blob: 0d828d0321c49c0334bc542fd4ad3a4f11f3daf5 [file] [log] [blame]
joe2d92e852014-01-25 14:31:24 -08001#!/usr/bin/python
2
3import control_loop
4import numpy
5import sys
6from matplotlib import pylab
7
8class Shooter(control_loop.ControlLoop):
9 def __init__(self, name="RawShooter"):
10 super(Shooter, self).__init__(name)
11 # Stall Torque in N m
James Kuszmaul49d0e6c2014-02-03 19:46:17 -080012 self.stall_torque = .4982
joe2d92e852014-01-25 14:31:24 -080013 # Stall Current in Amps
14 self.stall_current = 85
15 # Free Speed in RPM
16 self.free_speed = 19300.0
17 # Free Current in Amps
James Kuszmaul49d0e6c2014-02-03 19:46:17 -080018 self.free_current = 1.2
joe2d92e852014-01-25 14:31:24 -080019 # Moment of inertia of the shooter in kg m^2
James Kuszmaule1755b32014-02-13 06:27:48 -080020 # Needs to be figured out in practice.
21 self.J = 5
James Kuszmaul49d0e6c2014-02-03 19:46:17 -080022 # Resistance of the motor, divided by the number of motors.
23 self.R = 12.0 / self.stall_current / 2.0
joe2d92e852014-01-25 14:31:24 -080024 # Motor velocity constant
25 self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
James Kuszmaule1755b32014-02-13 06:27:48 -080026 (12.0 - self.R * self.free_current))
joe2d92e852014-01-25 14:31:24 -080027 # Torque constant
28 self.Kt = self.stall_torque / self.stall_current
James Kuszmaul49d0e6c2014-02-03 19:46:17 -080029 # Spring constant for the springs, N/m
James Kuszmaule1755b32014-02-13 06:27:48 -080030 self.Ks = 2800.0
31 # Gear ratio multiplied by radius of final sprocket.
32 self.G = 10.0 / 40.0 * 20.0 / 54.0 * 24.0 / 54.0 * 20.0 / 84.0 * 0.0182
joe2d92e852014-01-25 14:31:24 -080033 # Control loop time step
34 self.dt = 0.01
35
James Kuszmaul49d0e6c2014-02-03 19:46:17 -080036
joe2d92e852014-01-25 14:31:24 -080037 # State feedback matrices
James Kuszmaul49d0e6c2014-02-03 19:46:17 -080038 # TODO(james): Make this work with origins other than at kx = 0.
joe2d92e852014-01-25 14:31:24 -080039 self.A_continuous = numpy.matrix(
40 [[0, 1],
James Kuszmaule1755b32014-02-13 06:27:48 -080041 [-self.Ks / self.J,
James Kuszmaul49d0e6c2014-02-03 19:46:17 -080042 -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
joe2d92e852014-01-25 14:31:24 -080043 self.B_continuous = numpy.matrix(
44 [[0],
45 [self.Kt / (self.J * self.G * self.R)]])
James Kuszmaule1755b32014-02-13 06:27:48 -080046 print "Continuous A, B:", self.A_continuous, self.B_continuous
joe2d92e852014-01-25 14:31:24 -080047 self.C = numpy.matrix([[1, 0]])
48 self.D = numpy.matrix([[0]])
49
50 self.A, self.B = self.ContinuousToDiscrete(
51 self.A_continuous, self.B_continuous, self.dt)
James Kuszmaule1755b32014-02-13 06:27:48 -080052 print "Discrete A, B: ", self.A, self.B
53 print "Eigenvalues A: ", numpy.linalg.eig(self.A)[0]
joe2d92e852014-01-25 14:31:24 -080054
James Kuszmaule1755b32014-02-13 06:27:48 -080055 self.PlaceControllerPoles([0.85, 0.85])
joe2d92e852014-01-25 14:31:24 -080056
57 self.rpl = .05
58 self.ipl = 0.008
James Kuszmaule1755b32014-02-13 06:27:48 -080059 self.PlaceObserverPoles([self.rpl,
60 self.rpl])
joe2d92e852014-01-25 14:31:24 -080061
62 self.U_max = numpy.matrix([[12.0]])
63 self.U_min = numpy.matrix([[-12.0]])
64
65 self.InitializeState()
66
67
68class ShooterDeltaU(Shooter):
69 def __init__(self, name="Shooter"):
70 super(ShooterDeltaU, self).__init__(name)
71 A_unaugmented = self.A
72 B_unaugmented = self.B
73
74 self.A = numpy.matrix([[0.0, 0.0, 0.0],
75 [0.0, 0.0, 0.0],
76 [0.0, 0.0, 1.0]])
77 self.A[0:2, 0:2] = A_unaugmented
78 self.A[0:2, 2] = B_unaugmented
79
80 self.B = numpy.matrix([[0.0],
81 [0.0],
82 [1.0]])
83
84 self.C = numpy.matrix([[1.0, 0.0, 0.0]])
85 self.D = numpy.matrix([[0.0]])
86
James Kuszmaul49d0e6c2014-02-03 19:46:17 -080087 self.PlaceControllerPoles([0.55, 0.45, 0.80])
joe2d92e852014-01-25 14:31:24 -080088
89 print "K"
90 print self.K
91 print "Placed controller poles are"
92 print numpy.linalg.eig(self.A - self.B * self.K)[0]
93
94 self.rpl = .05
95 self.ipl = 0.008
96 self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
97 self.rpl - 1j * self.ipl, 0.90])
98 print "Placed observer poles are"
99 print numpy.linalg.eig(self.A - self.L * self.C)[0]
100
101 self.U_max = numpy.matrix([[12.0]])
102 self.U_min = numpy.matrix([[-12.0]])
103
104 self.InitializeState()
105
106
107def ClipDeltaU(shooter, delta_u):
108 old_u = numpy.matrix([[shooter.X[2, 0]]])
109 new_u = numpy.clip(old_u + delta_u, shooter.U_min, shooter.U_max)
110 return new_u - old_u
111
112def main(argv):
113 # Simulate the response of the system to a step input.
