jerrym | f157933 | 2013-02-07 01:56:28 +0000 | [diff] [blame^] | 1 | /*----------------------------------------------------------------------------*/
|
| 2 | /* Copyright (c) FIRST 2008. All Rights Reserved. */
|
| 3 | /* Open Source Software - may be modified and shared by FRC teams. The code */
|
| 4 | /* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */
|
| 5 | /*----------------------------------------------------------------------------*/
|
| 6 |
|
| 7 | #include "Encoder.h"
|
| 8 | #include "DigitalInput.h"
|
| 9 | #include "NetworkCommunication/UsageReporting.h"
|
| 10 | #include "Resource.h"
|
| 11 | #include "WPIErrors.h"
|
| 12 | #include "LiveWindow/LiveWindow.h"
|
| 13 |
|
| 14 | static Resource *quadEncoders = NULL;
|
| 15 |
|
| 16 | /**
|
| 17 | * Common initialization code for Encoders.
|
| 18 | * This code allocates resources for Encoders and is common to all constructors.
|
| 19 | * @param reverseDirection If true, counts down instead of up (this is all relative)
|
| 20 | * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
|
| 21 | * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
|
| 22 | * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
|
| 23 | * a counter object will be used and the returned value will either exactly match the spec'd count
|
| 24 | * or be double (2x) the spec'd count.
|
| 25 | */
|
| 26 | void Encoder::InitEncoder(bool reverseDirection, EncodingType encodingType)
|
| 27 | {
|
| 28 | m_encodingType = encodingType;
|
| 29 | tRioStatusCode localStatus = NiFpga_Status_Success;
|
| 30 | switch (encodingType)
|
| 31 | {
|
| 32 | case k4X:
|
| 33 | Resource::CreateResourceObject(&quadEncoders, tEncoder::kNumSystems);
|
| 34 | UINT32 index = quadEncoders->Allocate("4X Encoder");
|
| 35 | if (index == ~0ul)
|
| 36 | {
|
| 37 | CloneError(quadEncoders);
|
| 38 | return;
|
| 39 | }
|
| 40 | if (m_aSource->StatusIsFatal())
|
| 41 | {
|
| 42 | CloneError(m_aSource);
|
| 43 | return;
|
| 44 | }
|
| 45 | if (m_bSource->StatusIsFatal())
|
| 46 | {
|
| 47 | CloneError(m_bSource);
|
| 48 | return;
|
| 49 | }
|
| 50 | m_index = index;
|
| 51 | m_encoder = tEncoder::create(m_index, &localStatus);
|
| 52 | m_encoder->writeConfig_ASource_Module(m_aSource->GetModuleForRouting(), &localStatus);
|
| 53 | m_encoder->writeConfig_ASource_Channel(m_aSource->GetChannelForRouting(), &localStatus);
|
| 54 | m_encoder->writeConfig_ASource_AnalogTrigger(m_aSource->GetAnalogTriggerForRouting(), &localStatus);
|
| 55 | m_encoder->writeConfig_BSource_Module(m_bSource->GetModuleForRouting(), &localStatus);
|
| 56 | m_encoder->writeConfig_BSource_Channel(m_bSource->GetChannelForRouting(), &localStatus);
|
| 57 | m_encoder->writeConfig_BSource_AnalogTrigger(m_bSource->GetAnalogTriggerForRouting(), &localStatus);
|
| 58 | m_encoder->strobeReset(&localStatus);
|
| 59 | m_encoder->writeConfig_Reverse(reverseDirection, &localStatus);
|
| 60 | m_encoder->writeTimerConfig_AverageSize(4, &localStatus);
|
| 61 | m_counter = NULL;
|
| 62 | break;
|
| 63 | case k1X:
|
| 64 | case k2X:
|
| 65 | m_counter = new Counter(m_encodingType, m_aSource, m_bSource, reverseDirection);
|
| 66 | m_index = m_counter->GetIndex();
|
| 67 | break;
|
| 68 | }
|
| 69 | m_distancePerPulse = 1.0;
|
| 70 | m_pidSource = kDistance;
|
| 71 | wpi_setError(localStatus);
|
| 72 |
|
| 73 | nUsageReporting::report(nUsageReporting::kResourceType_Encoder, m_index, encodingType);
|
| 74 | LiveWindow::GetInstance()->AddSensor("Encoder", m_aSource->GetModuleForRouting(), m_aSource->GetChannelForRouting(), this);
|
| 75 | }
|
| 76 |
|
| 77 | /**
|
| 78 | * Encoder constructor.
