blob: c8b17fced4cafeecd3c80f136e3a9d6ef6ef8333 [file] [log] [blame]
Austin Schuhdace2a62020-08-18 10:56:48 -07001/* Shared speed subroutines.
2
3Copyright 1999-2006, 2008-2017, 2019 Free Software Foundation, Inc.
4
5This file is part of the GNU MP Library.
6
7The GNU MP Library is free software; you can redistribute it and/or modify
8it under the terms of either:
9
10 * the GNU Lesser General Public License as published by the Free
11 Software Foundation; either version 3 of the License, or (at your
12 option) any later version.
13
14or
15
16 * the GNU General Public License as published by the Free Software
17 Foundation; either version 2 of the License, or (at your option) any
18 later version.
19
20or both in parallel, as here.
21
22The GNU MP Library is distributed in the hope that it will be useful, but
23WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
24or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25for more details.
26
27You should have received copies of the GNU General Public License and the
28GNU Lesser General Public License along with the GNU MP Library. If not,
29see https://www.gnu.org/licenses/. */
30
31#define __GMP_NO_ATTRIBUTE_CONST_PURE
32
33#include <errno.h>
34#include <fcntl.h>
35#include <math.h>
36#include <stdio.h>
37#include <stdlib.h> /* for qsort */
38#include <string.h>
39#include <unistd.h>
40#if 0
41#include <sys/ioctl.h>
42#endif
43
44#include "gmp-impl.h"
45#include "longlong.h"
46
47#include "tests.h"
48#include "speed.h"
49
50
51int speed_option_addrs = 0;
52int speed_option_verbose = 0;
53int speed_option_cycles_broken = 0;
54
55
56/* Provide __clz_tab even if it's not required, for the benefit of new code
57 being tested with many.pl. */
58#ifndef COUNT_LEADING_ZEROS_NEED_CLZ_TAB
59#define COUNT_LEADING_ZEROS_NEED_CLZ_TAB
60#include "mp_clz_tab.c"
61#undef COUNT_LEADING_ZEROS_NEED_CLZ_TAB
62#endif
63
64
65void
66pentium_wbinvd(void)
67{
68#if 0
69 {
70 static int fd = -2;
71
72 if (fd == -2)
73 {
74 fd = open ("/dev/wbinvd", O_RDWR);
75 if (fd == -1)
76 perror ("open /dev/wbinvd");
77 }
78
79 if (fd != -1)
80 ioctl (fd, 0, 0);
81 }
82#endif
83
84#if 0
85#define WBINVDSIZE 1024*1024*2
86 {
87 static char *p = NULL;
88 int i, sum;
89
90 if (p == NULL)
91 p = malloc (WBINVDSIZE);
92
93#if 0
94 for (i = 0; i < WBINVDSIZE; i++)
95 p[i] = i & 0xFF;
96#endif
97
98 sum = 0;
99 for (i = 0; i < WBINVDSIZE; i++)
100 sum += p[i];
101
102 mpn_cache_fill_dummy (sum);
103 }
104#endif
105}
106
107
108int
109double_cmp_ptr (const double *p, const double *q)
110{
111 if (*p > *q) return 1;
112 if (*p < *q) return -1;
113 return 0;
114}
115
116
117/* Measure the speed of a given routine.
118
119 The routine is run with enough repetitions to make it take at least
120 speed_precision * speed_unittime. This aims to minimize the effects of a
121 limited accuracy time base and the overhead of the measuring itself.
122
123 Measurements are made looking for 4 results within TOLERANCE of each
124 other (or 3 for routines taking longer than 2 seconds). This aims to get
125 an accurate reading even if some runs are bloated by interrupts or task
126 switches or whatever.
