Brian Silverman | 8649792 | 2018-02-10 19:28:39 -0500 | [diff] [blame] | 1 | /* Function return value location for IA64 ABI. |
| 2 | Copyright (C) 2006-2010, 2014 Red Hat, Inc. |
| 3 | This file is part of elfutils. |
| 4 | |
| 5 | This file is free software; you can redistribute it and/or modify |
| 6 | it under the terms of either |
| 7 | |
| 8 | * the GNU Lesser General Public License as published by the Free |
| 9 | Software Foundation; either version 3 of the License, or (at |
| 10 | your option) any later version |
| 11 | |
| 12 | or |
| 13 | |
| 14 | * the GNU General Public License as published by the Free |
| 15 | Software Foundation; either version 2 of the License, or (at |
| 16 | your option) any later version |
| 17 | |
| 18 | or both in parallel, as here. |
| 19 | |
| 20 | elfutils is distributed in the hope that it will be useful, but |
| 21 | WITHOUT ANY WARRANTY; without even the implied warranty of |
| 22 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 23 | General Public License for more details. |
| 24 | |
| 25 | You should have received copies of the GNU General Public License and |
| 26 | the GNU Lesser General Public License along with this program. If |
| 27 | not, see <http://www.gnu.org/licenses/>. */ |
| 28 | |
| 29 | #ifdef HAVE_CONFIG_H |
| 30 | # include <config.h> |
| 31 | #endif |
| 32 | |
| 33 | #include <assert.h> |
| 34 | #include <dwarf.h> |
| 35 | |
| 36 | #define BACKEND ia64_ |
| 37 | #include "libebl_CPU.h" |
| 38 | |
| 39 | |
| 40 | /* r8, or pair r8, r9, or aggregate up to r8-r11. */ |
| 41 | static const Dwarf_Op loc_intreg[] = |
| 42 | { |
| 43 | { .atom = DW_OP_reg8 }, { .atom = DW_OP_piece, .number = 8 }, |
| 44 | { .atom = DW_OP_reg9 }, { .atom = DW_OP_piece, .number = 8 }, |
| 45 | { .atom = DW_OP_reg10 }, { .atom = DW_OP_piece, .number = 8 }, |
| 46 | { .atom = DW_OP_reg11 }, { .atom = DW_OP_piece, .number = 8 }, |
| 47 | }; |
| 48 | #define nloc_intreg 1 |
| 49 | #define nloc_intregs(n) (2 * (n)) |
| 50 | |
| 51 | /* f8, or aggregate up to f8-f15. */ |
| 52 | #define DEFINE_FPREG(size) \ |
| 53 | static const Dwarf_Op loc_fpreg_##size[] = \ |
| 54 | { \ |
| 55 | { .atom = DW_OP_regx, .number = 128 + 8 }, \ |
| 56 | { .atom = DW_OP_piece, .number = size }, \ |
| 57 | { .atom = DW_OP_regx, .number = 128 + 9 }, \ |
| 58 | { .atom = DW_OP_piece, .number = size }, \ |
| 59 | { .atom = DW_OP_regx, .number = 128 + 10 }, \ |
| 60 | { .atom = DW_OP_piece, .number = size }, \ |
| 61 | { .atom = DW_OP_regx, .number = 128 + 11 }, \ |
| 62 | { .atom = DW_OP_piece, .number = size }, \ |
| 63 | { .atom = DW_OP_regx, .number = 128 + 12 }, \ |
| 64 | { .atom = DW_OP_piece, .number = size }, \ |
| 65 | { .atom = DW_OP_regx, .number = 128 + 13 }, \ |
| 66 | { .atom = DW_OP_piece, .number = size }, \ |
| 67 | { .atom = DW_OP_regx, .number = 128 + 14 }, \ |
| 68 | { .atom = DW_OP_piece, .number = size }, \ |
| 69 | { .atom = DW_OP_regx, .number = 128 + 15 }, \ |
| 70 | { .atom = DW_OP_piece, .number = size }, \ |
| 71 | } |
| 72 | #define nloc_fpreg 1 |
| 73 | #define nloc_fpregs(n) (2 * (n)) |
