Brian Silverman | dc6866b | 2018-08-05 00:18:23 -0700 | [diff] [blame^] | 1 | // |
| 2 | // Copyright (c) 2000-2010 |
| 3 | // Joerg Walter, Mathias Koch, David Bellot |
| 4 | // |
| 5 | // Distributed under the Boost Software License, Version 1.0. (See |
| 6 | // accompanying file LICENSE_1_0.txt or copy at |
| 7 | // http://www.boost.org/LICENSE_1_0.txt) |
| 8 | // |
| 9 | // The authors gratefully acknowledge the support of |
| 10 | // GeNeSys mbH & Co. KG in producing this work. |
| 11 | // |
| 12 | |
| 13 | #ifndef _BOOST_UBLAS_IO_ |
| 14 | #define _BOOST_UBLAS_IO_ |
| 15 | |
| 16 | // Only forward definition required to define stream operations |
| 17 | #include <iosfwd> |
| 18 | #include <sstream> |
| 19 | #include <boost/numeric/ublas/matrix_expression.hpp> |
| 20 | |
| 21 | |
| 22 | namespace boost { namespace numeric { namespace ublas { |
| 23 | |
| 24 | /** \brief output stream operator for vector expressions |
| 25 | * |
| 26 | * Any vector expressions can be written to a standard output stream |
| 27 | * as defined in the C++ standard library. For example: |
| 28 | * \code |
| 29 | * vector<float> v1(3),v2(3); |
| 30 | * for(size_t i=0; i<3; i++) |
| 31 | * { |
| 32 | * v1(i) = i+0.2; |
| 33 | * v2(i) = i+0.3; |
| 34 | * } |
| 35 | * cout << v1+v2 << endl; |
| 36 | * \endcode |
| 37 | * will display the some of the 2 vectors like this: |
| 38 | * \code |
| 39 | * [3](0.5,2.5,4.5) |
| 40 | * \endcode |
| 41 | * |
| 42 | * \param os is a standard basic output stream |
| 43 | * \param v is a vector expression |
| 44 | * \return a reference to the resulting output stream |
| 45 | */ |
| 46 | template<class E, class T, class VE> |
| 47 | // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. |
| 48 | std::basic_ostream<E, T> &operator << (std::basic_ostream<E, T> &os, |
| 49 | const vector_expression<VE> &v) { |
| 50 | typedef typename VE::size_type size_type; |
| 51 | size_type size = v ().size (); |
| 52 | std::basic_ostringstream<E, T, std::allocator<E> > s; |
| 53 | s.flags (os.flags ()); |
| 54 | s.imbue (os.getloc ()); |
| 55 | s.precision (os.precision ()); |
| 56 | s << '[' << size << "]("; |
| 57 | if (size > 0) |
| 58 | s << v () (0); |
| 59 | for (size_type i = 1; i < size; ++ i) |
| 60 | s << ',' << v () (i); |
| 61 | s << ')'; |
| 62 | return os << s.str ().c_str (); |
| 63 | } |
| 64 | |
| 65 | /** \brief input stream operator for vectors |
| 66 | * |
| 67 | * This is used to feed in vectors with data stored as an ASCII representation |
| 68 | * from a standard input stream. |
| 69 | * |
| 70 | * From a file or any valid stream, the format is: |
| 71 | * \c [<vector size>](<data1>,<data2>,...<dataN>) like for example: |
| 72 | * \code |
| 73 | * [5](1,2.1,3.2,3.14,0.2) |
| 74 | * \endcode |
| 75 | * |
| 76 | * You can use it like this |
| 77 | * \code |
| 78 | * my_input_stream >> my_vector; |
| 79 | * \endcode |
| 80 | * |
| 81 | * You can only put data into a valid \c vector<> not a \c vector_expression |
| 82 | * |
| 83 | * \param is is a standard basic input stream |
| 84 | * \param v is a vector |
| 85 | * \return a reference to the resulting input stream |
| 86 | */ |
| 87 | template<class E, class T, class VT, class VA> |
| 88 | // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. |