|
| 79 | * Construct a Encoder given a and b modules and channels fully specified.
|
| 80 | * @param aModuleNumber The a channel digital input module.
|
| 81 | * @param aChannel The a channel digital input channel.
|
| 82 | * @param bModuleNumber The b channel digital input module.
|
| 83 | * @param bChannel The b channel digital input channel.
|
| 84 | * @param reverseDirection represents the orientation of the encoder and inverts the output values
|
| 85 | * if necessary so forward represents positive values.
|
| 86 | * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
|
| 87 | * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
|
| 88 | * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
|
| 89 | * a counter object will be used and the returned value will either exactly match the spec'd count
|
| 90 | * or be double (2x) the spec'd count.
|
| 91 | */
|
| 92 | Encoder::Encoder(UINT8 aModuleNumber, UINT32 aChannel,
|
| 93 | UINT8 bModuleNumber, UINT32 bChannel,
|
| 94 | bool reverseDirection, EncodingType encodingType) :
|
| 95 | m_encoder(NULL),
|
| 96 | m_counter(NULL)
|
| 97 | {
|
| 98 | m_aSource = new DigitalInput(aModuleNumber, aChannel);
|
| 99 | m_bSource = new DigitalInput(bModuleNumber, bChannel);
|
| 100 | InitEncoder(reverseDirection, encodingType);
|
| 101 | m_allocatedASource = true;
|
| 102 | m_allocatedBSource = true;
|
| 103 | }
|
| 104 |
|
| 105 | /**
|
| 106 | * Encoder constructor.
|
| 107 | * Construct a Encoder given a and b channels assuming the default module.
|
| 108 | * @param aChannel The a channel digital input channel.
|
| 109 | * @param bChannel The b channel digital input channel.
|
| 110 | * @param reverseDirection represents the orientation of the encoder and inverts the output values
|
| 111 | * if necessary so forward represents positive values.
|
| 112 | * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
|
| 113 | * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
|
| 114 | * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
|
| 115 | * a counter object will be used and the returned value will either exactly match the spec'd count
|
| 116 | * or be double (2x) the spec'd count.
|
| 117 | */
|
| 118 | Encoder::Encoder(UINT32 aChannel, UINT32 bChannel, bool reverseDirection, EncodingType encodingType) :
|
| 119 | m_encoder(NULL),
|
| 120 | m_counter(NULL)
|
| 121 | {
|
| 122 | m_aSource = new DigitalInput(aChannel);
|
| 123 | m_bSource = new DigitalInput(bChannel);
|
| 124 | InitEncoder(reverseDirection, encodingType);
|
| 125 | m_allocatedASource = true;
|
| 126 | m_allocatedBSource = true;
|
| 127 | }
|
| 128 |
|
| 129 | /**
|
| 130 | * Encoder constructor.
|
| 131 | * Construct a Encoder given a and b channels as digital inputs. This is used in the case
|
| 132 | * where the digital inputs are shared. The Encoder class will not allocate the digital inputs
|
| 133 | * and assume that they already are counted.
|
| 134 | * @param aSource The source that should be used for the a channel.
|
| 135 | * @param bSource the source that should be used for the b channel.
|
| 136 | * @param reverseDirection represents the orientation of the encoder and inverts the output values
|
| 137 | * if necessary so forward represents positive values.
|
| 138 | * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
|
| 139 | * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
|
| 140 | * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
|
| 141 | * a counter object will be used and the returned value will either exactly match the spec'd count
|
| 142 | * or be double (2x) the spec'd count.
|
| 143 | */
|
| 144 | Encoder::Encoder(DigitalSource *aSource, DigitalSource *bSource, bool reverseDirection, EncodingType encodingType) :
|
| 145 | m_encoder(NULL),
|
| 146 | m_counter(NULL)
|
| 147 | {
|
| 148 | m_aSource = aSource;
|
| 149 | m_bSource = bSource;
|
| 150 | m_allocatedASource = false;
|
| 151 | m_allocatedBSource = false;
|
| 152 | if (m_aSource == NULL || m_bSource == NULL)
|
| 153 | wpi_setWPIError(NullParameter);
|
| 154 | else
|
| 155 | InitEncoder(reverseDirection, encodingType);
|
| 156 | }
|
| 157 |
|
| 158 | /**
|
| 159 | * Encoder constructor.