| 74 | |
| 75 | DEFINE_FPREG (4); |
| 76 | DEFINE_FPREG (8); |
| 77 | DEFINE_FPREG (10); |
| 78 | |
| 79 | #undef DEFINE_FPREG |
| 80 | |
| 81 | |
| 82 | /* The return value is a structure and is actually stored in stack space |
| 83 | passed in a hidden argument by the caller. But, the compiler |
| 84 | helpfully returns the address of that space in r8. */ |
| 85 | static const Dwarf_Op loc_aggregate[] = |
| 86 | { |
| 87 | { .atom = DW_OP_breg8, .number = 0 } |
| 88 | }; |
| 89 | #define nloc_aggregate 1 |
| 90 | |
| 91 | |
| 92 | static inline int |
| 93 | compute_hfa (const Dwarf_Op *loc, int nregs, |
| 94 | const Dwarf_Op **locp, int fpregs_used) |
| 95 | { |
| 96 | if (fpregs_used == 0) |
| 97 | *locp = loc; |
| 98 | else if (*locp != loc) |
| 99 | return 9; |
| 100 | return fpregs_used + nregs; |
| 101 | } |
| 102 | |
| 103 | /* If this type is an HFA small enough to be returned in FP registers, |
| 104 | return the number of registers to use. Otherwise 9, or -1 for errors. */ |
| 105 | static int |
| 106 | hfa_type (Dwarf_Die *typedie, Dwarf_Word size, |
| 107 | const Dwarf_Op **locp, int fpregs_used) |
| 108 | { |
| 109 | /* Descend the type structure, counting elements and finding their types. |
| 110 | If we find a datum that's not an FP type (and not quad FP), punt. |
| 111 | If we find a datum that's not the same FP type as the first datum, punt. |
| 112 | If we count more than eight total homogeneous FP data, punt. */ |
| 113 | |
| 114 | int tag = DWARF_TAG_OR_RETURN (typedie); |
| 115 | switch (tag) |
| 116 | { |
| 117 | Dwarf_Attribute attr_mem; |
| 118 | |
| 119 | case -1: |
| 120 | return -1; |
| 121 | |
| 122 | case DW_TAG_base_type:; |
| 123 | Dwarf_Word encoding; |
| 124 | if (dwarf_formudata (dwarf_attr_integrate (typedie, DW_AT_encoding, |
| 125 | &attr_mem), &encoding) != 0) |
| 126 | return -1; |
| 127 | |
| 128 | #define hfa(loc, nregs) compute_hfa(loc, nregs, locp, fpregs_used) |
| 129 | switch (encoding) |
| 130 | { |
| 131 | case DW_ATE_float: |
| 132 | switch (size) |
| 133 | { |
| 134 | case 4: /* float */ |
| 135 | return hfa (loc_fpreg_4, 1); |
| 136 | case 8: /* double */ |
| 137 | return hfa (loc_fpreg_8, 1); |
| 138 | case 10: /* x86-style long double, not really used */ |
| 139 | return hfa (loc_fpreg_10, 1); |
| 140 | } |
| 141 | break; |
| 142 | |
| 143 | case DW_ATE_complex_float: |
| 144 | switch (size) |
| 145 | { |
| 146 | case 4 * 2: /* complex float */ |
| 147 | return hfa (loc_fpreg_4, 2); |
| 148 | case 8 * 2: /* complex double */ |
| 149 | return hfa (loc_fpreg_8, 2); |
| 150 | case 10 * 2: /* complex long double (x86-style) */ |
| 151 | return hfa (loc_fpreg_10, 2); |
| 152 | } |
| 153 | break; |
| 154 | } |
| 155 | break; |
| 156 | |
| 157 | case DW_TAG_structure_type: |
| 158 | case DW_TAG_class_type: |
| 159 | case DW_TAG_union_type:; |
| 160 | Dwarf_Die child_mem; |
| 161 | switch (dwarf_child (typedie, &child_mem)) |
| 162 | { |
| 163 | default: |
| 164 | return -1; |
| 165 | |
| 166 | case 1: /* No children: empty struct. */ |
| 167 | break; |
| 168 | |