127
128 The given (*fun)() is expected to run its function "s->reps" many times
129 and return the total elapsed time measured using speed_starttime() and
130 speed_endtime(). If the function doesn't support the given s->size or
131 s->r, -1.0 should be returned. See the various base routines below. */
132
133double
134speed_measure (double (*fun) (struct speed_params *s), struct speed_params *s)
135{
136#define TOLERANCE 1.01 /* 1% */
137 const int max_zeros = 10;
138
139 struct speed_params s_dummy;
140 int i, j, e;
141 double t[30];
142 double t_unsorted[30];
143 double reps_d;
144 int zeros = 0;
145
146 /* Use dummy parameters if caller doesn't provide any. Only a few special
147 "fun"s will cope with this, speed_noop() is one. */
148 if (s == NULL)
149 {
150 memset (&s_dummy, '\0', sizeof (s_dummy));
151 s = &s_dummy;
152 }
153
154 s->reps = 1;
155 s->time_divisor = 1.0;
156 for (i = 0; i < numberof (t); i++)
157 {
158 for (;;)
159 {
160 s->src_num = 0;
161 s->dst_num = 0;
162
163 t[i] = (*fun) (s);
164
165 if (speed_option_verbose >= 3)
166 gmp_printf("size=%ld reps=%u r=%Md attempt=%d %.9f\n",
167 (long) s->size, s->reps, s->r, i, t[i]);
168
169 if (t[i] == 0.0)
170 {
171 zeros++;
172 if (zeros > max_zeros)
173 {
174 fprintf (stderr, "Fatal error: too many (%d) failed measurements (0.0)\n", zeros);
175 abort ();
176 }
177 if (s->reps < 10000)
178 s->reps *= 2;
179
180 continue;
181 }
182
183 if (t[i] == -1.0)
184 return -1.0;
185
186 if (t[i] >= speed_unittime * speed_precision)
187 break;
188
189 /* go to a value of reps to make t[i] >= precision */
190 reps_d = ceil (1.1 * s->reps
191 * speed_unittime * speed_precision
192 / MAX (t[i], speed_unittime));
193 if (reps_d > 2e9 || reps_d < 1.0)
194 {
195 fprintf (stderr, "Fatal error: new reps bad: %.2f\n", reps_d);
196 fprintf (stderr, " (old reps %u, unittime %.4g, precision %d, t[i] %.4g)\n",
197 s->reps, speed_unittime, speed_precision, t[i]);
198 abort ();
199 }
200 s->reps = (unsigned) reps_d;
201 }
202 t[i] /= s->reps;
203 t_unsorted[i] = t[i];
204
205 if (speed_precision == 0)
206 return t[i];
207
208 /* require 3 values within TOLERANCE when >= 2 secs, 4 when below */
209 if (t[0] >= 2.0)
210 e = 3;
211 else
212 e = 4;
213
214 /* Look for e many t[]'s within TOLERANCE of each other to consider a
215 valid measurement. Return smallest among them. */
216 if (i >= e)
217 {
218 qsort (t, i+1, sizeof(t[0]), (qsort_function_t) double_cmp_ptr);
219 for (j = e-1; j < i; j++)
220 if (t[j] <= t[j-e+1] * TOLERANCE)
221 return t[j-e+1] / s->time_divisor;
222 }
223 }
224
225 fprintf (stderr, "speed_measure() could not get %d results within %.1f%%\n",
226 e, (TOLERANCE-1.0)*100.0);
227 fprintf (stderr, " unsorted sorted\n");
228 fprintf (stderr, " %.12f %.12f is about %.1f%%\n",
229 t_unsorted[0]*(TOLERANCE-1.0), t[0]*(TOLERANCE-1.0),
230 100*(TOLERANCE-1.0));
231 for (i = 0; i < numberof (t); i++)
232 fprintf (stderr, " %.09f %.09f\n", t_unsorted[i], t[i]);
233
234 return -1.0;
235}
236
237
238/* Read all of ptr,size to get it into the CPU memory cache.
239
240 A call to mpn_cache_fill_dummy() is used to make sure the compiler
241 doesn't optimize away the whole loop. Using "volatile mp_limb_t sum"
242 would work too, but the function call means we don't rely on every
243 compiler actually implementing volatile properly.
