Comran Morshed | e9b1292 | 2015-11-04 19:46:48 +0000 | [diff] [blame^] | 1 | #include "bot3/control_loops/drivetrain/drivetrain.h" |
| 2 | |
| 3 | #include <math.h> |
| 4 | #include <stdio.h> |
| 5 | #include <sched.h> |
| 6 | |
| 7 | #include <functional> |
| 8 | #include <memory> |
| 9 | |
| 10 | #include "Eigen/Dense" |
| 11 | |
| 12 | #include "aos/common/logging/logging.h" |
| 13 | #include "aos/common/controls/polytope.h" |
| 14 | #include "aos/common/commonmath.h" |
| 15 | #include "aos/common/logging/queue_logging.h" |
| 16 | #include "aos/common/logging/matrix_logging.h" |
| 17 | |
| 18 | #include "bot3/control_loops/drivetrain/drivetrain.q.h" |
| 19 | #include "bot3/control_loops/drivetrain/drivetrain_constants.h" |
| 20 | #include "bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h" |
| 21 | #include "bot3/control_loops/drivetrain/polydrivetrain_cim_plant.h" |
| 22 | #include "bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h" |
| 23 | #include "bot3/shifter_hall_effect.h" |
| 24 | #include "frc971/control_loops/coerce_goal.h" |
| 25 | #include "frc971/control_loops/state_feedback_loop.h" |
| 26 | #include "frc971/queues/other_sensors.q.h" |
| 27 | |
| 28 | using ::frc971::sensors::gyro_reading; |
| 29 | using ::frc971::control_loops::DoCoerceGoal; |
| 30 | using ::frc971::control_loops::CoerceGoal; |
| 31 | |
| 32 | namespace bot3 { |
| 33 | namespace control_loops { |
| 34 | |
| 35 | class DrivetrainMotorsSS { |
| 36 | public: |
| 37 | class LimitedDrivetrainLoop : public StateFeedbackLoop<4, 2, 2> { |
| 38 | public: |
| 39 | LimitedDrivetrainLoop(StateFeedbackLoop<4, 2, 2> &&loop) |
| 40 | : StateFeedbackLoop<4, 2, 2>(::std::move(loop)), |
| 41 | U_Poly_((Eigen::Matrix<double, 4, 2>() << 1, 0, |
| 42 | -1, 0, |
| 43 | 0, 1, |
| 44 | 0, -1).finished(), |
| 45 | (Eigen::Matrix<double, 4, 1>() << 12.0, 12.0, |
| 46 | 12.0, 12.0).finished()) { |
| 47 | ::aos::controls::HPolytope<0>::Init(); |
| 48 | T << 1, -1, 1, 1; |
| 49 | T_inverse = T.inverse(); |
| 50 | } |
| 51 | |
| 52 | bool output_was_capped() const { |
| 53 | return output_was_capped_; |
| 54 | } |
| 55 | |
| 56 | private: |
| 57 | virtual void CapU() { |
| 58 | const Eigen::Matrix<double, 4, 1> error = R() - X_hat(); |
| 59 | |
| 60 | if (::std::abs(U(0, 0)) > 12.0 || ::std::abs(U(1, 0)) > 12.0) { |
| 61 | output_was_capped_ = true; |
| 62 | LOG_MATRIX(DEBUG, "U at start", U()); |
| 63 | |
| 64 | Eigen::Matrix<double, 2, 2> position_K; |
| 65 | position_K << K(0, 0), K(0, 2), |
| 66 | K(1, 0), K(1, 2); |
| 67 | Eigen::Matrix<double, 2, 2> velocity_K; |
| 68 | velocity_K << K(0, 1), K(0, 3), |
| 69 | K(1, 1), K(1, 3); |
| 70 | |
| 71 | Eigen::Matrix<double, 2, 1> position_error; |
| 72 | position_error << error(0, 0), error(2, 0); |
| 73 | const auto drive_error = T_inverse * position_error; |
| 74 | Eigen::Matrix<double, 2, 1> velocity_error; |
| 75 | velocity_error << error(1, 0), error(3, 0); |
| 76 | LOG_MATRIX(DEBUG, "error", error); |
| 77 | |
| 78 | const auto &poly = U_Poly_; |
| 79 | const Eigen::Matrix<double, 4, 2> pos_poly_H = |
| 80 | poly.H() * position_K * T; |
| 81 | const Eigen::Matrix<double, 4, 1> pos_poly_k = |
| 82 | poly.k() - poly.H() * velocity_K * velocity_error; |
| 83 | const ::aos::controls::HPolytope<2> pos_poly(pos_poly_H, pos_poly_k); |
| 84 | |
| 85 | Eigen::Matrix<double, 2, 1> adjusted_pos_error; |
| 86 | { |
| 87 | const auto &P = drive_error; |
| 88 | |
| 89 | Eigen::Matrix<double, 1, 2> L45; |
