Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 1 | #include "frc971/vision/target_mapper.h" |
| 2 | |
| 3 | #include <random> |
| 4 | |
| 5 | #include "aos/events/simulated_event_loop.h" |
| 6 | #include "aos/testing/random_seed.h" |
| 7 | #include "glog/logging.h" |
| 8 | #include "gtest/gtest.h" |
| 9 | |
| 10 | namespace frc971::vision { |
| 11 | |
| 12 | namespace { |
| 13 | constexpr double kToleranceMeters = 0.05; |
| 14 | constexpr double kToleranceRadians = 0.05; |
Milind Upadhyay | 05652cb | 2022-12-07 20:51:51 -0800 | [diff] [blame] | 15 | constexpr std::string_view kFieldName = "test"; |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 16 | } // namespace |
| 17 | |
| 18 | #define EXPECT_POSE_NEAR(pose1, pose2) \ |
| 19 | EXPECT_NEAR(pose1.x, pose2.x, kToleranceMeters); \ |
| 20 | EXPECT_NEAR(pose1.y, pose2.y, kToleranceMeters); \ |
| 21 | EXPECT_NEAR(pose1.yaw_radians, pose2.yaw_radians, kToleranceRadians); |
| 22 | |
| 23 | #define EXPECT_POSE_EQ(pose1, pose2) \ |
| 24 | EXPECT_DOUBLE_EQ(pose1.x, pose2.x); \ |
| 25 | EXPECT_DOUBLE_EQ(pose1.y, pose2.y); \ |
| 26 | EXPECT_DOUBLE_EQ(pose1.yaw_radians, pose2.yaw_radians); |
| 27 | |
| 28 | #define EXPECT_BETWEEN_EXCLUSIVE(value, a, b) \ |
| 29 | { \ |
| 30 | auto low = std::min(a, b); \ |
| 31 | auto high = std::max(a, b); \ |
| 32 | EXPECT_GT(value, low); \ |
| 33 | EXPECT_LT(value, high); \ |
| 34 | } |
| 35 | |
| 36 | namespace { |
| 37 | // Expects angles to be normalized |
| 38 | double DeltaAngle(double a, double b) { |
| 39 | double delta = std::abs(a - b); |
| 40 | return std::min(delta, (2.0 * M_PI) - delta); |
| 41 | } |
| 42 | } // namespace |
| 43 | |
| 44 | // Expects angles to be normalized |
| 45 | #define EXPECT_ANGLE_BETWEEN_EXCLUSIVE(theta, a, b) \ |
| 46 | EXPECT_LT(DeltaAngle(a, theta), DeltaAngle(a, b)); \ |
| 47 | EXPECT_LT(DeltaAngle(b, theta), DeltaAngle(a, b)); |
| 48 | |
| 49 | #define EXPECT_POSE_IN_RANGE(interpolated_pose, pose_start, pose_end) \ |
| 50 | EXPECT_BETWEEN_EXCLUSIVE(interpolated_pose.x, pose_start.x, pose_end.x); \ |
| 51 | EXPECT_BETWEEN_EXCLUSIVE(interpolated_pose.y, pose_start.y, pose_end.y); \ |
| 52 | EXPECT_ANGLE_BETWEEN_EXCLUSIVE(interpolated_pose.yaw_radians, \ |
| 53 | pose_start.yaw_radians, \ |
| 54 | pose_end.yaw_radians); |
| 55 | |
| 56 | // Both confidence matrixes should have the same dimensions and be square |
| 57 | #define EXPECT_CONFIDENCE_GT(confidence1, confidence2) \ |
| 58 | { \ |
| 59 | ASSERT_EQ(confidence1.rows(), confidence2.rows()); \ |
| 60 | ASSERT_EQ(confidence1.rows(), confidence1.cols()); \ |
| 61 | ASSERT_EQ(confidence2.rows(), confidence2.cols()); \ |
| 62 | for (size_t i = 0; i < confidence1.rows(); i++) { \ |
| 63 | EXPECT_GT(confidence1(i, i), confidence2(i, i)); \ |
| 64 | } \ |
| 65 | } |
| 66 | |
| 67 | namespace { |
| 68 | ceres::examples::Pose2d MakePose(double x, double y, double yaw_radians) { |
| 69 | return ceres::examples::Pose2d{x, y, yaw_radians}; |
| 70 | } |
| 71 | |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 72 | // Assumes camera and robot origin are the same |
| 73 | DataAdapter::TimestampedDetection MakeTimestampedDetection( |