| 89 | std::basic_istream<E, T> &operator >> (std::basic_istream<E, T> &is, |
| 90 | vector<VT, VA> &v) { |
| 91 | typedef typename vector<VT, VA>::size_type size_type; |
| 92 | E ch; |
| 93 | size_type size; |
| 94 | if (is >> ch && ch != '[') { |
| 95 | is.putback (ch); |
| 96 | is.setstate (std::ios_base::failbit); |
| 97 | } else if (is >> size >> ch && ch != ']') { |
| 98 | is.putback (ch); |
| 99 | is.setstate (std::ios_base::failbit); |
| 100 | } else if (! is.fail ()) { |
| 101 | vector<VT, VA> s (size); |
| 102 | if (is >> ch && ch != '(') { |
| 103 | is.putback (ch); |
| 104 | is.setstate (std::ios_base::failbit); |
| 105 | } else if (! is.fail ()) { |
| 106 | for (size_type i = 0; i < size; i ++) { |
| 107 | if (is >> s (i) >> ch && ch != ',') { |
| 108 | is.putback (ch); |
| 109 | if (i < size - 1) |
| 110 | is.setstate (std::ios_base::failbit); |
| 111 | break; |
| 112 | } |
| 113 | } |
| 114 | if (is >> ch && ch != ')') { |
| 115 | is.putback (ch); |
| 116 | is.setstate (std::ios_base::failbit); |
| 117 | } |
| 118 | } |
| 119 | if (! is.fail ()) |
| 120 | v.swap (s); |
| 121 | } |
| 122 | return is; |
| 123 | } |
| 124 | |
| 125 | /** \brief output stream operator for matrix expressions |
| 126 | * |
| 127 | * it outpus the content of a \f$(M \times N)\f$ matrix to a standard output |
| 128 | * stream using the following format: |
| 129 | * \c[<rows>,<columns>]((<m00>,<m01>,...,<m0N>),...,(<mM0>,<mM1>,...,<mMN>)) |
| 130 | * |
| 131 | * For example: |
| 132 | * \code |
| 133 | * matrix<float> m(3,3) = scalar_matrix<float>(3,3,1.0) - diagonal_matrix<float>(3,3,1.0); |
| 134 | * cout << m << endl; |
| 135 | * \encode |
| 136 | * will display |
| 137 | * \code |
| 138 | * [3,3]((0,1,1),(1,0,1),(1,1,0)) |
| 139 | * \endcode |
| 140 | * This output is made for storing and retrieving matrices in a simple way but you can |
| 141 | * easily recognize the following: |
| 142 | * \f[ \left( \begin{array}{ccc} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{array} \right) - \left( \begin{array}{ccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array} \right) = \left( \begin{array}{ccc} 0 & 1 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{array} \right) \f] |
| 143 | * |
| 144 | * \param os is a standard basic output stream |
| 145 | * \param m is a matrix expression |
| 146 | * \return a reference to the resulting output stream |
| 147 | */ |
| 148 | template<class E, class T, class ME> |
| 149 | // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. |
| 150 | std::basic_ostream<E, T> &operator << (std::basic_ostream<E, T> &os, |
| 151 | const matrix_expression<ME> &m) { |
| 152 | typedef typename ME::size_type size_type; |
| 153 | size_type size1 = m ().size1 (); |
| 154 | size_type size2 = m ().size2 (); |
| 155 | std::basic_ostringstream<E, T, std::allocator<E> > s; |
| 156 | s.flags (os.flags ()); |
| 157 | s.imbue (os.getloc ()); |
| 158 | s.precision (os.precision ()); |
| 159 | s << '[' << size1 << ',' << size2 << "]("; |
| 160 | if (size1 > 0) { |
| 161 | s << '(' ; |
| 162 | if (size2 > 0) |
| 163 | s << m () (0, 0); |
| 164 | for (size_type j = 1; j < size2; ++ j) |
| 165 | s << ',' << m () (0, j); |
| 166 | s << ')'; |
| 167 | } |
| 168 | for (size_type i = 1; i < size1; ++ i) { |
| 169 | s << ",(" ; |