|
| 160 | * Construct a Encoder given a and b channels as digital inputs. This is used in the case
|
| 161 | * where the digital inputs are shared. The Encoder class will not allocate the digital inputs
|
| 162 | * and assume that they already are counted.
|
| 163 | * @param aSource The source that should be used for the a channel.
|
| 164 | * @param bSource the source that should be used for the b channel.
|
| 165 | * @param reverseDirection represents the orientation of the encoder and inverts the output values
|
| 166 | * if necessary so forward represents positive values.
|
| 167 | * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
|
| 168 | * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
|
| 169 | * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
|
| 170 | * a counter object will be used and the returned value will either exactly match the spec'd count
|
| 171 | * or be double (2x) the spec'd count.
|
| 172 | */
|
| 173 | Encoder::Encoder(DigitalSource &aSource, DigitalSource &bSource, bool reverseDirection, EncodingType encodingType) :
|
| 174 | m_encoder(NULL),
|
| 175 | m_counter(NULL)
|
| 176 | {
|
| 177 | m_aSource = &aSource;
|
| 178 | m_bSource = &bSource;
|
| 179 | m_allocatedASource = false;
|
| 180 | m_allocatedBSource = false;
|
| 181 | InitEncoder(reverseDirection, encodingType);
|
| 182 | }
|
| 183 |
|
| 184 | /**
|
| 185 | * Free the resources for an Encoder.
|
| 186 | * Frees the FPGA resources associated with an Encoder.
|
| 187 | */
|
| 188 | Encoder::~Encoder()
|
| 189 | {
|
| 190 | if (m_allocatedASource) delete m_aSource;
|
| 191 | if (m_allocatedBSource) delete m_bSource;
|
| 192 | if (m_counter)
|
| 193 | {
|
| 194 | delete m_counter;
|
| 195 | }
|
| 196 | else
|
| 197 | {
|
| 198 | quadEncoders->Free(m_index);
|
| 199 | delete m_encoder;
|
| 200 | }
|
| 201 | }
|
| 202 |
|
| 203 | /**
|
| 204 | * Start the Encoder.
|
| 205 | * Starts counting pulses on the Encoder device.
|
| 206 | */
|
| 207 | void Encoder::Start()
|
| 208 | {
|
| 209 | if (StatusIsFatal()) return;
|
| 210 | if (m_counter)
|
| 211 | m_counter->Start();
|
| 212 | else
|
| 213 | {
|
| 214 | tRioStatusCode localStatus = NiFpga_Status_Success;
|
| 215 | m_encoder->writeConfig_Enable(1, &localStatus);
|
| 216 | wpi_setError(localStatus);
|
| 217 | }
|
| 218 | }
|
| 219 |
|
| 220 | /**
|
| 221 | * Stops counting pulses on the Encoder device. The value is not changed.
|
| 222 | */
|
| 223 | void Encoder::Stop()
|
| 224 | {
|
| 225 | if (StatusIsFatal()) return;
|
| 226 | if (m_counter)
|
| 227 | m_counter->Stop();
|
| 228 | else
|
| 229 | {
|
| 230 | tRioStatusCode localStatus = NiFpga_Status_Success;
|
| 231 | m_encoder->writeConfig_Enable(0, &localStatus);
|
| 232 | wpi_setError(localStatus);
|
| 233 | }
|
| 234 | }
|
| 235 |
|
| 236 | /**
|
| 237 | * Gets the raw value from the encoder.
|
| 238 | * The raw value is the actual count unscaled by the 1x, 2x, or 4x scale
|
| 239 | * factor.
|
| 240 | * @return Current raw count from the encoder
|
| 241 | */
|
| 242 | INT32 Encoder::GetRaw()
|
| 243 | {
|
| 244 | if (StatusIsFatal()) return 0;
|
| 245 | INT32 value;
|
| 246 | if (m_counter)
|
| 247 | value = m_counter->Get();
|
| 248 | else
|
| 249 | {
|
| 250 | tRioStatusCode localStatus = NiFpga_Status_Success;
|
| 251 | value = m_encoder->readOutput_Value(&localStatus);
|
| 252 | wpi_setError(localStatus);
|
| 253 | }
|
| 254 | return value;
|
| 255 | }
|
| 256 |
|
| 257 | /**
|
| 258 | * Gets the current count.