| 74 | aos::distributed_clock::time_point time, Eigen::Affine3d H_robot_target, |
| 75 | TargetMapper::TargetId id) { |
| 76 | auto target_pose = PoseUtils::Affine3dToPose2d(H_robot_target); |
| 77 | return DataAdapter::TimestampedDetection{ |
| 78 | time, H_robot_target, |
| 79 | std::sqrt(std::pow(target_pose.x, 2) + std::pow(target_pose.y, 2)), id}; |
| 80 | } |
| 81 | |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 82 | bool TargetIsInView(TargetMapper::TargetPose target_detection) { |
| 83 | // And check if it is within the fov of the robot / |
| 84 | // camera, assuming camera is pointing in the |
| 85 | // positive x-direction of the robot |
| 86 | double angle_to_target = |
| 87 | atan2(target_detection.pose.y, target_detection.pose.x); |
| 88 | |
| 89 | // Simulated camera field of view, in radians |
| 90 | constexpr double kCameraFov = M_PI_2; |
| 91 | if (fabs(angle_to_target) <= kCameraFov / 2.0) { |
| 92 | VLOG(2) << "Found target in view, based on T = " << target_detection.pose.x |
| 93 | << ", " << target_detection.pose.y << " with angle " |
| 94 | << angle_to_target; |
| 95 | return true; |
| 96 | } else { |
| 97 | return false; |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | aos::distributed_clock::time_point TimeInMs(size_t ms) { |
| 102 | return aos::distributed_clock::time_point(std::chrono::milliseconds(ms)); |
| 103 | } |
| 104 | |
| 105 | } // namespace |
| 106 | |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 107 | TEST(DataAdapterTest, ComputeConfidence) { |
| 108 | // Check the confidence matrices. Don't check the actual values |
| 109 | // in case the constants change, just check that the confidence of contraints |
| 110 | // decreases as time period or distances from camera increase. |
| 111 | { |
| 112 | // Vary time period |
| 113 | constexpr double kDistanceStart = 0.5; |
| 114 | constexpr double kDistanceEnd = 2.0; |
| 115 | |
| 116 | Eigen::Matrix3d last_confidence = Eigen::Matrix3d::Zero(); |
| 117 | for (size_t dt = 0; dt < 15; dt++) { |
| 118 | Eigen::Matrix3d confidence = DataAdapter::ComputeConfidence( |
| 119 | TimeInMs(0), TimeInMs(dt), kDistanceStart, kDistanceEnd); |
| 120 | |
| 121 | if (dt != 0) { |
| 122 | // Confidence only decreases every 5ms (control loop period) |
| 123 | if (dt % 5 == 0) { |
| 124 | EXPECT_CONFIDENCE_GT(last_confidence, confidence); |
| 125 | } else { |
| 126 | EXPECT_EQ(last_confidence, confidence); |
| 127 | } |
| 128 | } |
| 129 | last_confidence = confidence; |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | { |
| 134 | // Vary distance at start |
| 135 | constexpr int kDt = 3; |
| 136 | constexpr double kDistanceEnd = 1.5; |
| 137 | Eigen::Matrix3d last_confidence = Eigen::Matrix3d::Zero(); |
| 138 | for (double distance_start = 0.0; distance_start < 3.0; |
| 139 | distance_start += 0.5) { |
| 140 | Eigen::Matrix3d confidence = DataAdapter::ComputeConfidence( |
| 141 | TimeInMs(0), TimeInMs(kDt), distance_start, kDistanceEnd); |
| 142 | if (distance_start != 0.0) { |
| 143 | EXPECT_CONFIDENCE_GT(last_confidence, confidence); |
| 144 | } |
