Austin Schuh | 0cbef62 | 2015-09-06 17:34:52 -0700 | [diff] [blame] | 1 | // Copyright 2008 Google Inc. |
| 2 | // All Rights Reserved. |
| 3 | // |
| 4 | // Redistribution and use in source and binary forms, with or without |
| 5 | // modification, are permitted provided that the following conditions are |
| 6 | // met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright |
| 9 | // notice, this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above |
| 11 | // copyright notice, this list of conditions and the following disclaimer |
| 12 | // in the documentation and/or other materials provided with the |
| 13 | // distribution. |
| 14 | // * Neither the name of Google Inc. nor the names of its |
| 15 | // contributors may be used to endorse or promote products derived from |
| 16 | // this software without specific prior written permission. |
| 17 | // |
| 18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
Austin Schuh | 889ac43 | 2018-10-29 22:57:02 -0700 | [diff] [blame] | 29 | |
Austin Schuh | 0cbef62 | 2015-09-06 17:34:52 -0700 | [diff] [blame] | 30 | |
| 31 | // This sample shows how to test common properties of multiple |
| 32 | // implementations of the same interface (aka interface tests). |
| 33 | |
| 34 | // The interface and its implementations are in this header. |
| 35 | #include "prime_tables.h" |
| 36 | |
| 37 | #include "gtest/gtest.h" |
Austin Schuh | 889ac43 | 2018-10-29 22:57:02 -0700 | [diff] [blame] | 38 | namespace { |
Austin Schuh | 0cbef62 | 2015-09-06 17:34:52 -0700 | [diff] [blame] | 39 | // First, we define some factory functions for creating instances of |
| 40 | // the implementations. You may be able to skip this step if all your |
| 41 | // implementations can be constructed the same way. |
| 42 | |
| 43 | template <class T> |
| 44 | PrimeTable* CreatePrimeTable(); |
| 45 | |
| 46 | template <> |
| 47 | PrimeTable* CreatePrimeTable<OnTheFlyPrimeTable>() { |
| 48 | return new OnTheFlyPrimeTable; |
| 49 | } |
| 50 | |
| 51 | template <> |
| 52 | PrimeTable* CreatePrimeTable<PreCalculatedPrimeTable>() { |
| 53 | return new PreCalculatedPrimeTable(10000); |
| 54 | } |
| 55 | |
| 56 | // Then we define a test fixture class template. |
| 57 | template <class T> |
| 58 | class PrimeTableTest : public testing::Test { |
| 59 | protected: |
| 60 | // The ctor calls the factory function to create a prime table |
| 61 | // implemented by T. |
| 62 | PrimeTableTest() : table_(CreatePrimeTable<T>()) {} |
| 63 | |
James Kuszmaul | e2f1529 | 2021-05-10 22:37:32 -0700 | [diff] [blame^] | 64 | ~PrimeTableTest() override { delete table_; } |
Austin Schuh | 0cbef62 | 2015-09-06 17:34:52 -0700 | [diff] [blame] | 65 | |
| 66 | // Note that we test an implementation via the base interface |
| 67 | // instead of the actual implementation class. This is important |
| 68 | // for keeping the tests close to the real world scenario, where the |
| 69 | // implementation is invoked via the base interface. It avoids |
| 70 | // got-yas where the implementation class has a method that shadows |
| 71 | // a method with the same name (but slightly different argument |
| 72 | // types) in the base interface, for example. |
| 73 | PrimeTable* const table_; |
| 74 | }; |
| 75 | |
Austin Schuh | 0cbef62 | 2015-09-06 17:34:52 -0700 | [diff] [blame] | 76 | using testing::Types; |
| 77 | |
| 78 | // Google Test offers two ways for reusing tests for different types. |
| 79 | // The first is called "typed tests". You should use it if you |
| 80 | // already know *all* the types you are gonna exercise when you write |
| 81 | // the tests. |
| 82 | |
| 83 | // To write a typed test case, first use |
| 84 | // |
James Kuszmaul | e2f1529 | 2021-05-10 22:37:32 -0700 | [diff] [blame^] | 85 | // TYPED_TEST_SUITE(TestCaseName, TypeList); |