|
| 259 | * Returns the current count on the Encoder.
|
| 260 | * This method compensates for the decoding type.
|
| 261 | *
|
| 262 | * @return Current count from the Encoder adjusted for the 1x, 2x, or 4x scale factor.
|
| 263 | */
|
| 264 | INT32 Encoder::Get()
|
| 265 | {
|
| 266 | if (StatusIsFatal()) return 0;
|
| 267 | return (INT32) (GetRaw() * DecodingScaleFactor());
|
| 268 | }
|
| 269 |
|
| 270 | /**
|
| 271 | * Reset the Encoder distance to zero.
|
| 272 | * Resets the current count to zero on the encoder.
|
| 273 | */
|
| 274 | void Encoder::Reset()
|
| 275 | {
|
| 276 | if (StatusIsFatal()) return;
|
| 277 | if (m_counter)
|
| 278 | m_counter->Reset();
|
| 279 | else
|
| 280 | {
|
| 281 | tRioStatusCode localStatus = NiFpga_Status_Success;
|
| 282 | m_encoder->strobeReset(&localStatus);
|
| 283 | wpi_setError(localStatus);
|
| 284 | }
|
| 285 | }
|
| 286 |
|
| 287 | /**
|
| 288 | * Returns the period of the most recent pulse.
|
| 289 | * Returns the period of the most recent Encoder pulse in seconds.
|
| 290 | * This method compenstates for the decoding type.
|
| 291 | *
|
| 292 | * @deprecated Use GetRate() in favor of this method. This returns unscaled periods and GetRate() scales using value from SetDistancePerPulse().
|
| 293 | *
|
| 294 | * @return Period in seconds of the most recent pulse.
|
| 295 | */
|
| 296 | double Encoder::GetPeriod()
|
| 297 | {
|
| 298 | if (StatusIsFatal()) return 0.0;
|
| 299 | double measuredPeriod;
|
| 300 | if (m_counter)
|
| 301 | {
|
| 302 | measuredPeriod = m_counter->GetPeriod();
|
| 303 | }
|
| 304 | else
|
| 305 | {
|
| 306 | tRioStatusCode localStatus = NiFpga_Status_Success;
|
| 307 | tEncoder::tTimerOutput output = m_encoder->readTimerOutput(&localStatus);
|
| 308 | double value;
|
| 309 | if (output.Stalled)
|
| 310 | {
|
| 311 | // Return infinity
|
| 312 | double zero = 0.0;
|
| 313 | value = 1.0 / zero;
|
| 314 | }
|
| 315 | else
|
| 316 | {
|
| 317 | // output.Period is a fixed point number that counts by 2 (24 bits, 25 integer bits)
|
| 318 | value = (double)(output.Period << 1) / (double)output.Count;
|
| 319 | }
|
| 320 | wpi_setError(localStatus);
|
| 321 | measuredPeriod = value * 1.0e-6;
|
| 322 | }
|
| 323 | return measuredPeriod / DecodingScaleFactor();
|
| 324 | }
|
| 325 |
|
| 326 | /**
|
| 327 | * Sets the maximum period for stopped detection.
|
| 328 | * Sets the value that represents the maximum period of the Encoder before it will assume
|
| 329 | * that the attached device is stopped. This timeout allows users to determine if the wheels or
|
| 330 | * other shaft has stopped rotating.
|
| 331 | * This method compensates for the decoding type.
|
| 332 | *
|
| 333 | * @deprecated Use SetMinRate() in favor of this method. This takes unscaled periods and SetMinRate() scales using value from SetDistancePerPulse().
|
| 334 | *
|
| 335 | * @param maxPeriod The maximum time between rising and falling edges before the FPGA will
|
| 336 | * report the device stopped. This is expressed in seconds.
|
| 337 | */
|
| 338 | void Encoder::SetMaxPeriod(double maxPeriod)
|
| 339 | {
|
| 340 | if (StatusIsFatal()) return;
|
| 341 | if (m_counter)
|
| 342 | {
|
| 343 | m_counter->SetMaxPeriod(maxPeriod * DecodingScaleFactor());
|
| 344 | }
|
| 345 | else
|
| 346 | {
|
| 347 | tRioStatusCode localStatus = NiFpga_Status_Success;
|
| 348 | m_encoder->writeTimerConfig_StallPeriod((UINT32)(maxPeriod * 1.0e6 * DecodingScaleFactor()), &localStatus);
|
| 349 | wpi_setError(localStatus);
|
| 350 | }
|
| 351 | }
|
| 352 |
|
| 353 | /**
|
| 354 | * Determine if the encoder is stopped.