244
245 mpn_cache_fill_dummy() is in a separate source file to stop gcc thinking
246 it can inline it. */
247
248void
249mpn_cache_fill (mp_srcptr ptr, mp_size_t size)
250{
251 mp_limb_t sum = 0;
252 mp_size_t i;
253
254 for (i = 0; i < size; i++)
255 sum += ptr[i];
256
257 mpn_cache_fill_dummy(sum);
258}
259
260
261void
262mpn_cache_fill_write (mp_ptr ptr, mp_size_t size)
263{
264 mpn_cache_fill (ptr, size);
265
266#if 0
267 mpn_random (ptr, size);
268#endif
269
270#if 0
271 mp_size_t i;
272
273 for (i = 0; i < size; i++)
274 ptr[i] = i;
275#endif
276}
277
278
279void
280speed_operand_src (struct speed_params *s, mp_ptr ptr, mp_size_t size)
281{
282 if (s->src_num >= numberof (s->src))
283 {
284 fprintf (stderr, "speed_operand_src: no room left in s->src[]\n");
285 abort ();
286 }
287 s->src[s->src_num].ptr = ptr;
288 s->src[s->src_num].size = size;
289 s->src_num++;
290}
291
292
293void
294speed_operand_dst (struct speed_params *s, mp_ptr ptr, mp_size_t size)
295{
296 if (s->dst_num >= numberof (s->dst))
297 {
298 fprintf (stderr, "speed_operand_dst: no room left in s->dst[]\n");
299 abort ();
300 }
301 s->dst[s->dst_num].ptr = ptr;
302 s->dst[s->dst_num].size = size;
303 s->dst_num++;
304}
305
306
307void
308speed_cache_fill (struct speed_params *s)
309{
310 static struct speed_params prev;
311 int i;
312
313 /* FIXME: need a better way to get the format string for a pointer */
314
315 if (speed_option_addrs)
316 {
317 int different;
318
319 different = (s->dst_num != prev.dst_num || s->src_num != prev.src_num);
320 for (i = 0; i < s->dst_num; i++)
321 different |= (s->dst[i].ptr != prev.dst[i].ptr);
322 for (i = 0; i < s->src_num; i++)
323 different |= (s->src[i].ptr != prev.src[i].ptr);
324
325 if (different)
326 {
327 if (s->dst_num != 0)
328 {
329 printf ("dst");
330 for (i = 0; i < s->dst_num; i++)
331 printf (" %08lX", (unsigned long) s->dst[i].ptr);
332 printf (" ");
333 }
334
335 if (s->src_num != 0)
336 {
337 printf ("src");
338 for (i = 0; i < s->src_num; i++)
339 printf (" %08lX", (unsigned long) s->src[i].ptr);
340 printf (" ");
341 }
342 printf (" (cf sp approx %08lX)\n", (unsigned long) &different);
343
344 }
345
346 memcpy (&prev, s, sizeof(prev));
347 }
348
349 switch (s->cache) {
350 case 0:
351 for (i = 0; i < s->dst_num; i++)
352 mpn_cache_fill_write (s->dst[i].ptr, s->dst[i].size);
353 for (i = 0; i < s->src_num; i++)
354 mpn_cache_fill (s->src[i].ptr, s->src[i].size);
355 break;
356 case 1:
357 pentium_wbinvd();
358 break;
359 }
360}
361
362
363/* Miscellaneous options accepted by tune and speed programs under -o. */
364
365void
366speed_option_set (const char *s)
367{
368 int n;
369
370 if (strcmp (s, "addrs") == 0)
371 {
372 speed_option_addrs = 1;
373 }
374 else if (strcmp (s, "verbose") == 0)
375 {
376 speed_option_verbose++;
377 }
378 else if (sscanf (s, "verbose=%d", &n) == 1)
379 {
380 speed_option_verbose = n;
381 }
382 else if (strcmp (s, "cycles-broken") == 0)
383 {
384 speed_option_cycles_broken = 1;
385 }
386 else
387 {
388 printf ("Unrecognised -o option: %s\n", s);
389 exit (1);
390 }
391}
392
393
394/* The following are basic speed running routines for various gmp functions.