| 90 | L45 << ::aos::sign(P(1, 0)), -::aos::sign(P(0, 0)); |
| 91 | const double w45 = 0; |
| 92 | |
| 93 | Eigen::Matrix<double, 1, 2> LH; |
| 94 | if (::std::abs(P(0, 0)) > ::std::abs(P(1, 0))) { |
| 95 | LH << 0, 1; |
| 96 | } else { |
| 97 | LH << 1, 0; |
| 98 | } |
| 99 | const double wh = LH.dot(P); |
| 100 | |
| 101 | Eigen::Matrix<double, 2, 2> standard; |
| 102 | standard << L45, LH; |
| 103 | Eigen::Matrix<double, 2, 1> W; |
| 104 | W << w45, wh; |
| 105 | const Eigen::Matrix<double, 2, 1> intersection = |
| 106 | standard.inverse() * W; |
| 107 | |
| 108 | bool is_inside_h; |
| 109 | const auto adjusted_pos_error_h = |
| 110 | DoCoerceGoal(pos_poly, LH, wh, drive_error, &is_inside_h); |
| 111 | const auto adjusted_pos_error_45 = |
| 112 | DoCoerceGoal(pos_poly, L45, w45, intersection, nullptr); |
| 113 | if (pos_poly.IsInside(intersection)) { |
| 114 | adjusted_pos_error = adjusted_pos_error_h; |
| 115 | } else { |
| 116 | if (is_inside_h) { |
| 117 | if (adjusted_pos_error_h.norm() > adjusted_pos_error_45.norm()) { |
| 118 | adjusted_pos_error = adjusted_pos_error_h; |
| 119 | } else { |
| 120 | adjusted_pos_error = adjusted_pos_error_45; |
| 121 | } |
| 122 | } else { |
| 123 | adjusted_pos_error = adjusted_pos_error_45; |
| 124 | } |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | LOG_MATRIX(DEBUG, "adjusted_pos_error", adjusted_pos_error); |
| 129 | mutable_U() = |
| 130 | velocity_K * velocity_error + position_K * T * adjusted_pos_error; |
| 131 | LOG_MATRIX(DEBUG, "U is now", U()); |
| 132 | } else { |
| 133 | output_was_capped_ = false; |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | const ::aos::controls::HPolytope<2> U_Poly_; |
| 138 | Eigen::Matrix<double, 2, 2> T, T_inverse; |
| 139 | bool output_was_capped_ = false;; |
| 140 | }; |
| 141 | |
| 142 | DrivetrainMotorsSS() |
| 143 | : loop_(new LimitedDrivetrainLoop( |
| 144 | MakeDrivetrainLoop())), |
| 145 | filtered_offset_(0.0), |
| 146 | gyro_(0.0), |
| 147 | left_goal_(0.0), |
| 148 | right_goal_(0.0), |
| 149 | raw_left_(0.0), |
| 150 | raw_right_(0.0) { |
| 151 | // Low gear on both. |
| 152 | loop_->set_controller_index(0); |
| 153 | } |
| 154 | |
| 155 | void SetGoal(double left, double left_velocity, double right, |
| 156 | double right_velocity) { |
| 157 | left_goal_ = left; |
| 158 | right_goal_ = right; |
| 159 | loop_->mutable_R() << left, left_velocity, right, right_velocity; |
| 160 | } |
| 161 | void SetRawPosition(double left, double right) { |
| 162 | raw_right_ = right; |
| 163 | raw_left_ = left; |
| 164 | Eigen::Matrix<double, 2, 1> Y; |
| 165 | Y << left + filtered_offset_, right - filtered_offset_; |
| 166 | loop_->Correct(Y); |
| 167 | } |
| 168 | void SetPosition(double left, double right, double gyro) { |
| 169 | // Decay the offset quickly because this gyro is great. |
| 170 | const double offset = |
| 171 | (right - left - gyro * kBot3TurnWidth) / 2.0; |
| 172 | // TODO(brians): filtered_offset_ = offset first time around. |
| 173 | filtered_offset_ = 0.25 * offset + 0.75 * filtered_offset_; |
| 174 | gyro_ = gyro; |
| 175 | SetRawPosition(left, right); |
| 176 | } |
| 177 | |
| 178 | void SetExternalMotors(double left_voltage, double right_voltage) { |
| 179 | loop_->mutable_U() << left_voltage, right_voltage; |
| 180 | } |
| 181 | |
| 182 | void Update(bool stop_motors, bool enable_control_loop) { |
| 183 | if (enable_control_loop) { |
| 184 | loop_->Update(stop_motors); |
| 185 | } else { |
| 186 | if (stop_motors) { |
