Parker Schuh | ebf887e | 2016-01-10 18:04:04 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * jdct.h |
| 3 | * |
| 4 | * Copyright (C) 1994-1996, Thomas G. Lane. |
| 5 | * This file is part of the Independent JPEG Group's software. |
| 6 | * For conditions of distribution and use, see the accompanying README file. |
| 7 | * |
| 8 | * This include file contains common declarations for the forward and |
| 9 | * inverse DCT modules. These declarations are private to the DCT managers |
| 10 | * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms. |
| 11 | * The individual DCT algorithms are kept in separate files to ease |
| 12 | * machine-dependent tuning (e.g., assembly coding). |
| 13 | */ |
| 14 | |
| 15 | |
| 16 | /* |
| 17 | * A forward DCT routine is given a pointer to an input sample array and |
| 18 | * a pointer to a work area of type DCTELEM[]; the DCT is to be performed |
| 19 | * in-place in that buffer. Type DCTELEM is int for 8-bit samples, INT32 |
| 20 | * for 12-bit samples. (NOTE: Floating-point DCT implementations use an |
| 21 | * array of type FAST_FLOAT, instead.) |
| 22 | * The input data is to be fetched from the sample array starting at a |
| 23 | * specified column. (Any row offset needed will be applied to the array |
| 24 | * pointer before it is passed to the FDCT code.) |
| 25 | * Note that the number of samples fetched by the FDCT routine is |
| 26 | * DCT_h_scaled_size * DCT_v_scaled_size. |
| 27 | * The DCT outputs are returned scaled up by a factor of 8; they therefore |
| 28 | * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This |
| 29 | * convention improves accuracy in integer implementations and saves some |
| 30 | * work in floating-point ones. |
| 31 | * Quantization of the output coefficients is done by jcdctmgr.c. |
| 32 | */ |
| 33 | |
| 34 | #if BITS_IN_JSAMPLE == 8 |
| 35 | typedef int DCTELEM; /* 16 or 32 bits is fine */ |
| 36 | #else |
| 37 | typedef INT32 DCTELEM; /* must have 32 bits */ |
| 38 | #endif |
| 39 | |
| 40 | typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data, |
| 41 | JSAMPARRAY sample_data, |
| 42 | JDIMENSION start_col)); |
| 43 | typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data, |
| 44 | JSAMPARRAY sample_data, |
| 45 | JDIMENSION start_col)); |
| 46 | |
| 47 | |
| 48 | /* |
| 49 | * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer |
| 50 | * to an output sample array. The routine must dequantize the input data as |
| 51 | * well as perform the IDCT; for dequantization, it uses the multiplier table |
| 52 | * pointed to by compptr->dct_table. The output data is to be placed into the |
| 53 | * sample array starting at a specified column. (Any row offset needed will |
| 54 | * be applied to the array pointer before it is passed to the IDCT code.) |
| 55 | * Note that the number of samples emitted by the IDCT routine is |
| 56 | * DCT_h_scaled_size * DCT_v_scaled_size. |
| 57 | */ |
| 58 | |
| 59 | /* typedef inverse_DCT_method_ptr is declared in jpegint.h */ |
| 60 | |
| 61 | /* |
| 62 | * Each IDCT routine has its own ideas about the best dct_table element type. |
| 63 | */ |
| 64 | |
| 65 | typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */ |
| 66 | #if BITS_IN_JSAMPLE == 8 |
| 67 | typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ |
| 68 | #define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */ |
| 69 | #else |
| 70 | typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */ |
| 71 | #define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */ |
| 72 | #endif |
| 73 | typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */ |
| 74 | |
| 75 | |
| 76 | /* |
| 77 | * Each IDCT routine is responsible for range-limiting its results and |
| 78 | * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could |
| 79 | * be quite far out of range if the input data is corrupt, so a bulletproof |
| 80 | * range-limiting step is required. We use a mask-and-table-lookup method |
| 81 | * to do the combined operations quickly. See the comments with |
| 82 | * prepare_range_limit_table (in jdmaster.c) for more info. |
| 83 | */ |
| 84 | |
| 85 | #define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE) |
| 86 | |
| 87 | #define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */ |
| 88 | |
| 89 | |
| 90 | /* Short forms of external names for systems with brain-damaged linkers. */ |
| 91 | |
| 92 | #ifdef NEED_SHORT_EXTERNAL_NAMES |
| 93 | #define jpeg_fdct_islow jFDislow |
| 94 | #define jpeg_fdct_ifast jFDifast |
| 95 | #define jpeg_fdct_float jFDfloat |
| 96 | #define jpeg_fdct_7x7 jFD7x7 |