395 Many are very similar and use speed.h macros.
396
397 Each routine allocates it's own destination space for the result of the
398 function, because only it can know what the function needs.
399
400 speed_starttime() and speed_endtime() are put tight around the code to be
401 measured. Any setups are done outside the timed portion.
402
403 Each routine is responsible for its own cache priming.
404 speed_cache_fill() is a good way to do this, see examples in speed.h.
405 One cache priming possibility, for CPUs with write-allocate cache, and
406 functions that don't take too long, is to do one dummy call before timing
407 so as to cache everything that gets used. But speed_measure() runs a
408 routine at least twice and will take the smaller time, so this might not
409 be necessary.
410
411 Data alignment will be important, for source, destination and temporary
412 workspace. A routine can align its destination and workspace. Programs
413 using the routines will ensure s->xp and s->yp are aligned. Aligning
414 onto a CACHE_LINE_SIZE boundary is suggested. s->align_wp and
415 s->align_wp2 should be respected where it makes sense to do so.
416 SPEED_TMP_ALLOC_LIMBS is a good way to do this.
417
418 A loop of the following form can be expected to turn into good assembler
419 code on most CPUs, thereby minimizing overhead in the measurement. It
420 can always be assumed s->reps >= 1.
421
422 i = s->reps
423 do
424 foo();
425 while (--i != 0);
426
427 Additional parameters might be added to "struct speed_params" in the
428 future. Routines should ignore anything they don't use.
429
430 s->size can be used creatively, and s->xp and s->yp can be ignored. For
431 example, speed_mpz_fac_ui() uses s->size as n for the factorial. s->r is
432 just a user-supplied parameter. speed_mpn_lshift() uses it as a shift,
433 speed_mpn_mul_1() uses it as a multiplier. */
434
435
436/* MPN_COPY etc can be macros, so the _CALL forms are necessary */
437double
438speed_MPN_COPY (struct speed_params *s)
439{
440 SPEED_ROUTINE_MPN_COPY (MPN_COPY);
441}
442double
443speed_MPN_COPY_INCR (struct speed_params *s)
444{
445 SPEED_ROUTINE_MPN_COPY (MPN_COPY_INCR);
446}
447double
448speed_MPN_COPY_DECR (struct speed_params *s)
449{
450 SPEED_ROUTINE_MPN_COPY (MPN_COPY_DECR);
451}
452#if HAVE_NATIVE_mpn_copyi
453double
454speed_mpn_copyi (struct speed_params *s)
455{
456 SPEED_ROUTINE_MPN_COPY (mpn_copyi);
457}
458#endif
459#if HAVE_NATIVE_mpn_copyd
460double
461speed_mpn_copyd (struct speed_params *s)
462{
463 SPEED_ROUTINE_MPN_COPY (mpn_copyd);
464}
465#endif
466double
467speed_memcpy (struct speed_params *s)
468{