| 187 | loop_->mutable_U().setZero(); |
| 188 | loop_->mutable_U_uncapped().setZero(); |
| 189 | } |
| 190 | loop_->UpdateObserver(); |
| 191 | } |
| 192 | ::Eigen::Matrix<double, 4, 1> E = loop_->R() - loop_->X_hat(); |
| 193 | LOG_MATRIX(DEBUG, "E", E); |
| 194 | } |
| 195 | |
| 196 | double GetEstimatedRobotSpeed() const { |
| 197 | // lets just call the average of left and right velocities close enough |
| 198 | return (loop_->X_hat(1, 0) + loop_->X_hat(3, 0)) / 2; |
| 199 | } |
| 200 | |
| 201 | double GetEstimatedLeftEncoder() const { |
| 202 | return loop_->X_hat(0, 0); |
| 203 | } |
| 204 | |
| 205 | double GetEstimatedRightEncoder() const { |
| 206 | return loop_->X_hat(2, 0); |
| 207 | } |
| 208 | |
| 209 | bool OutputWasCapped() const { |
| 210 | return loop_->output_was_capped(); |
| 211 | } |
| 212 | |
| 213 | void SendMotors(Drivetrain::Output *output) const { |
| 214 | if (output) { |
| 215 | output->left_voltage = loop_->U(0, 0); |
| 216 | output->right_voltage = loop_->U(1, 0); |
| 217 | output->left_high = false; |
| 218 | output->right_high = false; |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | const LimitedDrivetrainLoop &loop() const { return *loop_; } |
| 223 | |
| 224 | private: |
| 225 | ::std::unique_ptr<LimitedDrivetrainLoop> loop_; |
| 226 | |
| 227 | double filtered_offset_; |
| 228 | double gyro_; |
| 229 | double left_goal_; |
| 230 | double right_goal_; |
| 231 | double raw_left_; |
| 232 | double raw_right_; |
| 233 | }; |
| 234 | |
| 235 | class PolyDrivetrain { |
| 236 | public: |
| 237 | |
| 238 | enum Gear { |
| 239 | HIGH, |
| 240 | LOW, |
| 241 | SHIFTING_UP, |
| 242 | SHIFTING_DOWN |
| 243 | }; |
| 244 | // Stall Torque in N m |
| 245 | static constexpr double kStallTorque = 2.42; |
| 246 | // Stall Current in Amps |
| 247 | static constexpr double kStallCurrent = 133; |
| 248 | // Free Speed in RPM. Used number from last year. |
| 249 | static constexpr double kFreeSpeed = 4650.0; |
| 250 | // Free Current in Amps |
| 251 | static constexpr double kFreeCurrent = 2.7; |
| 252 | // Moment of inertia of the drivetrain in kg m^2 |
| 253 | // Just borrowed from last year. |
| 254 | static constexpr double J = 6.4; |
| 255 | // Mass of the robot, in kg. |
| 256 | static constexpr double m = 68; |
| 257 | // Radius of the robot, in meters (from last year). |
| 258 | static constexpr double rb = 0.617998644 / 2.0; |
| 259 | static constexpr double kWheelRadius = 0.04445; |
| 260 | // Resistance of the motor, divided by the number of motors. |
| 261 | static constexpr double kR = (12.0 / kStallCurrent / 4 + 0.03) / (0.93 * 0.93); |
| 262 | // Motor velocity constant |
| 263 | static constexpr double Kv = |
| 264 | ((kFreeSpeed / 60.0 * 2.0 * M_PI) / (12.0 - kR * kFreeCurrent)); |
| 265 | // Torque constant |
| 266 | static constexpr double Kt = kStallTorque / kStallCurrent; |
| 267 | |
| 268 | PolyDrivetrain() |
| 269 | : U_Poly_((Eigen::Matrix<double, 4, 2>() << /*[[*/ 1, 0 /*]*/, |
| 270 | /*[*/ -1, 0 /*]*/, |
| 271 | /*[*/ 0, 1 /*]*/, |
| 272 | /*[*/ 0, -1 /*]]*/).finished(), |
| 273 | (Eigen::Matrix<double, 4, 1>() << /*[[*/ 12 /*]*/, |
| 274 | /*[*/ 12 /*]*/, |
| 275 | /*[*/ 12 /*]*/, |
| 276 | /*[*/ 12 /*]]*/).finished()), |
| 277 | loop_(new StateFeedbackLoop<2, 2, 2>( |
| 278 | MakeVelocityDrivetrainLoop())), |
| 279 | ttrust_(1.1), |
| 280 | wheel_(0.0), |
| 281 | throttle_(0.0), |
| 282 | quickturn_(false), |
| 283 | stale_count_(0), |
| 284 | position_time_delta_(0.01), |
| 285 | left_gear_(LOW), |