| 169 | case 0:; /* Look at each element. */ |
| 170 | int max_used = fpregs_used; |
| 171 | do |
| 172 | switch (dwarf_tag (&child_mem)) |
| 173 | { |
| 174 | case -1: |
| 175 | return -1; |
| 176 | |
| 177 | case DW_TAG_member:; |
| 178 | Dwarf_Die child_type_mem; |
| 179 | Dwarf_Die *child_typedie |
| 180 | = dwarf_formref_die (dwarf_attr_integrate (&child_mem, |
| 181 | DW_AT_type, |
| 182 | &attr_mem), |
| 183 | &child_type_mem); |
| 184 | Dwarf_Word child_size; |
| 185 | if (dwarf_aggregate_size (child_typedie, &child_size) != 0) |
| 186 | return -1; |
| 187 | if (tag == DW_TAG_union_type) |
| 188 | { |
| 189 | int used = hfa_type (child_typedie, child_size, |
| 190 | locp, fpregs_used); |
| 191 | if (used < 0 || used > 8) |
| 192 | return used; |
| 193 | if (used > max_used) |
| 194 | max_used = used; |
| 195 | } |
| 196 | else |
| 197 | { |
| 198 | fpregs_used = hfa_type (child_typedie, child_size, |
| 199 | locp, fpregs_used); |
| 200 | if (fpregs_used < 0 || fpregs_used > 8) |
| 201 | return fpregs_used; |
| 202 | } |
| 203 | } |
| 204 | while (dwarf_siblingof (&child_mem, &child_mem) == 0); |
| 205 | if (tag == DW_TAG_union_type) |
| 206 | fpregs_used = max_used; |
| 207 | break; |
| 208 | } |
| 209 | break; |
| 210 | |
| 211 | case DW_TAG_array_type: |
| 212 | if (size == 0) |
| 213 | break; |
| 214 | |
| 215 | Dwarf_Die base_type_mem; |
| 216 | Dwarf_Die *base_typedie |
| 217 | = dwarf_formref_die (dwarf_attr_integrate (typedie, DW_AT_type, |
| 218 | &attr_mem), |
| 219 | &base_type_mem); |
| 220 | Dwarf_Word base_size; |
| 221 | if (dwarf_aggregate_size (base_typedie, &base_size) != 0) |
| 222 | return -1; |
| 223 | |
| 224 | int used = hfa_type (base_typedie, base_size, locp, 0); |
| 225 | if (used < 0 || used > 8) |
| 226 | return used; |
| 227 | if (size % (*locp)[1].number != 0) |
| 228 | return 0; |
| 229 | fpregs_used += used * (size / (*locp)[1].number); |
| 230 | break; |
| 231 | |
| 232 | default: |
| 233 | return 9; |
| 234 | } |
| 235 | |
| 236 | return fpregs_used; |
| 237 | } |
| 238 | |
| 239 | int |
| 240 | ia64_return_value_location (Dwarf_Die *functypedie, const Dwarf_Op **locp) |
| 241 | { |
| 242 | /* Start with the function's type, and get the DW_AT_type attribute, |
| 243 | which is the type of the return value. */ |
| 244 | Dwarf_Die die_mem, *typedie = &die_mem; |
| 245 | int tag = dwarf_peeled_die_type (functypedie, typedie); |
| 246 | if (tag <= 0) |
| 247 | return tag; |
| 248 | |
| 249 | Dwarf_Word size; |
| 250 | switch (tag) |
| 251 | { |
| 252 | case -1: |
| 253 | return -1; |
| 254 | |
| 255 | case DW_TAG_subrange_type: |
| 256 | if (! dwarf_hasattr_integrate (typedie, DW_AT_byte_size)) |
| 257 | { |
| 258 | Dwarf_Attribute attr_mem, *attr; |
| 259 | attr = dwarf_attr_integrate (typedie, DW_AT_type, &attr_mem); |
| 260 | typedie = dwarf_formref_die (attr, &die_mem); |
| 261 | tag = DWARF_TAG_OR_RETURN (typedie); |
| 262 | } |
| 263 | FALLTHROUGH; |
| 264 | |
| 265 | case DW_TAG_base_type: |
| 266 | case DW_TAG_enumeration_type: |
| 267 | case DW_TAG_pointer_type: |