| 97 | #define jpeg_fdct_6x6 jFD6x6 |
| 98 | #define jpeg_fdct_5x5 jFD5x5 |
| 99 | #define jpeg_fdct_4x4 jFD4x4 |
| 100 | #define jpeg_fdct_3x3 jFD3x3 |
| 101 | #define jpeg_fdct_2x2 jFD2x2 |
| 102 | #define jpeg_fdct_1x1 jFD1x1 |
| 103 | #define jpeg_fdct_9x9 jFD9x9 |
| 104 | #define jpeg_fdct_10x10 jFD10x10 |
| 105 | #define jpeg_fdct_11x11 jFD11x11 |
| 106 | #define jpeg_fdct_12x12 jFD12x12 |
| 107 | #define jpeg_fdct_13x13 jFD13x13 |
| 108 | #define jpeg_fdct_14x14 jFD14x14 |
| 109 | #define jpeg_fdct_15x15 jFD15x15 |
| 110 | #define jpeg_fdct_16x16 jFD16x16 |
| 111 | #define jpeg_fdct_16x8 jFD16x8 |
| 112 | #define jpeg_fdct_14x7 jFD14x7 |
| 113 | #define jpeg_fdct_12x6 jFD12x6 |
| 114 | #define jpeg_fdct_10x5 jFD10x5 |
| 115 | #define jpeg_fdct_8x4 jFD8x4 |
| 116 | #define jpeg_fdct_6x3 jFD6x3 |
| 117 | #define jpeg_fdct_4x2 jFD4x2 |
| 118 | #define jpeg_fdct_2x1 jFD2x1 |
| 119 | #define jpeg_fdct_8x16 jFD8x16 |
| 120 | #define jpeg_fdct_7x14 jFD7x14 |
| 121 | #define jpeg_fdct_6x12 jFD6x12 |
| 122 | #define jpeg_fdct_5x10 jFD5x10 |
| 123 | #define jpeg_fdct_4x8 jFD4x8 |
| 124 | #define jpeg_fdct_3x6 jFD3x6 |
| 125 | #define jpeg_fdct_2x4 jFD2x4 |
| 126 | #define jpeg_fdct_1x2 jFD1x2 |
| 127 | #define jpeg_idct_islow jRDislow |
| 128 | #define jpeg_idct_ifast jRDifast |
| 129 | #define jpeg_idct_float jRDfloat |
| 130 | #define jpeg_idct_7x7 jRD7x7 |
| 131 | #define jpeg_idct_6x6 jRD6x6 |
| 132 | #define jpeg_idct_5x5 jRD5x5 |
| 133 | #define jpeg_idct_4x4 jRD4x4 |
| 134 | #define jpeg_idct_3x3 jRD3x3 |
| 135 | #define jpeg_idct_2x2 jRD2x2 |
| 136 | #define jpeg_idct_1x1 jRD1x1 |
| 137 | #define jpeg_idct_9x9 jRD9x9 |
| 138 | #define jpeg_idct_10x10 jRD10x10 |
| 139 | #define jpeg_idct_11x11 jRD11x11 |
| 140 | #define jpeg_idct_12x12 jRD12x12 |
| 141 | #define jpeg_idct_13x13 jRD13x13 |
| 142 | #define jpeg_idct_14x14 jRD14x14 |
| 143 | #define jpeg_idct_15x15 jRD15x15 |
| 144 | #define jpeg_idct_16x16 jRD16x16 |
| 145 | #define jpeg_idct_16x8 jRD16x8 |
| 146 | #define jpeg_idct_14x7 jRD14x7 |
| 147 | #define jpeg_idct_12x6 jRD12x6 |
| 148 | #define jpeg_idct_10x5 jRD10x5 |
| 149 | #define jpeg_idct_8x4 jRD8x4 |
| 150 | #define jpeg_idct_6x3 jRD6x3 |
| 151 | #define jpeg_idct_4x2 jRD4x2 |
| 152 | #define jpeg_idct_2x1 jRD2x1 |
| 153 | #define jpeg_idct_8x16 jRD8x16 |
| 154 | #define jpeg_idct_7x14 jRD7x14 |
| 155 | #define jpeg_idct_6x12 jRD6x12 |
| 156 | #define jpeg_idct_5x10 jRD5x10 |
| 157 | #define jpeg_idct_4x8 jRD4x8 |
| 158 | #define jpeg_idct_3x6 jRD3x8 |
| 159 | #define jpeg_idct_2x4 jRD2x4 |
| 160 | #define jpeg_idct_1x2 jRD1x2 |
| 161 | #endif /* NEED_SHORT_EXTERNAL_NAMES */ |
| 162 | |
| 163 | /* Extern declarations for the forward and inverse DCT routines. */ |
| 164 | |
| 165 | EXTERN(void) jpeg_fdct_islow |
| 166 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 167 | EXTERN(void) jpeg_fdct_ifast |
| 168 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 169 | EXTERN(void) jpeg_fdct_float |
| 170 | JPP((FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 171 | EXTERN(void) jpeg_fdct_7x7 |
| 172 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 173 | EXTERN(void) jpeg_fdct_6x6 |
| 174 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 175 | EXTERN(void) jpeg_fdct_5x5 |
| 176 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 177 | EXTERN(void) jpeg_fdct_4x4 |
| 178 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 179 | EXTERN(void) jpeg_fdct_3x3 |
| 180 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 181 | EXTERN(void) jpeg_fdct_2x2 |
| 182 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 183 | EXTERN(void) jpeg_fdct_1x1 |
| 184 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 185 | EXTERN(void) jpeg_fdct_9x9 |
| 186 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 187 | EXTERN(void) jpeg_fdct_10x10 |
| 188 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 189 | EXTERN(void) jpeg_fdct_11x11 |
| 190 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 191 | EXTERN(void) jpeg_fdct_12x12 |
| 192 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 193 | EXTERN(void) jpeg_fdct_13x13 |
| 194 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 195 | EXTERN(void) jpeg_fdct_14x14 |
| 196 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 197 | EXTERN(void) jpeg_fdct_15x15 |
| 198 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 199 | EXTERN(void) jpeg_fdct_16x16 |
| 200 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 201 | EXTERN(void) jpeg_fdct_16x8 |
| 202 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 203 | EXTERN(void) jpeg_fdct_14x7 |