| 286 | right_gear_(LOW), |
| 287 | counter_(0) { |
| 288 | |
| 289 | last_position_.Zero(); |
| 290 | position_.Zero(); |
| 291 | } |
| 292 | static bool IsInGear(Gear gear) { return gear == LOW || gear == HIGH; } |
| 293 | |
| 294 | static double MotorSpeed(const constants::ShifterHallEffect &hall_effect, |
| 295 | double shifter_position, double velocity, Gear gear) { |
| 296 | // TODO(austin): G_high, G_low and kWheelRadius |
| 297 | const double avg_hall_effect = |
| 298 | (hall_effect.clear_high + hall_effect.clear_low) / 2.0; |
| 299 | |
| 300 | const bool use_high = |
| 301 | kBot3SimpleShifting ? gear == HIGH : shifter_position > avg_hall_effect; |
| 302 | if (use_high) { |
| 303 | return velocity / kBot3HighGearRatio / kWheelRadius; |
| 304 | } else { |
| 305 | return velocity / kBot3LowGearRatio / kWheelRadius; |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | void SetGoal(double wheel, double throttle, bool quickturn, bool highgear) { |
| 310 | const double kWheelNonLinearity = 0.3; |
| 311 | // Apply a sin function that's scaled to make it feel better. |
| 312 | const double angular_range = M_PI_2 * kWheelNonLinearity; |
| 313 | wheel_ = sin(angular_range * wheel) / sin(angular_range); |
| 314 | wheel_ = sin(angular_range * wheel_) / sin(angular_range); |
| 315 | quickturn_ = quickturn; |
| 316 | |
| 317 | static const double kThrottleDeadband = 0.05; |
| 318 | if (::std::abs(throttle) < kThrottleDeadband) { |
| 319 | throttle_ = 0; |
| 320 | } else { |
| 321 | throttle_ = copysign((::std::abs(throttle) - kThrottleDeadband) / |
| 322 | (1.0 - kThrottleDeadband), throttle); |
| 323 | } |
| 324 | |
| 325 | // TODO(austin): Fix the upshift logic to include states. |
| 326 | Gear requested_gear; |
| 327 | requested_gear = highgear ? HIGH : LOW; |
| 328 | |
| 329 | // Can be set to HIGH and LOW instead if we want to use simple shifting. |
| 330 | const Gear shift_up = kBot3SimpleShifting ? HIGH : SHIFTING_UP; |
| 331 | const Gear shift_down = kBot3SimpleShifting ? LOW : SHIFTING_DOWN; |
| 332 | |
| 333 | if (left_gear_ != requested_gear) { |
| 334 | if (IsInGear(left_gear_)) { |
| 335 | if (requested_gear == HIGH) { |
| 336 | left_gear_ = shift_up; |
| 337 | } else { |
| 338 | left_gear_ = shift_down; |
| 339 | } |
| 340 | } else { |
| 341 | if (requested_gear == HIGH && left_gear_ == SHIFTING_DOWN) { |
| 342 | left_gear_ = SHIFTING_UP; |
| 343 | } else if (requested_gear == LOW && left_gear_ == SHIFTING_UP) { |
| 344 | left_gear_ = SHIFTING_DOWN; |
| 345 | } |
| 346 | } |
| 347 | } |
| 348 | if (right_gear_ != requested_gear) { |
| 349 | if (IsInGear(right_gear_)) { |
| 350 | if (requested_gear == HIGH) { |
| 351 | right_gear_ = shift_up; |
| 352 | } else { |
| 353 | right_gear_ = shift_down; |
| 354 | } |
| 355 | } else { |
| 356 | if (requested_gear == HIGH && right_gear_ == SHIFTING_DOWN) { |
| 357 | right_gear_ = SHIFTING_UP; |
| 358 | } else if (requested_gear == LOW && right_gear_ == SHIFTING_UP) { |
| 359 | right_gear_ = SHIFTING_DOWN; |
| 360 | } |
| 361 | } |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | void SetPosition(const Drivetrain::Position *position) { |
| 366 | if (position == NULL) { |
| 367 | ++stale_count_; |
| 368 | } else { |
| 369 | last_position_ = position_; |
| 370 | position_ = *position; |
| 371 | position_time_delta_ = (stale_count_ + 1) * 0.01; |
| 372 | stale_count_ = 0; |
| 373 | } |
| 374 | |
| 375 | if (position) { |
| 376 | GearLogging gear_logging; |
| 377 | // Switch to the correct controller. |