| 145 | last_confidence = confidence; |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | { |
| 150 | // Vary distance at end |
| 151 | constexpr int kDt = 2; |
| 152 | constexpr double kDistanceStart = 2.5; |
| 153 | Eigen::Matrix3d last_confidence = Eigen::Matrix3d::Zero(); |
| 154 | for (double distance_end = 0.0; distance_end < 3.0; distance_end += 0.5) { |
| 155 | Eigen::Matrix3d confidence = DataAdapter::ComputeConfidence( |
| 156 | TimeInMs(0), TimeInMs(kDt), kDistanceStart, distance_end); |
| 157 | if (distance_end != 0.0) { |
| 158 | EXPECT_CONFIDENCE_GT(last_confidence, confidence); |
| 159 | } |
| 160 | last_confidence = confidence; |
| 161 | } |
| 162 | } |
| 163 | } |
| 164 | |
Milind Upadhyay | ec49391 | 2022-12-18 21:33:15 -0800 | [diff] [blame] | 165 | TEST(DataAdapterTest, MatchTargetDetections) { |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 166 | std::vector<DataAdapter::TimestampedPose> timestamped_robot_poses = { |
| 167 | {TimeInMs(0), ceres::examples::Pose2d{1.0, 2.0, 0.0}}, |
| 168 | {TimeInMs(5), ceres::examples::Pose2d{1.0, 2.0, 0.0}}, |
| 169 | {TimeInMs(10), ceres::examples::Pose2d{3.0, 1.0, M_PI_2}}, |
| 170 | {TimeInMs(15), ceres::examples::Pose2d{5.0, -2.0, -M_PI}}, |
| 171 | {TimeInMs(20), ceres::examples::Pose2d{5.0, -2.0, -M_PI}}, |
| 172 | {TimeInMs(25), ceres::examples::Pose2d{10.0, -32.0, M_PI_2}}, |
| 173 | {TimeInMs(30), ceres::examples::Pose2d{-15.0, 12.0, 0.0}}, |
| 174 | {TimeInMs(35), ceres::examples::Pose2d{-15.0, 12.0, 0.0}}}; |
| 175 | std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections = |
| 176 | {{TimeInMs(5), |
| 177 | PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{5.0, -4.0, 0.0}), |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 178 | 1.0, 0}, |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 179 | {TimeInMs(9), |
| 180 | PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{5.0, -4.0, 0.0}), |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 181 | 1.0, 1}, |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 182 | {TimeInMs(9), |
| 183 | PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{5.0, -4.0, 0.0}), |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 184 | 1.0, 2}, |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 185 | {TimeInMs(15), |
| 186 | PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{5.0, -4.0, 0.0}), |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 187 | 1.0, 0}, |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 188 | {TimeInMs(16), |
| 189 | PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{5.0, -4.0, 0.0}), |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 190 | 1.0, 2}, |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 191 | {TimeInMs(27), |
| 192 | PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{5.0, -4.0, 0.0}), |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 193 | 1.0, 1}}; |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 194 | auto [target_constraints, robot_delta_poses] = |
| 195 | DataAdapter::MatchTargetDetections(timestamped_robot_poses, |
| 196 | timestamped_target_detections); |
| 197 | |
