (Homogeneous Floating-point Aggregate) is an aggregate type |
| 68 | whose members are all of the same floating-point type, which is |
| 69 | then base type of this HFA. Instead of being floating-point types |
| 70 | directly, members can instead themselves be HFA. Such HFA fields |
| 71 | are handled as if their type were HFA base type. |
| 72 | |
| 73 | This function returns 0 if TYPEDIE is HFA, 1 if it is not, or -1 if |
| 74 | there were errors. In the former case, *SIZEP contains byte size |
| 75 | of the base type (e.g. 8 for IEEE double). *COUNT is set to the |
| 76 | number of leaf members of the HFA. */ |
| 77 | static int hfa_type (Dwarf_Die *ftypedie, int tag, |
| 78 | Dwarf_Word *sizep, Dwarf_Word *countp); |
| 79 | |
| 80 | /* Return 0 if MEMBDIE refers to a member with a floating-point or HFA |
| 81 | type, or 1 if it's not. Return -1 for errors. The meaning of the |
| 82 | remaining arguments is as documented at hfa_type. */ |
| 83 | static int |
| 84 | member_is_fp (Dwarf_Die *membdie, Dwarf_Word *sizep, Dwarf_Word *countp) |
| 85 | { |
| 86 | Dwarf_Die typedie; |
| 87 | int tag = dwarf_peeled_die_type (membdie, &typedie); |
| 88 | switch (tag) |
| 89 | { |
| 90 | case DW_TAG_base_type:; |
| 91 | Dwarf_Word encoding; |
| 92 | Dwarf_Attribute attr_mem; |
| 93 | if (dwarf_attr_integrate (&typedie, DW_AT_encoding, &attr_mem) == NULL |
| 94 | || dwarf_formudata (&attr_mem, &encoding) != 0) |
| 95 | return -1; |
| 96 | |
| 97 | switch (encoding) |
| 98 | { |
| 99 | case DW_ATE_complex_float: |
| 100 | *countp = 2; |
| 101 | break; |
| 102 | |
| 103 | case DW_ATE_float: |
| 104 | *countp = 1; |
| 105 | break; |
| 106 | |
| 107 | default: |
| 108 | return 1; |
| 109 | } |
| 110 | |
| 111 | if (dwarf_bytesize_aux (&typedie, sizep) < 0) |
| 112 | return -1; |
| 113 | |
| 114 | *sizep /= *countp; |
| 115 | return 0; |
| 116 | |
| 117 | case DW_TAG_structure_type: |
| 118 | case DW_TAG_union_type: |
| 119 | case DW_TAG_array_type: |
| 120 | return hfa_type (&typedie, tag, sizep, countp); |
| 121 | } |
| 122 | |
| 123 | return 1; |
| 124 | } |
| 125 | |
| 126 | static int |
| 127 | hfa_type (Dwarf_Die *ftypedie, int tag, Dwarf_Word *sizep, Dwarf_Word *countp) |
| 128 | { |
| 129 | assert (tag == DW_TAG_structure_type || tag == DW_TAG_class_type |
| 130 | || tag == DW_TAG_union_type || tag == DW_TAG_array_type); |
| 131 | |
| 132 | int i; |
| 133 | if (tag == DW_TAG_array_type) |
| 134 | { |
| 135 | Dwarf_Word tot_size; |
| 136 | if (dwarf_aggregate_size (ftypedie, &tot_size) < 0) |
| 137 | return -1; |
| 138 | |
| 139 | /* For vector types, we don't care about the underlying |
| 140 | type, but only about the vector type itself. */ |
| 141 | bool vec; |
| 142 | Dwarf_Attribute attr_mem; |
| 143 | if (dwarf_formflag (dwarf_attr_integrate (ftypedie, DW_AT_GNU_vector, |
| 144 | &attr_mem), &vec) == 0 |
| 145 | && vec) |
| 146 | { |
| 147 | *sizep = tot_size; |
| 148 | *countp = 1; |
| 149 | |
| 150 | return 0; |
| 151 | } |
| 152 | |
| 153 | if ((i = member_is_fp (ftypedie, sizep, countp)) == 0) |
| 154 | { |
| 155 | *countp = tot_size / *sizep; |
| 156 | return 0; |
| 157 | } |
| 158 | |
| 159 | return i; |
| 160 | } |
| 161 | |
| 162 | /* Find first DW_TAG_member and determine its type. */ |
| 163 | Dwarf_Die member; |