Austin Schuh | 0cbef62 | 2015-09-06 17:34:52 -0700 | [diff] [blame] | 86 | // |
| 87 | // to declare it and specify the type parameters. As with TEST_F, |
| 88 | // TestCaseName must match the test fixture name. |
| 89 | |
| 90 | // The list of types we want to test. |
| 91 | typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable> Implementations; |
| 92 | |
James Kuszmaul | e2f1529 | 2021-05-10 22:37:32 -0700 | [diff] [blame^] | 93 | TYPED_TEST_SUITE(PrimeTableTest, Implementations); |
Austin Schuh | 0cbef62 | 2015-09-06 17:34:52 -0700 | [diff] [blame] | 94 | |
| 95 | // Then use TYPED_TEST(TestCaseName, TestName) to define a typed test, |
| 96 | // similar to TEST_F. |
| 97 | TYPED_TEST(PrimeTableTest, ReturnsFalseForNonPrimes) { |
| 98 | // Inside the test body, you can refer to the type parameter by |
| 99 | // TypeParam, and refer to the fixture class by TestFixture. We |
| 100 | // don't need them in this example. |
| 101 | |
| 102 | // Since we are in the template world, C++ requires explicitly |
| 103 | // writing 'this->' when referring to members of the fixture class. |
| 104 | // This is something you have to learn to live with. |
| 105 | EXPECT_FALSE(this->table_->IsPrime(-5)); |
| 106 | EXPECT_FALSE(this->table_->IsPrime(0)); |
| 107 | EXPECT_FALSE(this->table_->IsPrime(1)); |
| 108 | EXPECT_FALSE(this->table_->IsPrime(4)); |
| 109 | EXPECT_FALSE(this->table_->IsPrime(6)); |
| 110 | EXPECT_FALSE(this->table_->IsPrime(100)); |
| 111 | } |
| 112 | |
| 113 | TYPED_TEST(PrimeTableTest, ReturnsTrueForPrimes) { |
| 114 | EXPECT_TRUE(this->table_->IsPrime(2)); |
| 115 | EXPECT_TRUE(this->table_->IsPrime(3)); |
| 116 | EXPECT_TRUE(this->table_->IsPrime(5)); |
| 117 | EXPECT_TRUE(this->table_->IsPrime(7)); |
| 118 | EXPECT_TRUE(this->table_->IsPrime(11)); |
| 119 | EXPECT_TRUE(this->table_->IsPrime(131)); |
| 120 | } |
| 121 | |
| 122 | TYPED_TEST(PrimeTableTest, CanGetNextPrime) { |
| 123 | EXPECT_EQ(2, this->table_->GetNextPrime(0)); |
| 124 | EXPECT_EQ(3, this->table_->GetNextPrime(2)); |
| 125 | EXPECT_EQ(5, this->table_->GetNextPrime(3)); |
| 126 | EXPECT_EQ(7, this->table_->GetNextPrime(5)); |
| 127 | EXPECT_EQ(11, this->table_->GetNextPrime(7)); |
| 128 | EXPECT_EQ(131, this->table_->GetNextPrime(128)); |
| 129 | } |
| 130 | |
| 131 | // That's it! Google Test will repeat each TYPED_TEST for each type |
James Kuszmaul | e2f1529 | 2021-05-10 22:37:32 -0700 | [diff] [blame^] | 132 | // in the type list specified in TYPED_TEST_SUITE. Sit back and be |
Austin Schuh | 0cbef62 | 2015-09-06 17:34:52 -0700 | [diff] [blame] | 133 | // happy that you don't have to define them multiple times. |
| 134 | |
Austin Schuh | 0cbef62 | 2015-09-06 17:34:52 -0700 | [diff] [blame] | 135 | using testing::Types; |
| 136 | |
| 137 | // Sometimes, however, you don't yet know all the types that you want |
| 138 | // to test when you write the tests. For example, if you are the |
| 139 | // author of an interface and expect other people to implement it, you |
| 140 | // might want to write a set of tests to make sure each implementation |
| 141 | // conforms to some basic requirements, but you don't know what |
| 142 | // implementations will be written in the future. |
| 143 | // |
| 144 | // How can you write the tests without committing to the type |
| 145 | // parameters? That's what "type-parameterized tests" can do for you. |
| 146 | // It is a bit more involved than typed tests, but in return you get a |
| 147 | // test pattern that can be reused in many contexts, which is a big |
| 148 | // win. Here's how you do it: |
| 149 | |
| 150 | // First, define a test fixture class template. Here we just reuse |