| 170 | if (size2 > 0) |
| 171 | s << m () (i, 0); |
| 172 | for (size_type j = 1; j < size2; ++ j) |
| 173 | s << ',' << m () (i, j); |
| 174 | s << ')'; |
| 175 | } |
| 176 | s << ')'; |
| 177 | return os << s.str ().c_str (); |
| 178 | } |
| 179 | |
| 180 | /** \brief input stream operator for matrices |
| 181 | * |
| 182 | * This is used to feed in matrices with data stored as an ASCII representation |
| 183 | * from a standard input stream. |
| 184 | * |
| 185 | * From a file or any valid standard stream, the format is: |
| 186 | * \c[<rows>,<columns>]((<m00>,<m01>,...,<m0N>),...,(<mM0>,<mM1>,...,<mMN>)) |
| 187 | * |
| 188 | * You can use it like this |
| 189 | * \code |
| 190 | * my_input_stream >> my_matrix; |
| 191 | * \endcode |
| 192 | * |
| 193 | * You can only put data into a valid \c matrix<> not a \c matrix_expression |
| 194 | * |
| 195 | * \param is is a standard basic input stream |
| 196 | * \param m is a matrix |
| 197 | * \return a reference to the resulting input stream |
| 198 | */ |
| 199 | template<class E, class T, class MT, class MF, class MA> |
| 200 | // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. |
| 201 | std::basic_istream<E, T> &operator >> (std::basic_istream<E, T> &is, |
| 202 | matrix<MT, MF, MA> &m) { |
| 203 | typedef typename matrix<MT, MF, MA>::size_type size_type; |
| 204 | E ch; |
| 205 | size_type size1, size2; |
| 206 | if (is >> ch && ch != '[') { |
| 207 | is.putback (ch); |
| 208 | is.setstate (std::ios_base::failbit); |
| 209 | } else if (is >> size1 >> ch && ch != ',') { |
| 210 | is.putback (ch); |
| 211 | is.setstate (std::ios_base::failbit); |
| 212 | } else if (is >> size2 >> ch && ch != ']') { |
| 213 | is.putback (ch); |
| 214 | is.setstate (std::ios_base::failbit); |
| 215 | } else if (! is.fail ()) { |
| 216 | matrix<MT, MF, MA> s (size1, size2); |
| 217 | if (is >> ch && ch != '(') { |
| 218 | is.putback (ch); |
| 219 | is.setstate (std::ios_base::failbit); |
| 220 | } else if (! is.fail ()) { |
| 221 | for (size_type i = 0; i < size1; i ++) { |
| 222 | if (is >> ch && ch != '(') { |
| 223 | is.putback (ch); |
| 224 | is.setstate (std::ios_base::failbit); |
| 225 | break; |
| 226 | } |
| 227 | for (size_type j = 0; j < size2; j ++) { |
| 228 | if (is >> s (i, j) >> ch && ch != ',') { |
| 229 | is.putback (ch); |
| 230 | if (j < size2 - 1) { |
| 231 | is.setstate (std::ios_base::failbit); |
| 232 | break; |
| 233 | } |
| 234 | } |
| 235 | } |
| 236 | if (is >> ch && ch != ')') { |
| 237 | is.putback (ch); |
| 238 | is.setstate (std::ios_base::failbit); |
| 239 | break; |
| 240 | } |
| 241 | if (is >> ch && ch != ',') { |
| 242 | is.putback (ch); |
| 243 | if (i < size1 - 1) { |
| 244 | is.setstate (std::ios_base::failbit); |
| 245 | break; |
| 246 | } |
| 247 | } |
| 248 | } |
| 249 | if (is >> ch && ch != ')') { |
| 250 | is.putback (ch); |
| 251 | is.setstate (std::ios_base::failbit); |
| 252 | } |
| 253 | } |
| 254 | if (! is.fail ()) |
| 255 | m.swap (s); |
| 256 | } |
| 257 | return is; |
| 258 | } |
| 259 | |
| 260 | /** \brief special input stream operator for symmetric matrices |
| 261 | * |
| 262 | * This is used to feed in symmetric matrices with data stored as an ASCII |
| 263 | * representation from a standard input stream. |
| 264 | * |