469 SPEED_ROUTINE_MPN_COPY_BYTES (memcpy);
470}
471double
472speed_mpn_com (struct speed_params *s)
473{
474 SPEED_ROUTINE_MPN_COPY (mpn_com);
475}
476double
477speed_mpn_neg (struct speed_params *s)
478{
479 SPEED_ROUTINE_MPN_COPY (mpn_neg);
480}
481double
482speed_mpn_sec_tabselect (struct speed_params *s)
483{
484 SPEED_ROUTINE_MPN_TABSELECT (mpn_sec_tabselect);
485}
486
487
488double
489speed_mpn_addmul_1 (struct speed_params *s)
490{
491 SPEED_ROUTINE_MPN_UNARY_1 (mpn_addmul_1);
492}
493double
494speed_mpn_submul_1 (struct speed_params *s)
495{
496 SPEED_ROUTINE_MPN_UNARY_1 (mpn_submul_1);
497}
498
499#if HAVE_NATIVE_mpn_addmul_2
500double
501speed_mpn_addmul_2 (struct speed_params *s)
502{
503 SPEED_ROUTINE_MPN_UNARY_2 (mpn_addmul_2);
504}
505#endif
506#if HAVE_NATIVE_mpn_addmul_3
507double
508speed_mpn_addmul_3 (struct speed_params *s)
509{
510 SPEED_ROUTINE_MPN_UNARY_3 (mpn_addmul_3);
511}
512#endif
513#if HAVE_NATIVE_mpn_addmul_4
514double
515speed_mpn_addmul_4 (struct speed_params *s)
516{
517 SPEED_ROUTINE_MPN_UNARY_4 (mpn_addmul_4);
518}
519#endif
520#if HAVE_NATIVE_mpn_addmul_5
521double
522speed_mpn_addmul_5 (struct speed_params *s)
523{
524 SPEED_ROUTINE_MPN_UNARY_5 (mpn_addmul_5);
525}
526#endif
527#if HAVE_NATIVE_mpn_addmul_6
528double
529speed_mpn_addmul_6 (struct speed_params *s)
530{
531 SPEED_ROUTINE_MPN_UNARY_6 (mpn_addmul_6);
532}
533#endif
534#if HAVE_NATIVE_mpn_addmul_7
535double
536speed_mpn_addmul_7 (struct speed_params *s)
537{
538 SPEED_ROUTINE_MPN_UNARY_7 (mpn_addmul_7);
539}
540#endif
541#if HAVE_NATIVE_mpn_addmul_8
542double
543speed_mpn_addmul_8 (struct speed_params *s)
544{
545 SPEED_ROUTINE_MPN_UNARY_8 (mpn_addmul_8);
546}
547#endif
548
549double
550speed_mpn_mul_1 (struct speed_params *s)
551{
552 SPEED_ROUTINE_MPN_UNARY_1 (mpn_mul_1);
553}
554double
555speed_mpn_mul_1_inplace (struct speed_params *s)
556{
557 SPEED_ROUTINE_MPN_UNARY_1_INPLACE (mpn_mul_1);
558}
559
560#if HAVE_NATIVE_mpn_mul_2
561double
562speed_mpn_mul_2 (struct speed_params *s)
563{
564 SPEED_ROUTINE_MPN_UNARY_2 (mpn_mul_2);
565}
566#endif
567#if HAVE_NATIVE_mpn_mul_3
568double
569speed_mpn_mul_3 (struct speed_params *s)
570{
571 SPEED_ROUTINE_MPN_UNARY_3 (mpn_mul_3);
572}
573#endif
574#if HAVE_NATIVE_mpn_mul_4
575double
576speed_mpn_mul_4 (struct speed_params *s)
577{
578 SPEED_ROUTINE_MPN_UNARY_4 (mpn_mul_4);
579}
580#endif
581#if HAVE_NATIVE_mpn_mul_5
582double
583speed_mpn_mul_5 (struct speed_params *s)
584{
585 SPEED_ROUTINE_MPN_UNARY_5 (mpn_mul_5);
586}
587#endif
588#if HAVE_NATIVE_mpn_mul_6
589double
590speed_mpn_mul_6 (struct speed_params *s)
591{
592 SPEED_ROUTINE_MPN_UNARY_6 (mpn_mul_6);