| 378 | const double left_middle_shifter_position = |
| 379 | (kBot3LeftDriveShifter.clear_high + |
| 380 | kBot3LeftDriveShifter.clear_low) / 2.0; |
| 381 | const double right_middle_shifter_position = |
| 382 | (kBot3RightDriveShifter.clear_high + |
| 383 | kBot3RightDriveShifter.clear_low) / 2.0; |
| 384 | |
| 385 | if (position->left_shifter_position < left_middle_shifter_position || |
| 386 | left_gear_ == LOW) { |
| 387 | if (position->right_shifter_position < right_middle_shifter_position || |
| 388 | right_gear_ == LOW) { |
| 389 | gear_logging.left_loop_high = false; |
| 390 | gear_logging.right_loop_high = false; |
| 391 | loop_->set_controller_index(gear_logging.controller_index = 0); |
| 392 | } else { |
| 393 | gear_logging.left_loop_high = false; |
| 394 | gear_logging.right_loop_high = true; |
| 395 | loop_->set_controller_index(gear_logging.controller_index = 1); |
| 396 | } |
| 397 | } else { |
| 398 | if (position->right_shifter_position < right_middle_shifter_position || |
| 399 | right_gear_ == LOW) { |
| 400 | gear_logging.left_loop_high = true; |
| 401 | gear_logging.right_loop_high = false; |
| 402 | loop_->set_controller_index(gear_logging.controller_index = 2); |
| 403 | } else { |
| 404 | gear_logging.left_loop_high = true; |
| 405 | gear_logging.right_loop_high = true; |
| 406 | loop_->set_controller_index(gear_logging.controller_index = 3); |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | // TODO(austin): Constants. |
| 411 | if (position->left_shifter_position > |
| 412 | kBot3LeftDriveShifter.clear_high && |
| 413 | left_gear_ == SHIFTING_UP) { |
| 414 | left_gear_ = HIGH; |
| 415 | } |
| 416 | if (position->left_shifter_position < |
| 417 | kBot3LeftDriveShifter.clear_low && |
| 418 | left_gear_ == SHIFTING_DOWN) { |
| 419 | left_gear_ = LOW; |
| 420 | } |
| 421 | if (position->right_shifter_position > |
| 422 | kBot3RightDriveShifter.clear_high && |
| 423 | right_gear_ == SHIFTING_UP) { |
| 424 | right_gear_ = HIGH; |
| 425 | } |
| 426 | if (position->right_shifter_position < |
| 427 | kBot3RightDriveShifter.clear_low && |
| 428 | right_gear_ == SHIFTING_DOWN) { |
| 429 | right_gear_ = LOW; |
| 430 | } |
| 431 | |
| 432 | gear_logging.left_state = left_gear_; |
| 433 | gear_logging.right_state = right_gear_; |
| 434 | LOG_STRUCT(DEBUG, "state", gear_logging); |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | double FilterVelocity(double throttle) { |
| 439 | const Eigen::Matrix<double, 2, 2> FF = |
| 440 | loop_->B().inverse() * |
| 441 | (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A()); |
| 442 | |
| 443 | constexpr int kHighGearController = 3; |
| 444 | const Eigen::Matrix<double, 2, 2> FF_high = |
| 445 | loop_->controller(kHighGearController).plant.B().inverse() * |
| 446 | (Eigen::Matrix<double, 2, 2>::Identity() - |
| 447 | loop_->controller(kHighGearController).plant.A()); |
| 448 | |
| 449 | ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum(); |
| 450 | int min_FF_sum_index; |
| 451 | const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index); |
| 452 | const double min_K_sum = loop_->K().col(min_FF_sum_index).sum(); |
| 453 | const double high_min_FF_sum = FF_high.col(0).sum(); |
| 454 | |
| 455 | const double adjusted_ff_voltage = ::aos::Clip( |
| 456 | throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0); |
| 457 | return ((adjusted_ff_voltage + |
| 458 | ttrust_ * min_K_sum * (loop_->X_hat(0, 0) + loop_->X_hat(1, 0)) / 2.0) / |
