Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 11 | // discard stack allocation as that too bypasses malloc |
| 12 | #define EIGEN_STACK_ALLOCATION_LIMIT 0 |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 13 | // heap allocation will raise an assert if enabled at runtime |
| 14 | #define EIGEN_RUNTIME_NO_MALLOC |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 15 | |
| 16 | #include "main.h" |
| 17 | #include <Eigen/Cholesky> |
| 18 | #include <Eigen/Eigenvalues> |
| 19 | #include <Eigen/LU> |
| 20 | #include <Eigen/QR> |
| 21 | #include <Eigen/SVD> |
| 22 | |
| 23 | template<typename MatrixType> void nomalloc(const MatrixType& m) |
| 24 | { |
| 25 | /* this test check no dynamic memory allocation are issued with fixed-size matrices |
| 26 | */ |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 27 | typedef typename MatrixType::Scalar Scalar; |
| 28 | |
| 29 | Index rows = m.rows(); |
| 30 | Index cols = m.cols(); |
| 31 | |
| 32 | MatrixType m1 = MatrixType::Random(rows, cols), |
| 33 | m2 = MatrixType::Random(rows, cols), |
| 34 | m3(rows, cols); |
| 35 | |
| 36 | Scalar s1 = internal::random<Scalar>(); |
| 37 | |
| 38 | Index r = internal::random<Index>(0, rows-1), |
| 39 | c = internal::random<Index>(0, cols-1); |
| 40 | |
| 41 | VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2); |
| 42 | VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c))); |
| 43 | VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix()); |
| 44 | VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2)); |
| 45 | |
| 46 | m2.col(0).noalias() = m1 * m1.col(0); |
| 47 | m2.col(0).noalias() -= m1.adjoint() * m1.col(0); |
| 48 | m2.col(0).noalias() -= m1 * m1.row(0).adjoint(); |
| 49 | m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint(); |
| 50 | |
| 51 | m2.row(0).noalias() = m1.row(0) * m1; |
| 52 | m2.row(0).noalias() -= m1.row(0) * m1.adjoint(); |
| 53 | m2.row(0).noalias() -= m1.col(0).adjoint() * m1; |
| 54 | m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint(); |
| 55 | VERIFY_IS_APPROX(m2,m2); |
| 56 | |
| 57 | m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0); |
| 58 | m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0); |
| 59 | m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint(); |
| 60 | m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint(); |
| 61 | |
| 62 | m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>(); |
| 63 | m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>(); |
| 64 | m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>(); |
| 65 | m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>(); |
| 66 | VERIFY_IS_APPROX(m2,m2); |
| 67 | |
| 68 | m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0); |
| 69 | m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0); |
| 70 | m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint(); |
| 71 | m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint(); |
| 72 | |
| 73 | m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>(); |
| 74 | m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>(); |
| 75 | m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>(); |
| 76 | m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>(); |
| 77 | VERIFY_IS_APPROX(m2,m2); |
| 78 | |
| 79 | m2.template selfadjointView<Lower>().rankUpdate(m1.col(0),-1); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 80 | m2.template selfadjointView<Upper>().rankUpdate(m1.row(0),-1); |
| 81 | m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), m1.col(0)); // rank-2 |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 82 | |
| 83 | // The following fancy matrix-matrix products are not safe yet regarding static allocation |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 84 | m2.template selfadjointView<Lower>().rankUpdate(m1); |
| 85 | m2 += m2.template triangularView<Upper>() * m1; |
| 86 | m2.template triangularView<Upper>() = m2 * m2; |
| 87 | m1 += m1.template selfadjointView<Lower>() * m2; |
| 88 | VERIFY_IS_APPROX(m2,m2); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 89 | } |
| 90 | |
| 91 | template<typename Scalar> |
| 92 | void ctms_decompositions() |
| 93 | { |
| 94 | const int maxSize = 16; |
| 95 | const int size = 12; |
| 96 | |
| 97 | typedef Eigen::Matrix<Scalar, |
| 98 | Eigen::Dynamic, Eigen::Dynamic, |
| 99 | 0, |
| 100 | maxSize, maxSize> Matrix; |
| 101 | |
| 102 | typedef Eigen::Matrix<Scalar, |
| 103 | Eigen::Dynamic, 1, |
| 104 | 0, |
| 105 | maxSize, 1> Vector; |
| 106 | |
| 107 | typedef Eigen::Matrix<std::complex<Scalar>, |
| 108 | Eigen::Dynamic, Eigen::Dynamic, |
| 109 | 0, |
| 110 | maxSize, maxSize> ComplexMatrix; |
| 111 | |
| 112 | const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size)); |
| 113 | Matrix X(size,size); |
| 114 | const ComplexMatrix complexA(ComplexMatrix::Random(size, size)); |
| 115 | const Matrix saA = A.adjoint() * A; |
| 116 | const Vector b(Vector::Random(size)); |
| 117 | Vector x(size); |
| 118 | |
| 119 | // Cholesky module |
| 120 | Eigen::LLT<Matrix> LLT; LLT.compute(A); |
| 121 | X = LLT.solve(B); |
| 122 | x = LLT.solve(b); |
| 123 | Eigen::LDLT<Matrix> LDLT; LDLT.compute(A); |
| 124 | X = LDLT.solve(B); |
| 125 | x = LDLT.solve(b); |
| 126 | |
| 127 | // Eigenvalues module |