593}
594#endif
595
596
597double
598speed_mpn_lshift (struct speed_params *s)
599{
600 SPEED_ROUTINE_MPN_UNARY_1 (mpn_lshift);
601}
602double
603speed_mpn_lshiftc (struct speed_params *s)
604{
605 SPEED_ROUTINE_MPN_UNARY_1 (mpn_lshiftc);
606}
607double
608speed_mpn_rshift (struct speed_params *s)
609{
610 SPEED_ROUTINE_MPN_UNARY_1 (mpn_rshift);
611}
612
613
614/* The carry-in variants (if available) are good for measuring because they
615 won't skip a division if high<divisor. Alternately, use -1 as a divisor
616 with the plain _1 forms. */
617double
618speed_mpn_divrem_1 (struct speed_params *s)
619{
620 SPEED_ROUTINE_MPN_DIVREM_1 (mpn_divrem_1);
621}
622double
623speed_mpn_divrem_1f (struct speed_params *s)
624{
625 SPEED_ROUTINE_MPN_DIVREM_1F (mpn_divrem_1);
626}
627#if HAVE_NATIVE_mpn_divrem_1c
628double
629speed_mpn_divrem_1c (struct speed_params *s)
630{
631 SPEED_ROUTINE_MPN_DIVREM_1C (mpn_divrem_1c);
632}
633double
634speed_mpn_divrem_1cf (struct speed_params *s)
635{
636 SPEED_ROUTINE_MPN_DIVREM_1CF (mpn_divrem_1c);
637}
638#endif
639
640double
641speed_mpn_divrem_1_div (struct speed_params *s)
642{
643 SPEED_ROUTINE_MPN_DIVREM_1 (mpn_divrem_1_div);
644}
645double
646speed_mpn_divrem_1f_div (struct speed_params *s)
647{
648 SPEED_ROUTINE_MPN_DIVREM_1F (mpn_divrem_1_div);
649}
650double
651speed_mpn_divrem_1_inv (struct speed_params *s)
652{
653 SPEED_ROUTINE_MPN_DIVREM_1 (mpn_divrem_1_inv);
654}
655double
656speed_mpn_divrem_1f_inv (struct speed_params *s)
657{
658 SPEED_ROUTINE_MPN_DIVREM_1F (mpn_divrem_1_inv);
659}
660double
661speed_mpn_mod_1_div (struct speed_params *s)
662{
663 SPEED_ROUTINE_MPN_MOD_1 (mpn_mod_1_div);
664}
665double
666speed_mpn_mod_1_inv (struct speed_params *s)
667{
668 SPEED_ROUTINE_MPN_MOD_1 (mpn_mod_1_inv);
669}
670
671double
672speed_mpn_preinv_divrem_1 (struct speed_params *s)
673{
674 SPEED_ROUTINE_MPN_PREINV_DIVREM_1 (mpn_preinv_divrem_1);
675}
676double
677speed_mpn_preinv_divrem_1f (struct speed_params *s)
678{
679 SPEED_ROUTINE_MPN_PREINV_DIVREM_1F (mpn_preinv_divrem_1);
680}
681
682#if GMP_NUMB_BITS % 4 == 0
683double
684speed_mpn_mod_34lsub1 (struct speed_params *s)
685{
686 SPEED_ROUTINE_MPN_MOD_34LSUB1 (mpn_mod_34lsub1);
687}
688#endif
689
690double
691speed_mpn_divrem_2 (struct speed_params *s)
692{
693 SPEED_ROUTINE_MPN_DIVREM_2 (mpn_divrem_2);
694}
695double
696speed_mpn_divrem_2_div (struct speed_params *s)
697{
698 SPEED_ROUTINE_MPN_DIVREM_2 (mpn_divrem_2_div);
699}
700double
701speed_mpn_divrem_2_inv (struct speed_params *s)
702{
703 SPEED_ROUTINE_MPN_DIVREM_2 (mpn_divrem_2_inv);
704}
705
706double
707speed_mpn_div_qr_1n_pi1 (struct speed_params *s)