| 204 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 205 | EXTERN(void) jpeg_fdct_12x6 |
| 206 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 207 | EXTERN(void) jpeg_fdct_10x5 |
| 208 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 209 | EXTERN(void) jpeg_fdct_8x4 |
| 210 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 211 | EXTERN(void) jpeg_fdct_6x3 |
| 212 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 213 | EXTERN(void) jpeg_fdct_4x2 |
| 214 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 215 | EXTERN(void) jpeg_fdct_2x1 |
| 216 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 217 | EXTERN(void) jpeg_fdct_8x16 |
| 218 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 219 | EXTERN(void) jpeg_fdct_7x14 |
| 220 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 221 | EXTERN(void) jpeg_fdct_6x12 |
| 222 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 223 | EXTERN(void) jpeg_fdct_5x10 |
| 224 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 225 | EXTERN(void) jpeg_fdct_4x8 |
| 226 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 227 | EXTERN(void) jpeg_fdct_3x6 |
| 228 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 229 | EXTERN(void) jpeg_fdct_2x4 |
| 230 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 231 | EXTERN(void) jpeg_fdct_1x2 |
| 232 | JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); |
| 233 | |
| 234 | EXTERN(void) jpeg_idct_islow |
| 235 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 236 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 237 | EXTERN(void) jpeg_idct_ifast |
| 238 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 239 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 240 | EXTERN(void) jpeg_idct_float |
| 241 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 242 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 243 | EXTERN(void) jpeg_idct_7x7 |
| 244 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 245 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 246 | EXTERN(void) jpeg_idct_6x6 |
| 247 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 248 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 249 | EXTERN(void) jpeg_idct_5x5 |
| 250 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 251 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 252 | EXTERN(void) jpeg_idct_4x4 |
| 253 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 254 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 255 | EXTERN(void) jpeg_idct_3x3 |
| 256 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 257 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 258 | EXTERN(void) jpeg_idct_2x2 |
| 259 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 260 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 261 | EXTERN(void) jpeg_idct_1x1 |
| 262 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 263 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 264 | EXTERN(void) jpeg_idct_9x9 |
| 265 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 266 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 267 | EXTERN(void) jpeg_idct_10x10 |
| 268 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 269 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 270 | EXTERN(void) jpeg_idct_11x11 |
| 271 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 272 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 273 | EXTERN(void) jpeg_idct_12x12 |
| 274 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 275 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 276 | EXTERN(void) jpeg_idct_13x13 |
| 277 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 278 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 279 | EXTERN(void) jpeg_idct_14x14 |
| 280 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 281 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 282 | EXTERN(void) jpeg_idct_15x15 |
| 283 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 284 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 285 | EXTERN(void) jpeg_idct_16x16 |
| 286 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 287 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 288 | EXTERN(void) jpeg_idct_16x8 |
| 289 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 290 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 291 | EXTERN(void) jpeg_idct_14x7 |
| 292 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 293 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 294 | EXTERN(void) jpeg_idct_12x6 |
| 295 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 296 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 297 | EXTERN(void) jpeg_idct_10x5 |