| 128 | Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp; hessDecomp.compute(complexA); |
| 129 | Eigen::ComplexSchur<ComplexMatrix> cSchur(size); cSchur.compute(complexA); |
| 130 | Eigen::ComplexEigenSolver<ComplexMatrix> cEigSolver; cEigSolver.compute(complexA); |
| 131 | Eigen::EigenSolver<Matrix> eigSolver; eigSolver.compute(A); |
| 132 | Eigen::SelfAdjointEigenSolver<Matrix> saEigSolver(size); saEigSolver.compute(saA); |
| 133 | Eigen::Tridiagonalization<Matrix> tridiag; tridiag.compute(saA); |
| 134 | |
| 135 | // LU module |
| 136 | Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A); |
| 137 | X = ppLU.solve(B); |
| 138 | x = ppLU.solve(b); |
| 139 | Eigen::FullPivLU<Matrix> fpLU; fpLU.compute(A); |
| 140 | X = fpLU.solve(B); |
| 141 | x = fpLU.solve(b); |
| 142 | |
| 143 | // QR module |
| 144 | Eigen::HouseholderQR<Matrix> hQR; hQR.compute(A); |
| 145 | X = hQR.solve(B); |
| 146 | x = hQR.solve(b); |
| 147 | Eigen::ColPivHouseholderQR<Matrix> cpQR; cpQR.compute(A); |
| 148 | X = cpQR.solve(B); |
| 149 | x = cpQR.solve(b); |
| 150 | Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A); |
| 151 | // FIXME X = fpQR.solve(B); |
| 152 | x = fpQR.solve(b); |
| 153 | |
| 154 | // SVD module |
| 155 | Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A, ComputeFullU | ComputeFullV); |
| 156 | } |
| 157 | |
| 158 | void test_zerosized() { |
| 159 | // default constructors: |
| 160 | Eigen::MatrixXd A; |
| 161 | Eigen::VectorXd v; |
| 162 | // explicit zero-sized: |
| 163 | Eigen::ArrayXXd A0(0,0); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 164 | Eigen::ArrayXd v0(0); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 165 | |
| 166 | // assigning empty objects to each other: |
| 167 | A=A0; |
| 168 | v=v0; |
| 169 | } |
| 170 | |
| 171 | template<typename MatrixType> void test_reference(const MatrixType& m) { |
| 172 | typedef typename MatrixType::Scalar Scalar; |
| 173 | enum { Flag = MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor}; |
| 174 | enum { TransposeFlag = !MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor}; |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame] | 175 | Index rows = m.rows(), cols=m.cols(); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 176 | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Flag > MatrixX; |
| 177 | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, TransposeFlag> MatrixXT; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 178 | // Dynamic reference: |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 179 | typedef Eigen::Ref<const MatrixX > Ref; |
| 180 | typedef Eigen::Ref<const MatrixXT > RefT; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 181 | |
| 182 | Ref r1(m); |
| 183 | Ref r2(m.block(rows/3, cols/4, rows/2, cols/2)); |
| 184 | RefT r3(m.transpose()); |
| 185 | RefT r4(m.topLeftCorner(rows/2, cols/2).transpose()); |
| 186 | |
| 187 | VERIFY_RAISES_ASSERT(RefT r5(m)); |
| 188 | VERIFY_RAISES_ASSERT(Ref r6(m.transpose())); |
| 189 | VERIFY_RAISES_ASSERT(Ref r7(Scalar(2) * m)); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 190 | |
| 191 | // Copy constructors shall also never malloc |
| 192 | Ref r8 = r1; |
| 193 | RefT r9 = r3; |
| 194 | |
| 195 | // Initializing from a compatible Ref shall also never malloc |
| 196 | Eigen::Ref<const MatrixX, Unaligned, Stride<Dynamic, Dynamic> > r10=r8, r11=m; |
| 197 | |
| 198 | // Initializing from an incompatible Ref will malloc: |
| 199 | typedef Eigen::Ref<const MatrixX, Aligned> RefAligned; |
| 200 | VERIFY_RAISES_ASSERT(RefAligned r12=r10); |
| 201 | VERIFY_RAISES_ASSERT(Ref r13=r10); // r10 has more dynamic strides |
| 202 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 203 | } |
| 204 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame] | 205 | EIGEN_DECLARE_TEST(nomalloc) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 206 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 207 | // create some dynamic objects |
| 208 | Eigen::MatrixXd M1 = MatrixXd::Random(3,3); |
| 209 | Ref<const MatrixXd> R1 = 2.0*M1; // Ref requires temporary |
| 210 | |
| 211 | // from here on prohibit malloc: |
| 212 | Eigen::internal::set_is_malloc_allowed(false); |
| 213 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 214 | // check that our operator new is indeed called: |
| 215 | VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3))); |
| 216 | CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) ); |
| 217 | CALL_SUBTEST_2(nomalloc(Matrix4d()) ); |
| 218 | CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) ); |
| 219 | |
| 220 | // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms) |
| 221 | CALL_SUBTEST_4(ctms_decompositions<float>()); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 222 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 223 | CALL_SUBTEST_5(test_zerosized()); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 224 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 225 | CALL_SUBTEST_6(test_reference(Matrix<float,32,32>())); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 226 | CALL_SUBTEST_7(test_reference(R1)); |
| 227 | CALL_SUBTEST_8(Ref<MatrixXd> R2 = M1.topRows<2>(); test_reference(R2)); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 228 | } |