708{
709 SPEED_ROUTINE_MPN_DIV_QR_1N_PI1 (mpn_div_qr_1n_pi1);
710}
711double
712speed_mpn_div_qr_1n_pi1_1 (struct speed_params *s)
713{
714 SPEED_ROUTINE_MPN_DIV_QR_1N_PI1 (mpn_div_qr_1n_pi1_1);
715}
716double
717speed_mpn_div_qr_1n_pi1_2 (struct speed_params *s)
718{
719 SPEED_ROUTINE_MPN_DIV_QR_1N_PI1 (mpn_div_qr_1n_pi1_2);
720}
721
722double
723speed_mpn_div_qr_1 (struct speed_params *s)
724{
725 SPEED_ROUTINE_MPN_DIV_QR_1 (mpn_div_qr_1);
726}
727
728double
729speed_mpn_div_qr_2n (struct speed_params *s)
730{
731 SPEED_ROUTINE_MPN_DIV_QR_2 (mpn_div_qr_2, 1);
732}
733double
734speed_mpn_div_qr_2u (struct speed_params *s)
735{
736 SPEED_ROUTINE_MPN_DIV_QR_2 (mpn_div_qr_2, 0);
737}
738
739double
740speed_mpn_mod_1 (struct speed_params *s)
741{
742 SPEED_ROUTINE_MPN_MOD_1 (mpn_mod_1);
743}
744#if HAVE_NATIVE_mpn_mod_1c
745double
746speed_mpn_mod_1c (struct speed_params *s)
747{
748 SPEED_ROUTINE_MPN_MOD_1C (mpn_mod_1c);
749}
750#endif
751double
752speed_mpn_preinv_mod_1 (struct speed_params *s)
753{
754 SPEED_ROUTINE_MPN_PREINV_MOD_1 (mpn_preinv_mod_1);
755}
756double
757speed_mpn_mod_1_1 (struct speed_params *s)
758{
759 SPEED_ROUTINE_MPN_MOD_1_1 (mpn_mod_1_1p,mpn_mod_1_1p_cps);
760}
761double
762speed_mpn_mod_1_1_1 (struct speed_params *s)
763{
764 SPEED_ROUTINE_MPN_MOD_1_1 (mpn_mod_1_1p_1,mpn_mod_1_1p_cps_1);
765}
766double
767speed_mpn_mod_1_1_2 (struct speed_params *s)
768{
769 SPEED_ROUTINE_MPN_MOD_1_1 (mpn_mod_1_1p_2,mpn_mod_1_1p_cps_2);
770}
771double
772speed_mpn_mod_1_2 (struct speed_params *s)
773{
774 SPEED_ROUTINE_MPN_MOD_1_N (mpn_mod_1s_2p,mpn_mod_1s_2p_cps,2);
775}
776double
777speed_mpn_mod_1_3 (struct speed_params *s)
778{
779 SPEED_ROUTINE_MPN_MOD_1_N (mpn_mod_1s_3p,mpn_mod_1s_3p_cps,3);
780}
781double
782speed_mpn_mod_1_4 (struct speed_params *s)
783{
784 SPEED_ROUTINE_MPN_MOD_1_N (mpn_mod_1s_4p,mpn_mod_1s_4p_cps,4);
785}
786
787double
788speed_mpn_divexact_1 (struct speed_params *s)
789{
790 SPEED_ROUTINE_MPN_DIVEXACT_1 (mpn_divexact_1);
791}
792
793double
794speed_mpn_divexact_by3 (struct speed_params *s)
795{
796 SPEED_ROUTINE_MPN_COPY (mpn_divexact_by3);
797}
798
799double
800speed_mpn_bdiv_dbm1c (struct speed_params *s)
801{
802 SPEED_ROUTINE_MPN_BDIV_DBM1C (mpn_bdiv_dbm1c);
803}
804
805double
806speed_mpn_bdiv_q_1 (struct speed_params *s)
807{
808 SPEED_ROUTINE_MPN_BDIV_Q_1 (mpn_bdiv_q_1);
809}
810
811double
812speed_mpn_pi1_bdiv_q_1 (struct speed_params *s)
813{
814 SPEED_ROUTINE_MPN_PI1_BDIV_Q_1 (mpn_pi1_bdiv_q_1);
815}
816
817#if HAVE_NATIVE_mpn_modexact_1_odd
818double
819speed_mpn_modexact_1_odd (struct speed_params *s)
820{