James Kuszmaul49d0e6c2014-02-03 19:46:17 -0800114 shooter = Shooter()
joe2d92e852014-01-25 14:31:24 -0800115 simulated_x = []
James Kuszmaule1755b32014-02-13 06:27:48 -0800116 u = []
117 shooter.X[0, 0] = 1
118 for _ in xrange(2000):
119 U = shooter.X[1, 0] / shooter.G / shooter.Kv
120 shooter.Update(numpy.matrix([[U]]))
joe2d92e852014-01-25 14:31:24 -0800121 simulated_x.append(shooter.X[0, 0])
James Kuszmaule1755b32014-02-13 06:27:48 -0800122 u.append(U / 10.0)
joe2d92e852014-01-25 14:31:24 -0800123
James Kuszmaule1755b32014-02-13 06:27:48 -0800124 pylab.plot(range(2000), simulated_x)
125 pylab.plot(range(2000), u)
joe2d92e852014-01-25 14:31:24 -0800126 pylab.show()
127
James Kuszmaul49d0e6c2014-02-03 19:46:17 -0800128 # Simulate the response of the system to a goal.
129 shooter = Shooter()
joe2d92e852014-01-25 14:31:24 -0800130 close_loop_x = []
131 close_loop_u = []
James Kuszmaul49d0e6c2014-02-03 19:46:17 -0800132 R = numpy.matrix([[1.0], [0.0]])
joe2d92e852014-01-25 14:31:24 -0800133 for _ in xrange(100):
James Kuszmaul49d0e6c2014-02-03 19:46:17 -0800134 feed_forward = (-numpy.linalg.lstsq(shooter.B_continuous, numpy.identity(
135 shooter.B_continuous.shape[0]))[0] *
136 shooter.A_continuous * R)
137 U = numpy.clip(shooter.K * (R - shooter.X_hat) + feed_forward,
138 shooter.U_min, shooter.U_max)
139#U = ClipDeltaU(shooter, U)
joe2d92e852014-01-25 14:31:24 -0800140 shooter.UpdateObserver(U)
141 shooter.Update(U)
142 close_loop_x.append(shooter.X[0, 0] * 10)
James Kuszmaul49d0e6c2014-02-03 19:46:17 -0800143 close_loop_u.append(U[0, 0])
joe2d92e852014-01-25 14:31:24 -0800144
145 pylab.plot(range(100), close_loop_x)
146 pylab.plot(range(100), close_loop_u)
147 pylab.show()
148
149 # Write the generated constants out to a file.
150 if len(argv) != 3:
151 print "Expected .h file name and .cc file name for"
152 print "both the plant and unaugmented plant"
153 else:
154 unaug_shooter = Shooter("RawShooter")
155 unaug_loop_writer = control_loop.ControlLoopWriter("RawShooter",
156 [unaug_shooter])
157 #if argv[3][-3:] == '.cc':
158 # unaug_loop_writer.Write(argv[4], argv[3])
159 #else:
160 # unaug_loop_writer.Write(argv[3], argv[4])
161
162 loop_writer = control_loop.ControlLoopWriter("Shooter", [shooter])
163 if argv[1][-3:] == '.cc':
164 loop_writer.Write(argv[2], argv[1])
165 else:
166 loop_writer.Write(argv[1], argv[2])
167
168if __name__ == '__main__':
169 sys.exit(main(sys.argv))