| 151 | // the PrimeTableTest fixture defined earlier: |
| 152 | |
| 153 | template <class T> |
| 154 | class PrimeTableTest2 : public PrimeTableTest<T> { |
| 155 | }; |
| 156 | |
| 157 | // Then, declare the test case. The argument is the name of the test |
| 158 | // fixture, and also the name of the test case (as usual). The _P |
| 159 | // suffix is for "parameterized" or "pattern". |
James Kuszmaul | e2f1529 | 2021-05-10 22:37:32 -0700 | [diff] [blame^] | 160 | TYPED_TEST_SUITE_P(PrimeTableTest2); |
Austin Schuh | 0cbef62 | 2015-09-06 17:34:52 -0700 | [diff] [blame] | 161 | |
| 162 | // Next, use TYPED_TEST_P(TestCaseName, TestName) to define a test, |
| 163 | // similar to what you do with TEST_F. |
| 164 | TYPED_TEST_P(PrimeTableTest2, ReturnsFalseForNonPrimes) { |
| 165 | EXPECT_FALSE(this->table_->IsPrime(-5)); |
| 166 | EXPECT_FALSE(this->table_->IsPrime(0)); |
| 167 | EXPECT_FALSE(this->table_->IsPrime(1)); |
| 168 | EXPECT_FALSE(this->table_->IsPrime(4)); |
| 169 | EXPECT_FALSE(this->table_->IsPrime(6)); |
| 170 | EXPECT_FALSE(this->table_->IsPrime(100)); |
| 171 | } |
| 172 | |
| 173 | TYPED_TEST_P(PrimeTableTest2, ReturnsTrueForPrimes) { |
| 174 | EXPECT_TRUE(this->table_->IsPrime(2)); |
| 175 | EXPECT_TRUE(this->table_->IsPrime(3)); |
| 176 | EXPECT_TRUE(this->table_->IsPrime(5)); |
| 177 | EXPECT_TRUE(this->table_->IsPrime(7)); |
| 178 | EXPECT_TRUE(this->table_->IsPrime(11)); |
| 179 | EXPECT_TRUE(this->table_->IsPrime(131)); |
| 180 | } |
| 181 | |
| 182 | TYPED_TEST_P(PrimeTableTest2, CanGetNextPrime) { |
| 183 | EXPECT_EQ(2, this->table_->GetNextPrime(0)); |
| 184 | EXPECT_EQ(3, this->table_->GetNextPrime(2)); |
| 185 | EXPECT_EQ(5, this->table_->GetNextPrime(3)); |
| 186 | EXPECT_EQ(7, this->table_->GetNextPrime(5)); |
| 187 | EXPECT_EQ(11, this->table_->GetNextPrime(7)); |
| 188 | EXPECT_EQ(131, this->table_->GetNextPrime(128)); |
| 189 | } |
| 190 | |
| 191 | // Type-parameterized tests involve one extra step: you have to |
| 192 | // enumerate the tests you defined: |
James Kuszmaul | e2f1529 | 2021-05-10 22:37:32 -0700 | [diff] [blame^] | 193 | REGISTER_TYPED_TEST_SUITE_P( |
Austin Schuh | 0cbef62 | 2015-09-06 17:34:52 -0700 | [diff] [blame] | 194 | PrimeTableTest2, // The first argument is the test case name. |
| 195 | // The rest of the arguments are the test names. |
| 196 | ReturnsFalseForNonPrimes, ReturnsTrueForPrimes, CanGetNextPrime); |
| 197 | |
| 198 | // At this point the test pattern is done. However, you don't have |
| 199 | // any real test yet as you haven't said which types you want to run |
| 200 | // the tests with. |
| 201 | |
| 202 | // To turn the abstract test pattern into real tests, you instantiate |
| 203 | // it with a list of types. Usually the test pattern will be defined |
| 204 | // in a .h file, and anyone can #include and instantiate it. You can |
| 205 | // even instantiate it more than once in the same program. To tell |
| 206 | // different instances apart, you give each of them a name, which will |
| 207 | // become part of the test case name and can be used in test filters. |
| 208 | |
| 209 | // The list of types we want to test. Note that it doesn't have to be |
| 210 | // defined at the time we write the TYPED_TEST_P()s. |
| 211 | typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable> |
| 212 | PrimeTableImplementations; |
James Kuszmaul | e2f1529 | 2021-05-10 22:37:32 -0700 | [diff] [blame^] | 213 | INSTANTIATE_TYPED_TEST_SUITE_P(OnTheFlyAndPreCalculated, // Instance name |
| 214 | PrimeTableTest2, // Test case name |
| 215 | PrimeTableImplementations); // Type list |
Austin Schuh | 0cbef62 | 2015-09-06 17:34:52 -0700 | [diff] [blame] | 216 | |
Austin Schuh | 889ac43 | 2018-10-29 22:57:02 -0700 | [diff] [blame] | 217 | } // namespace |