| 198 | // Check that target constraints got inserted in the |
| 199 | // correct spots |
| 200 | EXPECT_EQ(target_constraints.size(), |
| 201 | timestamped_target_detections.size() - 1); |
| 202 | for (auto it = target_constraints.begin(); it < target_constraints.end(); |
| 203 | it++) { |
| 204 | auto timestamped_it = timestamped_target_detections.begin() + |
| 205 | (it - target_constraints.begin()); |
| 206 | EXPECT_EQ(it->id_begin, timestamped_it->id); |
| 207 | EXPECT_EQ(it->id_end, (timestamped_it + 1)->id); |
| 208 | } |
| 209 | |
| 210 | // Check that poses were interpolated correctly. |
| 211 | // Keep track of the computed robot pose by adding the delta poses |
| 212 | auto computed_robot_pose = timestamped_robot_poses[1].pose; |
| 213 | |
| 214 | computed_robot_pose = |
| 215 | PoseUtils::ComputeOffsetPose(computed_robot_pose, robot_delta_poses[0]); |
| 216 | EXPECT_POSE_IN_RANGE(computed_robot_pose, timestamped_robot_poses[1].pose, |
| 217 | timestamped_robot_poses[2].pose); |
| 218 | |
| 219 | computed_robot_pose = |
| 220 | PoseUtils::ComputeOffsetPose(computed_robot_pose, robot_delta_poses[1]); |
| 221 | EXPECT_POSE_IN_RANGE(computed_robot_pose, timestamped_robot_poses[1].pose, |
| 222 | timestamped_robot_poses[2].pose); |
| 223 | EXPECT_POSE_EQ(robot_delta_poses[1], MakePose(0.0, 0.0, 0.0)); |
| 224 | |
| 225 | computed_robot_pose = |
| 226 | PoseUtils::ComputeOffsetPose(computed_robot_pose, robot_delta_poses[2]); |
| 227 | EXPECT_POSE_EQ(computed_robot_pose, timestamped_robot_poses[3].pose); |
| 228 | |
| 229 | computed_robot_pose = |
| 230 | PoseUtils::ComputeOffsetPose(computed_robot_pose, robot_delta_poses[3]); |
| 231 | EXPECT_POSE_EQ(computed_robot_pose, timestamped_robot_poses[4].pose); |
| 232 | |
| 233 | computed_robot_pose = |
| 234 | PoseUtils::ComputeOffsetPose(computed_robot_pose, robot_delta_poses[4]); |
| 235 | EXPECT_POSE_IN_RANGE(computed_robot_pose, timestamped_robot_poses[5].pose, |
| 236 | timestamped_robot_poses[6].pose); |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 237 | } |
| 238 | |
Milind Upadhyay | ec49391 | 2022-12-18 21:33:15 -0800 | [diff] [blame] | 239 | TEST(DataAdapterTest, MatchTargetDetectionsWithoutRobotPosition) { |
| 240 | std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections = |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 241 | {MakeTimestampedDetection( |
| 242 | TimeInMs(5), |
| 243 | PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{5.0, -5.0, 0.0}), |
| 244 | 2), |
| 245 | MakeTimestampedDetection(TimeInMs(6), |
| 246 | PoseUtils::Pose2dToAffine3d( |
| 247 | ceres::examples::Pose2d{5.0, -4.0, M_PI}), |
| 248 | 0), |
| 249 | MakeTimestampedDetection(TimeInMs(10), |
| 250 | PoseUtils::Pose2dToAffine3d( |
| 251 | ceres::examples::Pose2d{3.0, -3.0, M_PI}), |
| 252 | 1), |
| 253 | MakeTimestampedDetection(TimeInMs(13), |
| 254 | PoseUtils::Pose2dToAffine3d( |
| 255 | ceres::examples::Pose2d{4.0, -7.0, M_PI_2}), |
| 256 | 2), |
| 257 | MakeTimestampedDetection(TimeInMs(14), |
| 258 | PoseUtils::Pose2dToAffine3d( |
| 259 | ceres::examples::Pose2d{4.0, -4.0, M_PI_2}), |
| 260 | 2)}; |
Milind Upadhyay | ec49391 | 2022-12-18 21:33:15 -0800 | [diff] [blame] | 261 | |