|
| 355 | * Using the MaxPeriod value, a boolean is returned that is true if the encoder is considered
|
| 356 | * stopped and false if it is still moving. A stopped encoder is one where the most recent pulse
|
| 357 | * width exceeds the MaxPeriod.
|
| 358 | * @return True if the encoder is considered stopped.
|
| 359 | */
|
| 360 | bool Encoder::GetStopped()
|
| 361 | {
|
| 362 | if (StatusIsFatal()) return true;
|
| 363 | if (m_counter)
|
| 364 | {
|
| 365 | return m_counter->GetStopped();
|
| 366 | }
|
| 367 | else
|
| 368 | {
|
| 369 | tRioStatusCode localStatus = NiFpga_Status_Success;
|
| 370 | bool value = m_encoder->readTimerOutput_Stalled(&localStatus) != 0;
|
| 371 | wpi_setError(localStatus);
|
| 372 | return value;
|
| 373 | }
|
| 374 | }
|
| 375 |
|
| 376 | /**
|
| 377 | * The last direction the encoder value changed.
|
| 378 | * @return The last direction the encoder value changed.
|
| 379 | */
|
| 380 | bool Encoder::GetDirection()
|
| 381 | {
|
| 382 | if (StatusIsFatal()) return false;
|
| 383 | if (m_counter)
|
| 384 | {
|
| 385 | return m_counter->GetDirection();
|
| 386 | }
|
| 387 | else
|
| 388 | {
|
| 389 | tRioStatusCode localStatus = NiFpga_Status_Success;
|
| 390 | bool value = m_encoder->readOutput_Direction(&localStatus);
|
| 391 | wpi_setError(localStatus);
|
| 392 | return value;
|
| 393 | }
|
| 394 | }
|
| 395 |
|
| 396 | /**
|
| 397 | * The scale needed to convert a raw counter value into a number of encoder pulses.
|
| 398 | */
|
| 399 | double Encoder::DecodingScaleFactor()
|
| 400 | {
|
| 401 | if (StatusIsFatal()) return 0.0;
|
| 402 | switch (m_encodingType)
|
| 403 | {
|
| 404 | case k1X:
|
| 405 | return 1.0;
|
| 406 | case k2X:
|
| 407 | return 0.5;
|
| 408 | case k4X:
|
| 409 | return 0.25;
|
| 410 | default:
|
| 411 | return 0.0;
|
| 412 | }
|
| 413 | }
|
| 414 |
|
| 415 | /**
|
| 416 | * Get the distance the robot has driven since the last reset.
|
| 417 | *
|
| 418 | * @return The distance driven since the last reset as scaled by the value from SetDistancePerPulse().
|
| 419 | */
|
| 420 | double Encoder::GetDistance()
|
| 421 | {
|
| 422 | if (StatusIsFatal()) return 0.0;
|
| 423 | return GetRaw() * DecodingScaleFactor() * m_distancePerPulse;
|
| 424 | }
|
| 425 |
|
| 426 | /**
|
| 427 | * Get the current rate of the encoder.
|
| 428 | * Units are distance per second as scaled by the value from SetDistancePerPulse().
|
| 429 | *
|
| 430 | * @return The current rate of the encoder.
|
| 431 | */
|
| 432 | double Encoder::GetRate()
|
| 433 | {
|
| 434 | if (StatusIsFatal()) return 0.0;
|
| 435 | return (m_distancePerPulse / GetPeriod());
|
| 436 | }
|
| 437 |
|
| 438 | /**
|
| 439 | * Set the minimum rate of the device before the hardware reports it stopped.
|
| 440 | *
|
| 441 | * @param minRate The minimum rate. The units are in distance per second as scaled by the value from SetDistancePerPulse().
|
| 442 | */
|
| 443 | void Encoder::SetMinRate(double minRate)
|
| 444 | {
|
| 445 | if (StatusIsFatal()) return;
|
| 446 | SetMaxPeriod(m_distancePerPulse / minRate);
|
| 447 | }
|
| 448 |
|
| 449 | /**
|
| 450 | * Set the distance per pulse for this encoder.