| 298 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 299 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 300 | EXTERN(void) jpeg_idct_8x4 |
| 301 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 302 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 303 | EXTERN(void) jpeg_idct_6x3 |
| 304 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 305 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 306 | EXTERN(void) jpeg_idct_4x2 |
| 307 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 308 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 309 | EXTERN(void) jpeg_idct_2x1 |
| 310 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 311 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 312 | EXTERN(void) jpeg_idct_8x16 |
| 313 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 314 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 315 | EXTERN(void) jpeg_idct_7x14 |
| 316 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 317 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 318 | EXTERN(void) jpeg_idct_6x12 |
| 319 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 320 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 321 | EXTERN(void) jpeg_idct_5x10 |
| 322 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 323 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 324 | EXTERN(void) jpeg_idct_4x8 |
| 325 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 326 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 327 | EXTERN(void) jpeg_idct_3x6 |
| 328 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 329 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 330 | EXTERN(void) jpeg_idct_2x4 |
| 331 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 332 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 333 | EXTERN(void) jpeg_idct_1x2 |
| 334 | JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, |
| 335 | JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); |
| 336 | |
| 337 | |
| 338 | /* |
| 339 | * Macros for handling fixed-point arithmetic; these are used by many |
| 340 | * but not all of the DCT/IDCT modules. |
| 341 | * |
| 342 | * All values are expected to be of type INT32. |
| 343 | * Fractional constants are scaled left by CONST_BITS bits. |
| 344 | * CONST_BITS is defined within each module using these macros, |
| 345 | * and may differ from one module to the next. |
| 346 | */ |
| 347 | |
| 348 | #define ONE ((INT32) 1) |
| 349 | #define CONST_SCALE (ONE << CONST_BITS) |
| 350 | |
| 351 | /* Convert a positive real constant to an integer scaled by CONST_SCALE. |
| 352 | * Caution: some C compilers fail to reduce "FIX(constant)" at compile time, |
| 353 | * thus causing a lot of useless floating-point operations at run time. |
| 354 | */ |
| 355 | |
| 356 | #define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5)) |
| 357 | |
| 358 | /* Descale and correctly round an INT32 value that's scaled by N bits. |
| 359 | * We assume RIGHT_SHIFT rounds towards minus infinity, so adding |
| 360 | * the fudge factor is correct for either sign of X. |
| 361 | */ |
| 362 | |
| 363 | #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) |
| 364 | |
| 365 | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. |
| 366 | * This macro is used only when the two inputs will actually be no more than |
| 367 | * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a |
| 368 | * full 32x32 multiply. This provides a useful speedup on many machines. |
| 369 | * Unfortunately there is no way to specify a 16x16->32 multiply portably |
| 370 | * in C, but some C compilers will do the right thing if you provide the |
| 371 | * correct combination of casts. |
| 372 | */ |
| 373 | |
| 374 | #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ |
| 375 | #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const))) |
| 376 | #endif |
| 377 | #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ |
| 378 | #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const))) |
| 379 | #endif |
| 380 | |
| 381 | #ifndef MULTIPLY16C16 /* default definition */ |
| 382 | #define MULTIPLY16C16(var,const) ((var) * (const)) |
| 383 | #endif |
| 384 | |
| 385 | /* Same except both inputs are variables. */ |
| 386 | |
| 387 | #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ |
| 388 | #define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2))) |
| 389 | #endif |
| 390 | |
| 391 | #ifndef MULTIPLY16V16 /* default definition */ |
| 392 | #define MULTIPLY16V16(var1,var2) ((var1) * (var2)) |
| 393 | #endif |