| 262 | constexpr auto kMaxDt = std::chrono::milliseconds(3); |
| 263 | auto target_constraints = |
| 264 | DataAdapter::MatchTargetDetections(timestamped_target_detections, kMaxDt); |
| 265 | |
| 266 | // The constraint between the detection at 6ms and the one at 10 ms is skipped |
| 267 | // because dt > kMaxDt. |
| 268 | // Also, the constraint between the last two detections is skipped because |
| 269 | // they are the same target |
| 270 | EXPECT_EQ(target_constraints.size(), |
| 271 | timestamped_target_detections.size() - 3); |
| 272 | |
| 273 | // Between 5ms and 6ms detections |
| 274 | EXPECT_DOUBLE_EQ(target_constraints[0].x, 0.0); |
| 275 | EXPECT_DOUBLE_EQ(target_constraints[0].y, 1.0); |
| 276 | EXPECT_DOUBLE_EQ(target_constraints[0].yaw_radians, -M_PI); |
| 277 | EXPECT_EQ(target_constraints[0].id_begin, 2); |
| 278 | EXPECT_EQ(target_constraints[0].id_end, 0); |
| 279 | |
| 280 | // Between 10ms and 13ms detections |
| 281 | EXPECT_DOUBLE_EQ(target_constraints[1].x, -1.0); |
| 282 | EXPECT_DOUBLE_EQ(target_constraints[1].y, 4.0); |
| 283 | EXPECT_DOUBLE_EQ(target_constraints[1].yaw_radians, -M_PI_2); |
| 284 | EXPECT_EQ(target_constraints[1].id_begin, 1); |
| 285 | EXPECT_EQ(target_constraints[1].id_end, 2); |
| 286 | } |
| 287 | |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 288 | TEST(TargetMapperTest, TwoTargetsOneConstraint) { |
| 289 | std::map<TargetMapper::TargetId, ceres::examples::Pose2d> target_poses; |
| 290 | target_poses[0] = ceres::examples::Pose2d{5.0, 0.0, M_PI}; |
| 291 | target_poses[1] = ceres::examples::Pose2d{-5.0, 0.0, 0.0}; |
| 292 | |
| 293 | std::vector<DataAdapter::TimestampedPose> timestamped_robot_poses = { |
| 294 | {TimeInMs(5), ceres::examples::Pose2d{2.0, 0.0, 0.0}}, |
| 295 | {TimeInMs(10), ceres::examples::Pose2d{-1.0, 0.0, 0.0}}, |
| 296 | {TimeInMs(15), ceres::examples::Pose2d{-1.0, 0.0, 0.0}}}; |
| 297 | std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections = |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 298 | {MakeTimestampedDetection( |
| 299 | TimeInMs(5), |
| 300 | PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{3.0, 0.0, M_PI}), |
| 301 | 0), |
| 302 | MakeTimestampedDetection( |
| 303 | TimeInMs(10), |
| 304 | PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{-4.0, 0.0, 0.0}), |
| 305 | 1)}; |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 306 | auto target_constraints = |
| 307 | DataAdapter::MatchTargetDetections(timestamped_robot_poses, |
| 308 | timestamped_target_detections) |
| 309 | .first; |
| 310 | |
| 311 | frc971::vision::TargetMapper mapper(target_poses, target_constraints); |
Milind Upadhyay | 05652cb | 2022-12-07 20:51:51 -0800 | [diff] [blame] | 312 | mapper.Solve(kFieldName); |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 313 | |
| 314 | ASSERT_EQ(mapper.target_poses().size(), 2); |
| 315 | EXPECT_POSE_NEAR(mapper.target_poses()[0], MakePose(5.0, 0.0, M_PI)); |
| 316 | EXPECT_POSE_NEAR(mapper.target_poses()[1], MakePose(-5.0, 0.0, 0.0)); |
| 317 | } |
| 318 | |
| 319 | TEST(TargetMapperTest, TwoTargetsTwoConstraints) { |