| 459 | (ttrust_ * min_K_sum + min_FF_sum)); |
| 460 | } |
| 461 | |
| 462 | double MaxVelocity() { |
| 463 | const Eigen::Matrix<double, 2, 2> FF = |
| 464 | loop_->B().inverse() * |
| 465 | (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A()); |
| 466 | |
| 467 | constexpr int kHighGearController = 3; |
| 468 | const Eigen::Matrix<double, 2, 2> FF_high = |
| 469 | loop_->controller(kHighGearController).plant.B().inverse() * |
| 470 | (Eigen::Matrix<double, 2, 2>::Identity() - |
| 471 | loop_->controller(kHighGearController).plant.A()); |
| 472 | |
| 473 | ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum(); |
| 474 | int min_FF_sum_index; |
| 475 | const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index); |
| 476 | //const double min_K_sum = loop_->K().col(min_FF_sum_index).sum(); |
| 477 | const double high_min_FF_sum = FF_high.col(0).sum(); |
| 478 | |
| 479 | const double adjusted_ff_voltage = ::aos::Clip( |
| 480 | 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0); |
| 481 | return adjusted_ff_voltage / min_FF_sum; |
| 482 | } |
| 483 | |
| 484 | void Update() { |
| 485 | // TODO(austin): Observer for the current velocity instead of difference |
| 486 | // calculations. |
| 487 | ++counter_; |
| 488 | const double current_left_velocity = |
| 489 | (position_.left_encoder - last_position_.left_encoder) / |
| 490 | position_time_delta_; |
| 491 | const double current_right_velocity = |
| 492 | (position_.right_encoder - last_position_.right_encoder) / |
| 493 | position_time_delta_; |
| 494 | const double left_motor_speed = |
| 495 | MotorSpeed(kBot3LeftDriveShifter, |
| 496 | position_.left_shifter_position, |
| 497 | current_left_velocity, |
| 498 | left_gear_); |
| 499 | const double right_motor_speed = |
| 500 | MotorSpeed(kBot3RightDriveShifter, |
| 501 | position_.right_shifter_position, |
| 502 | current_right_velocity, |
| 503 | right_gear_); |
| 504 | |
| 505 | { |
| 506 | CIMLogging logging; |
| 507 | |
| 508 | // Reset the CIM model to the current conditions to be ready for when we |
| 509 | // shift. |
| 510 | if (IsInGear(left_gear_)) { |
| 511 | logging.left_in_gear = true; |
| 512 | } else { |
| 513 | logging.left_in_gear = false; |
| 514 | } |
| 515 | logging.left_motor_speed = left_motor_speed; |
| 516 | logging.left_velocity = current_left_velocity; |
| 517 | if (IsInGear(right_gear_)) { |
| 518 | logging.right_in_gear = true; |
| 519 | } else { |
| 520 | logging.right_in_gear = false; |
| 521 | } |
| 522 | logging.right_motor_speed = right_motor_speed; |
| 523 | logging.right_velocity = current_right_velocity; |
| 524 | |
| 525 | LOG_STRUCT(DEBUG, "currently", logging); |
| 526 | } |
| 527 | |
| 528 | if (IsInGear(left_gear_) && IsInGear(right_gear_)) { |
| 529 | // FF * X = U (steady state) |
| 530 | const Eigen::Matrix<double, 2, 2> FF = |
| 531 | loop_->B().inverse() * |
| 532 | (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A()); |
| 533 | |
| 534 | // Invert the plant to figure out how the velocity filter would have to |
| 535 | // work |
| 536 | // out in order to filter out the forwards negative inertia. |
| 537 | // This math assumes that the left and right power and velocity are |
| 538 | // equals, |
| 539 | // and that the plant is the same on the left and right. |
| 540 | const double fvel = FilterVelocity(throttle_); |
| 541 | |
| 542 | const double sign_svel = wheel_ * ((fvel > 0.0) ? 1.0 : -1.0); |
| 543 | double steering_velocity; |
| 544 | if (quickturn_) { |