| 265 | * You can simply write your matrices in a file or any valid stream and read them again |
| 266 | * at a later time with this function. The format is the following: |
| 267 | * \code [<rows>,<columns>]((<m00>,<m01>,...,<m0N>),...,(<mM0>,<mM1>,...,<mMN>)) \endcode |
| 268 | * |
| 269 | * You can use it like this |
| 270 | * \code |
| 271 | * my_input_stream >> my_symmetric_matrix; |
| 272 | * \endcode |
| 273 | * |
| 274 | * You can only put data into a valid \c symmetric_matrix<>, not in a \c matrix_expression |
| 275 | * This function also checks that input data form a valid symmetric matrix |
| 276 | * |
| 277 | * \param is is a standard basic input stream |
| 278 | * \param m is a \c symmetric_matrix |
| 279 | * \return a reference to the resulting input stream |
| 280 | */ |
| 281 | template<class E, class T, class MT, class MF1, class MF2, class MA> |
| 282 | // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. |
| 283 | std::basic_istream<E, T> &operator >> (std::basic_istream<E, T> &is, |
| 284 | symmetric_matrix<MT, MF1, MF2, MA> &m) { |
| 285 | typedef typename symmetric_matrix<MT, MF1, MF2, MA>::size_type size_type; |
| 286 | E ch; |
| 287 | size_type size1, size2; |
| 288 | MT value; |
| 289 | if (is >> ch && ch != '[') { |
| 290 | is.putback (ch); |
| 291 | is.setstate (std::ios_base::failbit); |
| 292 | } else if (is >> size1 >> ch && ch != ',') { |
| 293 | is.putback (ch); |
| 294 | is.setstate (std::ios_base::failbit); |
| 295 | } else if (is >> size2 >> ch && (size2 != size1 || ch != ']')) { // symmetric matrix must be square |
| 296 | is.putback (ch); |
| 297 | is.setstate (std::ios_base::failbit); |
| 298 | } else if (! is.fail ()) { |
| 299 | symmetric_matrix<MT, MF1, MF2, MA> s (size1, size2); |
| 300 | if (is >> ch && ch != '(') { |
| 301 | is.putback (ch); |
| 302 | is.setstate (std::ios_base::failbit); |
| 303 | } else if (! is.fail ()) { |
| 304 | for (size_type i = 0; i < size1; i ++) { |
| 305 | if (is >> ch && ch != '(') { |
| 306 | is.putback (ch); |
| 307 | is.setstate (std::ios_base::failbit); |
| 308 | break; |
| 309 | } |
| 310 | for (size_type j = 0; j < size2; j ++) { |
| 311 | if (is >> value >> ch && ch != ',') { |
| 312 | is.putback (ch); |
| 313 | if (j < size2 - 1) { |
| 314 | is.setstate (std::ios_base::failbit); |
| 315 | break; |
| 316 | } |
| 317 | } |
| 318 | if (i <= j) { |
| 319 | // this is the first time we read this element - set the value |
| 320 | s(i,j) = value; |
| 321 | } |
| 322 | else if ( s(i,j) != value ) { |
| 323 | // matrix is not symmetric |
| 324 | is.setstate (std::ios_base::failbit); |
| 325 | break; |
| 326 | } |
| 327 | } |
| 328 | if (is >> ch && ch != ')') { |
| 329 | is.putback (ch); |
| 330 | is.setstate (std::ios_base::failbit); |
| 331 | break; |
| 332 | } |
| 333 | if (is >> ch && ch != ',') { |
| 334 | is.putback (ch); |
| 335 | if (i < size1 - 1) { |
| 336 | is.setstate (std::ios_base::failbit); |
| 337 | break; |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | if (is >> ch && ch != ')') { |
| 342 | is.putback (ch); |
| 343 | is.setstate (std::ios_base::failbit); |
| 344 | } |
| 345 | } |
| 346 | if (! is.fail ()) |
| 347 | m.swap (s); |
| 348 | } |
| 349 | return is; |
| 350 | } |
| 351 | |
| 352 | |
| 353 | }}} |
| 354 | |
| 355 | #endif |