| 320 | std::map<TargetMapper::TargetId, ceres::examples::Pose2d> target_poses; |
| 321 | target_poses[0] = ceres::examples::Pose2d{5.0, 0.0, M_PI}; |
| 322 | target_poses[1] = ceres::examples::Pose2d{-5.0, 0.0, -M_PI_2}; |
| 323 | |
| 324 | std::vector<DataAdapter::TimestampedPose> timestamped_robot_poses = { |
| 325 | {TimeInMs(5), ceres::examples::Pose2d{-1.0, 0.0, 0.0}}, |
| 326 | {TimeInMs(10), ceres::examples::Pose2d{3.0, 0.0, 0.0}}, |
| 327 | {TimeInMs(15), ceres::examples::Pose2d{4.0, 0.0, 0.0}}, |
| 328 | {TimeInMs(20), ceres::examples::Pose2d{-1.0, 0.0, 0.0}}}; |
| 329 | std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections = |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 330 | {MakeTimestampedDetection( |
| 331 | TimeInMs(5), |
| 332 | PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{6.0, 0.0, M_PI}), |
| 333 | 0), |
| 334 | MakeTimestampedDetection( |
| 335 | TimeInMs(10), |
| 336 | PoseUtils::Pose2dToAffine3d( |
| 337 | ceres::examples::Pose2d{-8.0, 0.0, -M_PI_2}), |
| 338 | 1), |
| 339 | MakeTimestampedDetection( |
| 340 | TimeInMs(15), |
| 341 | PoseUtils::Pose2dToAffine3d(ceres::examples::Pose2d{1.0, 0.0, M_PI}), |
| 342 | 0)}; |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 343 | auto target_constraints = |
| 344 | DataAdapter::MatchTargetDetections(timestamped_robot_poses, |
| 345 | timestamped_target_detections) |
| 346 | .first; |
| 347 | |
| 348 | frc971::vision::TargetMapper mapper(target_poses, target_constraints); |
Milind Upadhyay | 05652cb | 2022-12-07 20:51:51 -0800 | [diff] [blame] | 349 | mapper.Solve(kFieldName); |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 350 | |
| 351 | ASSERT_EQ(mapper.target_poses().size(), 2); |
| 352 | EXPECT_POSE_NEAR(mapper.target_poses()[0], MakePose(5.0, 0.0, M_PI)); |
| 353 | EXPECT_POSE_NEAR(mapper.target_poses()[1], MakePose(-5.0, 0.0, -M_PI_2)); |
| 354 | } |
| 355 | |
| 356 | TEST(TargetMapperTest, TwoTargetsOneNoisyConstraint) { |
| 357 | std::map<TargetMapper::TargetId, ceres::examples::Pose2d> target_poses; |
| 358 | target_poses[0] = ceres::examples::Pose2d{5.0, 0.0, M_PI}; |
| 359 | target_poses[1] = ceres::examples::Pose2d{-5.0, 0.0, 0.0}; |
| 360 | |
| 361 | std::vector<DataAdapter::TimestampedPose> timestamped_robot_poses = { |
| 362 | {TimeInMs(5), ceres::examples::Pose2d{1.99, 0.0, 0.0}}, |
| 363 | {TimeInMs(10), ceres::examples::Pose2d{-1.0, 0.0, 0.0}}, |
| 364 | {TimeInMs(15), ceres::examples::Pose2d{-1.01, -0.01, 0.004}}}; |
| 365 | std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections = |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 366 | {MakeTimestampedDetection( |
| 367 | TimeInMs(5), |
| 368 | PoseUtils::Pose2dToAffine3d( |
| 369 | ceres::examples::Pose2d{3.01, 0.001, M_PI - 0.001}), |
| 370 | 0), |
| 371 | MakeTimestampedDetection(TimeInMs(10), |
| 372 | PoseUtils::Pose2dToAffine3d( |
| 373 | ceres::examples::Pose2d{-4.01, 0.0, 0.0}), |
| 374 | 1)}; |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 375 | |
| 376 | auto target_constraints = |
| 377 | DataAdapter::MatchTargetDetections(timestamped_robot_poses, |
| 378 | timestamped_target_detections) |