| 545 | steering_velocity = wheel_ * MaxVelocity(); |
| 546 | } else { |
| 547 | steering_velocity = ::std::abs(fvel) * wheel_; |
| 548 | } |
| 549 | const double left_velocity = fvel - steering_velocity; |
| 550 | const double right_velocity = fvel + steering_velocity; |
| 551 | |
| 552 | // Integrate velocity to get the position. |
| 553 | // This position is used to get integral control. |
| 554 | loop_->mutable_R() << left_velocity, right_velocity; |
| 555 | |
| 556 | if (!quickturn_) { |
| 557 | // K * R = w |
| 558 | Eigen::Matrix<double, 1, 2> equality_k; |
| 559 | equality_k << 1 + sign_svel, -(1 - sign_svel); |
| 560 | const double equality_w = 0.0; |
| 561 | |
| 562 | // Construct a constraint on R by manipulating the constraint on U |
| 563 | ::aos::controls::HPolytope<2> R_poly = ::aos::controls::HPolytope<2>( |
| 564 | U_Poly_.H() * (loop_->K() + FF), |
| 565 | U_Poly_.k() + U_Poly_.H() * loop_->K() * loop_->X_hat()); |
| 566 | |
| 567 | // Limit R back inside the box. |
| 568 | loop_->mutable_R() = |
| 569 | CoerceGoal(R_poly, equality_k, equality_w, loop_->R()); |
| 570 | } |
| 571 | |
| 572 | const Eigen::Matrix<double, 2, 1> FF_volts = FF * loop_->R(); |
| 573 | const Eigen::Matrix<double, 2, 1> U_ideal = |
| 574 | loop_->K() * (loop_->R() - loop_->X_hat()) + FF_volts; |
| 575 | |
| 576 | for (int i = 0; i < 2; i++) { |
| 577 | loop_->mutable_U()[i] = ::aos::Clip(U_ideal[i], -12, 12); |
| 578 | } |
| 579 | |
| 580 | // TODO(austin): Model this better. |
| 581 | // TODO(austin): Feed back? |
| 582 | loop_->mutable_X_hat() = |
| 583 | loop_->A() * loop_->X_hat() + loop_->B() * loop_->U(); |
| 584 | } else { |
| 585 | // Any motor is not in gear. Speed match. |
| 586 | ::Eigen::Matrix<double, 1, 1> R_left; |
| 587 | ::Eigen::Matrix<double, 1, 1> R_right; |
| 588 | R_left(0, 0) = left_motor_speed; |
| 589 | R_right(0, 0) = right_motor_speed; |
| 590 | |
| 591 | const double wiggle = |
| 592 | (static_cast<double>((counter_ % 20) / 10) - 0.5) * 5.0; |
| 593 | |
| 594 | loop_->mutable_U(0, 0) = ::aos::Clip( |
| 595 | (R_left / Kv)(0, 0) + (IsInGear(left_gear_) ? 0 : wiggle), |
| 596 | -12.0, 12.0); |
| 597 | loop_->mutable_U(1, 0) = ::aos::Clip( |
| 598 | (R_right / Kv)(0, 0) + (IsInGear(right_gear_) ? 0 : wiggle), |
| 599 | -12.0, 12.0); |
| 600 | loop_->mutable_U() *= 12.0 / position_.battery_voltage; |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | void SendMotors(Drivetrain::Output *output) { |
| 605 | if (output != NULL) { |
| 606 | output->left_voltage = loop_->U(0, 0); |
| 607 | output->right_voltage = loop_->U(1, 0); |
| 608 | output->left_high = left_gear_ == HIGH || left_gear_ == SHIFTING_UP; |
| 609 | output->right_high = right_gear_ == HIGH || right_gear_ == SHIFTING_UP; |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | private: |
| 614 | const ::aos::controls::HPolytope<2> U_Poly_; |
| 615 | |
| 616 | ::std::unique_ptr<StateFeedbackLoop<2, 2, 2>> loop_; |
| 617 | |
| 618 | const double ttrust_; |
| 619 | double wheel_; |
| 620 | double throttle_; |
| 621 | bool quickturn_; |
| 622 | int stale_count_; |
| 623 | double position_time_delta_; |
| 624 | Gear left_gear_; |
| 625 | Gear right_gear_; |
| 626 | Drivetrain::Position last_position_; |
| 627 | Drivetrain::Position position_; |
| 628 | int counter_; |
| 629 | }; |
| 630 | constexpr double PolyDrivetrain::kStallTorque; |
| 631 | constexpr double PolyDrivetrain::kStallCurrent; |
| 632 | constexpr double PolyDrivetrain::kFreeSpeed; |