| 164 | if ((i = dwarf_child (ftypedie, &member) != 0)) |
| 165 | return i; |
| 166 | |
| 167 | if ((i = skip_until (&member, DW_TAG_member)) != 0) |
| 168 | return i; |
| 169 | |
| 170 | *countp = 0; |
| 171 | if ((i = member_is_fp (&member, sizep, countp)) != 0) |
| 172 | return i; |
| 173 | |
| 174 | while ((i = dwarf_siblingof (&member, &member)) == 0 |
| 175 | && (i = skip_until (&member, DW_TAG_member)) == 0) |
| 176 | { |
| 177 | Dwarf_Word size, count; |
| 178 | if ((i = member_is_fp (&member, &size, &count)) != 0) |
| 179 | return i; |
| 180 | |
| 181 | if (*sizep != size) |
| 182 | return 1; |
| 183 | |
| 184 | *countp += count; |
| 185 | } |
| 186 | |
| 187 | /* At this point we already have at least one FP member, which means |
| 188 | FTYPEDIE is an HFA. So either return 0, or propagate error. */ |
| 189 | return i < 0 ? i : 0; |
| 190 | } |
| 191 | |
| 192 | static int |
| 193 | pass_in_gpr (const Dwarf_Op **locp, Dwarf_Word size) |
| 194 | { |
| 195 | static const Dwarf_Op loc[] = |
| 196 | { |
| 197 | { .atom = DW_OP_reg0 }, { .atom = DW_OP_piece, .number = 8 }, |
| 198 | { .atom = DW_OP_reg1 }, { .atom = DW_OP_piece, .number = 8 } |
| 199 | }; |
| 200 | |
| 201 | *locp = loc; |
| 202 | return size <= 8 ? 1 : 4; |
| 203 | } |
| 204 | |
| 205 | static int |
| 206 | pass_by_ref (const Dwarf_Op **locp) |
| 207 | { |
| 208 | static const Dwarf_Op loc[] = { { .atom = DW_OP_breg0 } }; |
| 209 | |
| 210 | *locp = loc; |
| 211 | return 1; |
| 212 | } |
| 213 | |
| 214 | static int |
| 215 | pass_hfa (const Dwarf_Op **locp, Dwarf_Word size, Dwarf_Word count) |
| 216 | { |
| 217 | assert (count >= 1 && count <= 4); |
| 218 | assert (size == 2 || size == 4 || size == 8 || size == 16); |
| 219 | |
| 220 | #define DEFINE_FPREG(NAME, SIZE) \ |
| 221 | static const Dwarf_Op NAME[] = { \ |
| 222 | { .atom = DW_OP_regx, .number = 64 }, \ |
| 223 | { .atom = DW_OP_piece, .number = SIZE }, \ |
| 224 | { .atom = DW_OP_regx, .number = 65 }, \ |
| 225 | { .atom = DW_OP_piece, .number = SIZE }, \ |
| 226 | { .atom = DW_OP_regx, .number = 66 }, \ |
| 227 | { .atom = DW_OP_piece, .number = SIZE }, \ |
| 228 | { .atom = DW_OP_regx, .number = 67 }, \ |
| 229 | { .atom = DW_OP_piece, .number = SIZE } \ |
| 230 | } |
| 231 | |
| 232 | switch (size) |
| 233 | { |
| 234 | case 2:; |
| 235 | DEFINE_FPREG (loc_hfa_2, 2); |
| 236 | *locp = loc_hfa_2; |
| 237 | break; |
| 238 | |
| 239 | case 4:; |
| 240 | DEFINE_FPREG (loc_hfa_4, 4); |
| 241 | *locp = loc_hfa_4; |
| 242 | break; |
| 243 | |
| 244 | case 8:; |
| 245 | DEFINE_FPREG (loc_hfa_8, 8); |
| 246 | *locp = loc_hfa_8; |
| 247 | break; |
| 248 | |
| 249 | case 16:; |
| 250 | DEFINE_FPREG (loc_hfa_16, 16); |
| 251 | *locp = loc_hfa_16; |
| 252 | break; |
| 253 | } |
| 254 | #undef DEFINE_FPREG |
| 255 | |
| 256 | return count == 1 ? 1 : 2 * count; |
| 257 | } |
| 258 | |
| 259 | static int |
| 260 | pass_in_simd (const Dwarf_Op **locp) |
| 261 | { |
| 262 | /* This is like passing single-element HFA. Size doesn't matter, so |
| 263 | pretend it's for example double. */ |
| 264 | return pass_hfa (locp, 8, 1); |
| 265 | } |
| 266 | |
| 267 | int |
| 268 | aarch64_return_value_location (Dwarf_Die *functypedie, const Dwarf_Op **locp) |
| 269 | { |
| 270 | /* Start with the function's type, and get the DW_AT_type attribute, |