| 379 | .first; |
| 380 | |
| 381 | frc971::vision::TargetMapper mapper(target_poses, target_constraints); |
Milind Upadhyay | 05652cb | 2022-12-07 20:51:51 -0800 | [diff] [blame] | 382 | mapper.Solve(kFieldName); |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 383 | |
| 384 | ASSERT_EQ(mapper.target_poses().size(), 2); |
| 385 | EXPECT_POSE_NEAR(mapper.target_poses()[0], MakePose(5.0, 0.0, M_PI)); |
| 386 | EXPECT_POSE_NEAR(mapper.target_poses()[1], MakePose(-5.0, 0.0, 0.0)); |
| 387 | } |
| 388 | |
| 389 | TEST(TargetMapperTest, MultiTargetCircleMotion) { |
| 390 | // Build set of target locations wrt global origin |
| 391 | // For simplicity, do this on a grid of the field |
| 392 | double field_half_length = 7.5; // half length of the field |
| 393 | double field_half_width = 5.0; // half width of the field |
| 394 | std::map<TargetMapper::TargetId, ceres::examples::Pose2d> target_poses; |
| 395 | std::vector<TargetMapper::TargetPose> actual_target_poses; |
| 396 | for (int i = 0; i < 3; i++) { |
| 397 | for (int j = 0; j < 3; j++) { |
| 398 | TargetMapper::TargetId target_id = i * 3 + j; |
| 399 | TargetMapper::TargetPose target_pose{ |
| 400 | target_id, ceres::examples::Pose2d{field_half_length * (1 - i), |
| 401 | field_half_width * (1 - j), 0.0}}; |
| 402 | actual_target_poses.emplace_back(target_pose); |
| 403 | target_poses[target_id] = target_pose.pose; |
| 404 | VLOG(2) << "VERTEX_SE2 " << target_id << " " << target_pose.pose.x << " " |
| 405 | << target_pose.pose.y << " " << target_pose.pose.yaw_radians; |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | // Now, create a bunch of robot poses and target |
| 410 | // observations |
| 411 | size_t dt = 1; |
| 412 | |
| 413 | std::vector<DataAdapter::TimestampedPose> timestamped_robot_poses; |
| 414 | std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections; |
| 415 | |
| 416 | constexpr size_t kTotalSteps = 100; |
| 417 | for (size_t step_count = 0; step_count < kTotalSteps; step_count++) { |
| 418 | size_t t = dt * step_count; |
| 419 | // Circle clockwise around the center of the field |
| 420 | double robot_theta = t; |
| 421 | double robot_x = (field_half_length / 2.0) * cos(robot_theta); |
| 422 | double robot_y = (-field_half_width / 2.0) * sin(robot_theta); |
| 423 | |
| 424 | ceres::examples::Pose2d robot_pose{robot_x, robot_y, robot_theta}; |
| 425 | for (TargetMapper::TargetPose target_pose : actual_target_poses) { |
| 426 | TargetMapper::TargetPose target_detection = { |
| 427 | .id = target_pose.id, |
| 428 | .pose = PoseUtils::ComputeRelativePose(robot_pose, target_pose.pose)}; |
| 429 | if (TargetIsInView(target_detection)) { |
| 430 | // Define random generator with Gaussian |
| 431 | // distribution |
| 432 | const double mean = 0.0; |
| 433 | const double stddev = 1.0; |
| 434 | // Can play with this to see how it impacts |
| 435 | // randomness |
| 436 | constexpr double kNoiseScale = 0.01; |
| 437 | std::default_random_engine generator(aos::testing::RandomSeed()); |
| 438 | std::normal_distribution<double> dist(mean, stddev); |
| 439 | |
| 440 | target_detection.pose.x += dist(generator) * kNoiseScale; |