| 268 | case DW_TAG_ptr_to_member_type: |
| 269 | { |
| 270 | Dwarf_Attribute attr_mem; |
| 271 | if (dwarf_formudata (dwarf_attr_integrate (typedie, DW_AT_byte_size, |
| 272 | &attr_mem), &size) != 0) |
| 273 | { |
| 274 | if (tag == DW_TAG_pointer_type || tag == DW_TAG_ptr_to_member_type) |
| 275 | size = 8; |
| 276 | else |
| 277 | return -1; |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | if (tag == DW_TAG_base_type) |
| 282 | { |
| 283 | Dwarf_Attribute attr_mem; |
| 284 | Dwarf_Word encoding; |
| 285 | if (dwarf_formudata (dwarf_attr_integrate (typedie, DW_AT_encoding, |
| 286 | &attr_mem), |
| 287 | &encoding) != 0) |
| 288 | return -1; |
| 289 | |
| 290 | switch (encoding) |
| 291 | { |
| 292 | case DW_ATE_float: |
| 293 | switch (size) |
| 294 | { |
| 295 | case 4: /* float */ |
| 296 | *locp = loc_fpreg_4; |
| 297 | return nloc_fpreg; |
| 298 | case 8: /* double */ |
| 299 | *locp = loc_fpreg_8; |
| 300 | return nloc_fpreg; |
| 301 | case 10: /* x86-style long double, not really used */ |
| 302 | *locp = loc_fpreg_10; |
| 303 | return nloc_fpreg; |
| 304 | case 16: /* long double, IEEE quad format */ |
| 305 | *locp = loc_intreg; |
| 306 | return nloc_intregs (2); |
| 307 | } |
| 308 | return -2; |
| 309 | |
| 310 | case DW_ATE_complex_float: |
| 311 | switch (size) |
| 312 | { |
| 313 | case 4 * 2: /* complex float */ |
| 314 | *locp = loc_fpreg_4; |
| 315 | return nloc_fpregs (2); |
| 316 | case 8 * 2: /* complex double */ |
| 317 | *locp = loc_fpreg_8; |
| 318 | return nloc_fpregs (2); |
| 319 | case 10 * 2: /* complex long double (x86-style) */ |
| 320 | *locp = loc_fpreg_10; |
| 321 | return nloc_fpregs (2); |
| 322 | case 16 * 2: /* complex long double (IEEE quad) */ |
| 323 | *locp = loc_intreg; |
| 324 | return nloc_intregs (4); |
| 325 | } |
| 326 | return -2; |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | intreg: |
| 331 | *locp = loc_intreg; |
| 332 | if (size <= 8) |
| 333 | return nloc_intreg; |
| 334 | if (size <= 32) |
| 335 | return nloc_intregs ((size + 7) / 8); |
| 336 | |
| 337 | large: |
| 338 | *locp = loc_aggregate; |
| 339 | return nloc_aggregate; |
| 340 | |
| 341 | case DW_TAG_structure_type: |
| 342 | case DW_TAG_class_type: |
| 343 | case DW_TAG_union_type: |
| 344 | case DW_TAG_array_type: |
| 345 | if (dwarf_aggregate_size (typedie, &size) != 0) |
| 346 | return -1; |
| 347 | |
| 348 | /* If this qualifies as an homogeneous floating-point aggregate |
| 349 | (HFA), then it should be returned in FP regs. */ |
| 350 | int nfpreg = hfa_type (typedie, size, locp, 0); |
| 351 | if (nfpreg < 0) |
| 352 | return nfpreg; |
| 353 | else if (nfpreg > 0 && nfpreg <= 8) |
| 354 | return nfpreg == 1 ? nloc_fpreg : nloc_fpregs (nfpreg); |
| 355 | |
| 356 | if (size > 32) |
| 357 | goto large; |
| 358 | |
| 359 | goto intreg; |
| 360 | } |
| 361 | |
| 362 | /* XXX We don't have a good way to return specific errors from ebl calls. |
| 363 | This value means we do not understand the type, but it is well-formed |
| 364 | DWARF and might be valid. */ |
| 365 | return -2; |
| 366 | } |