| 633 | constexpr double PolyDrivetrain::kFreeCurrent; |
| 634 | constexpr double PolyDrivetrain::J; |
| 635 | constexpr double PolyDrivetrain::m; |
| 636 | constexpr double PolyDrivetrain::rb; |
| 637 | constexpr double PolyDrivetrain::kWheelRadius; |
| 638 | constexpr double PolyDrivetrain::kR; |
| 639 | constexpr double PolyDrivetrain::Kv; |
| 640 | constexpr double PolyDrivetrain::Kt; |
| 641 | |
| 642 | |
| 643 | void DrivetrainLoop::RunIteration(const Drivetrain::Goal *goal, |
| 644 | const Drivetrain::Position *position, |
| 645 | Drivetrain::Output *output, |
| 646 | Drivetrain::Status * status) { |
| 647 | // TODO(aschuh): These should be members of the class. |
| 648 | static DrivetrainMotorsSS dt_closedloop; |
| 649 | static PolyDrivetrain dt_openloop; |
| 650 | |
| 651 | bool bad_pos = false; |
| 652 | if (position == nullptr) { |
| 653 | LOG_INTERVAL(no_position_); |
| 654 | bad_pos = true; |
| 655 | } |
| 656 | no_position_.Print(); |
| 657 | |
| 658 | double wheel = goal->steering; |
| 659 | double throttle = goal->throttle; |
| 660 | bool quickturn = goal->quickturn; |
| 661 | bool highgear = goal->highgear; |
| 662 | |
| 663 | bool control_loop_driving = goal->control_loop_driving; |
| 664 | double left_goal = goal->left_goal; |
| 665 | double right_goal = goal->right_goal; |
| 666 | |
| 667 | dt_closedloop.SetGoal(left_goal, goal->left_velocity_goal, right_goal, |
| 668 | goal->right_velocity_goal); |
| 669 | if (!bad_pos) { |
| 670 | const double left_encoder = position->left_encoder; |
| 671 | const double right_encoder = position->right_encoder; |
| 672 | if (gyro_reading.FetchLatest()) { |
| 673 | LOG_STRUCT(DEBUG, "using", *gyro_reading.get()); |
| 674 | dt_closedloop.SetPosition(left_encoder, right_encoder, |
| 675 | gyro_reading->angle); |
| 676 | } else { |
| 677 | dt_closedloop.SetRawPosition(left_encoder, right_encoder); |
| 678 | } |
| 679 | } |
| 680 | dt_openloop.SetPosition(position); |
| 681 | dt_openloop.SetGoal(wheel, throttle, quickturn, highgear); |
| 682 | dt_openloop.Update(); |
| 683 | |
| 684 | if (control_loop_driving) { |
| 685 | dt_closedloop.Update(output == NULL, true); |
| 686 | dt_closedloop.SendMotors(output); |
| 687 | } else { |
| 688 | dt_openloop.SendMotors(output); |
| 689 | if (output) { |
| 690 | dt_closedloop.SetExternalMotors(output->left_voltage, |
| 691 | output->right_voltage); |
| 692 | } |
| 693 | dt_closedloop.Update(output == NULL, false); |
| 694 | } |
| 695 | |
| 696 | // set the output status of the control loop state |
| 697 | if (status) { |
| 698 | bool done = false; |
| 699 | if (goal) { |
| 700 | done = ((::std::abs(goal->left_goal - |
| 701 | dt_closedloop.GetEstimatedLeftEncoder()) < |
| 702 | kBot3DrivetrainDoneDistance) && |
| 703 | (::std::abs(goal->right_goal - |
| 704 | dt_closedloop.GetEstimatedRightEncoder()) < |
| 705 | kBot3DrivetrainDoneDistance)); |
| 706 | } |
| 707 | status->is_done = done; |
| 708 | status->robot_speed = dt_closedloop.GetEstimatedRobotSpeed(); |
| 709 | status->filtered_left_position = dt_closedloop.GetEstimatedLeftEncoder(); |
| 710 | status->filtered_right_position = dt_closedloop.GetEstimatedRightEncoder(); |
| 711 | status->output_was_capped = dt_closedloop.OutputWasCapped(); |
| 712 | status->uncapped_left_voltage = dt_closedloop.loop().U_uncapped(0, 0); |
| 713 | status->uncapped_right_voltage = dt_closedloop.loop().U_uncapped(1, 0); |
| 714 | } |
| 715 | } |
| 716 | |
| 717 | } // namespace control_loops |
| 718 | } // namespace bot3 |