| 441 | target_detection.pose.y += dist(generator) * kNoiseScale; |
| 442 | robot_pose.x += dist(generator) * kNoiseScale; |
| 443 | robot_pose.y += dist(generator) * kNoiseScale; |
| 444 | |
| 445 | auto time_point = |
| 446 | aos::distributed_clock::time_point(std::chrono::milliseconds(t)); |
| 447 | timestamped_robot_poses.emplace_back(DataAdapter::TimestampedPose{ |
| 448 | .time = time_point, .pose = robot_pose}); |
Milind Upadhyay | ebf93ee | 2023-01-05 14:12:58 -0800 | [diff] [blame^] | 449 | timestamped_target_detections.emplace_back(MakeTimestampedDetection( |
| 450 | time_point, PoseUtils::Pose2dToAffine3d(target_detection.pose), |
| 451 | target_detection.id)); |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 452 | } |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | { |
| 457 | // Add in a robot pose after all target poses |
| 458 | auto final_robot_pose = |
| 459 | timestamped_robot_poses[timestamped_robot_poses.size() - 1]; |
| 460 | timestamped_robot_poses.emplace_back(DataAdapter::TimestampedPose{ |
| 461 | .time = final_robot_pose.time + std::chrono::milliseconds(dt), |
| 462 | .pose = final_robot_pose.pose}); |
| 463 | } |
| 464 | |
| 465 | auto target_constraints = |
| 466 | DataAdapter::MatchTargetDetections(timestamped_robot_poses, |
| 467 | timestamped_target_detections) |
| 468 | .first; |
| 469 | frc971::vision::TargetMapper mapper(target_poses, target_constraints); |
Milind Upadhyay | 05652cb | 2022-12-07 20:51:51 -0800 | [diff] [blame] | 470 | mapper.Solve(kFieldName); |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 471 | |
| 472 | for (auto [target_pose_id, mapper_target_pose] : mapper.target_poses()) { |
| 473 | TargetMapper::TargetPose actual_target_pose = |
| 474 | TargetMapper::GetTargetPoseById(actual_target_poses, target_pose_id) |
| 475 | .value(); |
| 476 | EXPECT_POSE_NEAR(mapper_target_pose, actual_target_pose.pose); |
| 477 | } |
| 478 | |
| 479 | // |
| 480 | // See what happens when we don't start with the |
| 481 | // correct values |
| 482 | // |
| 483 | for (auto [target_id, target_pose] : target_poses) { |
| 484 | // Skip first pose, since that needs to be correct |
| 485 | // and is fixed in the solver |
| 486 | if (target_id != 0) { |
| 487 | ceres::examples::Pose2d bad_pose{0.0, 0.0, M_PI / 2.0}; |
| 488 | target_poses[target_id] = bad_pose; |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | frc971::vision::TargetMapper mapper_bad_poses(target_poses, |
| 493 | target_constraints); |
Milind Upadhyay | 05652cb | 2022-12-07 20:51:51 -0800 | [diff] [blame] | 494 | mapper_bad_poses.Solve(kFieldName); |
Milind Upadhyay | 7c20522 | 2022-11-16 18:20:58 -0800 | [diff] [blame] | 495 | |
| 496 | for (auto [target_pose_id, mapper_target_pose] : |
| 497 | mapper_bad_poses.target_poses()) { |
| 498 | TargetMapper::TargetPose actual_target_pose = |
| 499 | TargetMapper::GetTargetPoseById(actual_target_poses, target_pose_id) |
| 500 | .value(); |
| 501 | EXPECT_POSE_NEAR(mapper_target_pose, actual_target_pose.pose); |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | } // namespace frc971::vision |