|
| 451 | * This sets the multiplier used to determine the distance driven based on the count value
|
| 452 | * from the encoder.
|
| 453 | * Do not include the decoding type in this scale. The library already compensates for the decoding type.
|
| 454 | * Set this value based on the encoder's rated Pulses per Revolution and
|
| 455 | * factor in gearing reductions following the encoder shaft.
|
| 456 | * This distance can be in any units you like, linear or angular.
|
| 457 | *
|
| 458 | * @param distancePerPulse The scale factor that will be used to convert pulses to useful units.
|
| 459 | */
|
| 460 | void Encoder::SetDistancePerPulse(double distancePerPulse)
|
| 461 | {
|
| 462 | if (StatusIsFatal()) return;
|
| 463 | m_distancePerPulse = distancePerPulse;
|
| 464 | }
|
| 465 |
|
| 466 | /**
|
| 467 | * Set the direction sensing for this encoder.
|
| 468 | * This sets the direction sensing on the encoder so that it could count in the correct
|
| 469 | * software direction regardless of the mounting.
|
| 470 | * @param reverseDirection true if the encoder direction should be reversed
|
| 471 | */
|
| 472 | void Encoder::SetReverseDirection(bool reverseDirection)
|
| 473 | {
|
| 474 | if (StatusIsFatal()) return;
|
| 475 | if (m_counter)
|
| 476 | {
|
| 477 | m_counter->SetReverseDirection(reverseDirection);
|
| 478 | }
|
| 479 | else
|
| 480 | {
|
| 481 | tRioStatusCode localStatus = NiFpga_Status_Success;
|
| 482 | m_encoder->writeConfig_Reverse(reverseDirection, &localStatus);
|
| 483 | wpi_setError(localStatus);
|
| 484 | }
|
| 485 | }
|
| 486 |
|
| 487 | /**
|
| 488 | * Set which parameter of the encoder you are using as a process control variable.
|
| 489 | *
|
| 490 | * @param pidSource An enum to select the parameter.
|
| 491 | */
|
| 492 | void Encoder::SetPIDSourceParameter(PIDSourceParameter pidSource)
|
| 493 | {
|
| 494 | if (StatusIsFatal()) return;
|
| 495 | m_pidSource = pidSource;
|
| 496 | }
|
| 497 |
|
| 498 | /**
|
| 499 | * Implement the PIDSource interface.
|
| 500 | *
|
| 501 | * @return The current value of the selected source parameter.
|
| 502 | */
|
| 503 | double Encoder::PIDGet()
|
| 504 | {
|
| 505 | if (StatusIsFatal()) return 0.0;
|
| 506 | switch (m_pidSource)
|
| 507 | {
|
| 508 | case kDistance:
|
| 509 | return GetDistance();
|
| 510 | case kRate:
|
| 511 | return GetRate();
|
| 512 | default:
|
| 513 | return 0.0;
|
| 514 | }
|
| 515 | }
|
| 516 |
|
| 517 | void Encoder::UpdateTable() {
|
| 518 | if (m_table != NULL) {
|
| 519 | m_table->PutNumber("Speed", GetRate());
|
| 520 | m_table->PutNumber("Distance", GetDistance());
|
| 521 | m_table->PutNumber("Distance per Tick", m_distancePerPulse);
|
| 522 | }
|
| 523 | }
|
| 524 |
|
| 525 | void Encoder::StartLiveWindowMode() {
|
| 526 |
|
| 527 | }
|
| 528 |
|
| 529 | void Encoder::StopLiveWindowMode() {
|
| 530 |
|
| 531 | }
|
| 532 |
|
| 533 | std::string Encoder::GetSmartDashboardType() {
|
| 534 | if (m_encodingType == k4X)
|
| 535 | return "Quadrature Encoder";
|
| 536 | else
|
| 537 | return "Encoder";
|
| 538 | }
|
| 539 |
|
| 540 | void Encoder::InitTable(ITable *subTable) {
|
| 541 | m_table = subTable;
|
| 542 | UpdateTable();
|
| 543 | }
|
| 544 |
|
| 545 | ITable * Encoder::GetTable() {
|
| 546 | return m_table;
|
| 547 | }
|
| 548 |
|