| 271 | which is the type of the return value. */ |
| 272 | Dwarf_Die typedie; |
| 273 | int tag = dwarf_peeled_die_type (functypedie, &typedie); |
| 274 | if (tag <= 0) |
| 275 | return tag; |
| 276 | |
| 277 | Dwarf_Word size = (Dwarf_Word)-1; |
| 278 | |
| 279 | /* If the argument type is a Composite Type that is larger than 16 |
| 280 | bytes, then the argument is copied to memory allocated by the |
| 281 | caller and the argument is replaced by a pointer to the copy. */ |
| 282 | if (tag == DW_TAG_structure_type || tag == DW_TAG_union_type |
| 283 | || tag == DW_TAG_class_type || tag == DW_TAG_array_type) |
| 284 | { |
| 285 | Dwarf_Word base_size, count; |
| 286 | switch (hfa_type (&typedie, tag, &base_size, &count)) |
| 287 | { |
| 288 | default: |
| 289 | return -1; |
| 290 | |
| 291 | case 0: |
| 292 | assert (count > 0); |
| 293 | if (count <= 4) |
| 294 | return pass_hfa (locp, base_size, count); |
| 295 | FALLTHROUGH; |
| 296 | |
| 297 | case 1: |
| 298 | /* Not a HFA. */ |
| 299 | if (dwarf_aggregate_size (&typedie, &size) < 0) |
| 300 | return -1; |
| 301 | if (size > 16) |
| 302 | return pass_by_ref (locp); |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | if (tag == DW_TAG_base_type |
| 307 | || tag == DW_TAG_pointer_type || tag == DW_TAG_ptr_to_member_type) |
| 308 | { |
| 309 | if (dwarf_bytesize_aux (&typedie, &size) < 0) |
| 310 | { |
| 311 | if (tag == DW_TAG_pointer_type || tag == DW_TAG_ptr_to_member_type) |
| 312 | size = 8; |
| 313 | else |
| 314 | return -1; |
| 315 | } |
| 316 | |
| 317 | Dwarf_Attribute attr_mem; |
| 318 | if (tag == DW_TAG_base_type) |
| 319 | { |
| 320 | Dwarf_Word encoding; |
| 321 | if (dwarf_formudata (dwarf_attr_integrate (&typedie, DW_AT_encoding, |
| 322 | &attr_mem), |
| 323 | &encoding) != 0) |
| 324 | return -1; |
| 325 | |
| 326 | switch (encoding) |
| 327 | { |
| 328 | /* If the argument is a Half-, Single-, Double- or Quad- |
| 329 | precision Floating-point [...] the argument is allocated |
| 330 | to the least significant bits of register v[NSRN]. */ |
| 331 | case DW_ATE_float: |
| 332 | switch (size) |
| 333 | { |
| 334 | case 2: /* half */ |
| 335 | case 4: /* sigle */ |
| 336 | case 8: /* double */ |
| 337 | case 16: /* quad */ |
| 338 | return pass_in_simd (locp); |
| 339 | |
| 340 | default: |
| 341 | return -2; |
| 342 | } |
| 343 | |
| 344 | case DW_ATE_complex_float: |
| 345 | switch (size) |
| 346 | { |
| 347 | case 8: /* float _Complex */ |
| 348 | case 16: /* double _Complex */ |
| 349 | case 32: /* long double _Complex */ |
| 350 | return pass_hfa (locp, size / 2, 2); |
| 351 | |
| 352 | default: |
| 353 | return -2; |
| 354 | } |
| 355 | |
| 356 | /* If the argument is an Integral or Pointer Type, the |
| 357 | size of the argument is less than or equal to 8 bytes |
| 358 | [...] the argument is copied to the least significant |
| 359 | bits in x[NGRN]. */ |
| 360 | case DW_ATE_boolean: |
| 361 | case DW_ATE_signed: |
| 362 | case DW_ATE_unsigned: |
| 363 | case DW_ATE_unsigned_char: |
| 364 | case DW_ATE_signed_char: |
| 365 | return pass_in_gpr (locp, size); |
| 366 | } |
| 367 | |
| 368 | return -2; |
| 369 | } |
| 370 | else |
| 371 | return pass_in_gpr (locp, size); |
| 372 | } |
| 373 | |
| 374 | *locp = NULL; |
| 375 | return 0; |
| 376 | } |