821 SPEED_ROUTINE_MPN_MODEXACT_1_ODD (mpn_modexact_1_odd);
822}
823#endif
824
825double
826speed_mpn_modexact_1c_odd (struct speed_params *s)
827{
828 SPEED_ROUTINE_MPN_MODEXACT_1C_ODD (mpn_modexact_1c_odd);
829}
830
831double
832speed_mpz_mod (struct speed_params *s)
833{
834 SPEED_ROUTINE_MPZ_MOD (mpz_mod);
835}
836
837double
838speed_mpn_sbpi1_div_qr (struct speed_params *s)
839{
840 SPEED_ROUTINE_MPN_PI1_DIV (mpn_sbpi1_div_qr, inv.inv32, 2,0);
841}
842double
843speed_mpn_dcpi1_div_qr (struct speed_params *s)
844{
845 SPEED_ROUTINE_MPN_PI1_DIV (mpn_dcpi1_div_qr, &inv, 6,3);
846}
847double
848speed_mpn_sbpi1_divappr_q (struct speed_params *s)
849{
850 SPEED_ROUTINE_MPN_PI1_DIV (mpn_sbpi1_divappr_q, inv.inv32, 2,0);
851}
852double
853speed_mpn_dcpi1_divappr_q (struct speed_params *s)
854{
855 SPEED_ROUTINE_MPN_PI1_DIV (mpn_dcpi1_divappr_q, &inv, 6,3);
856}
857double
858speed_mpn_mu_div_qr (struct speed_params *s)
859{
860 SPEED_ROUTINE_MPN_MU_DIV_QR (mpn_mu_div_qr, mpn_mu_div_qr_itch);
861}
862double
863speed_mpn_mu_divappr_q (struct speed_params *s)
864{
865 SPEED_ROUTINE_MPN_MU_DIV_Q (mpn_mu_divappr_q, mpn_mu_divappr_q_itch);
866}
867double
868speed_mpn_mu_div_q (struct speed_params *s)
869{
870 SPEED_ROUTINE_MPN_MU_DIV_Q (mpn_mu_div_q, mpn_mu_div_q_itch);
871}
872double
873speed_mpn_mupi_div_qr (struct speed_params *s)
874{
875 SPEED_ROUTINE_MPN_MUPI_DIV_QR (mpn_preinv_mu_div_qr, mpn_preinv_mu_div_qr_itch);
876}
877
878double
879speed_mpn_sbpi1_bdiv_qr (struct speed_params *s)
880{
881 SPEED_ROUTINE_MPN_PI1_BDIV_QR (mpn_sbpi1_bdiv_qr);
882}
883double
884speed_mpn_dcpi1_bdiv_qr (struct speed_params *s)
885{
886 SPEED_ROUTINE_MPN_PI1_BDIV_QR (mpn_dcpi1_bdiv_qr);
887}
888double
889speed_mpn_sbpi1_bdiv_q (struct speed_params *s)
890{
891 SPEED_ROUTINE_MPN_PI1_BDIV_Q (mpn_sbpi1_bdiv_q);
892}
893double
894speed_mpn_dcpi1_bdiv_q (struct speed_params *s)
895{
896 SPEED_ROUTINE_MPN_PI1_BDIV_Q (mpn_dcpi1_bdiv_q);
897}
898double
899speed_mpn_sbpi1_bdiv_r (struct speed_params *s)
900{
901 SPEED_ROUTINE_MPN_PI1_BDIV_R (mpn_sbpi1_bdiv_r);
902}
903double
904speed_mpn_mu_bdiv_q (struct speed_params *s)
905{
906 SPEED_ROUTINE_MPN_MU_BDIV_Q (mpn_mu_bdiv_q, mpn_mu_bdiv_q_itch);
907}
908double
909speed_mpn_mu_bdiv_qr (struct speed_params *s)
910{
911 SPEED_ROUTINE_MPN_MU_BDIV_QR (mpn_mu_bdiv_qr, mpn_mu_bdiv_qr_itch);
912}
913
914double
915speed_mpn_broot (struct speed_params *s)
916{
917 SPEED_ROUTINE_MPN_BROOT (mpn_broot);
918}
919double
920speed_mpn_broot_invm1 (struct speed_params *s)
921{
922 SPEED_ROUTINE_MPN_BROOT (mpn_broot_invm1);
923}
924double
925speed_mpn_brootinv (struct speed_params *s)
926{
927 SPEED_ROUTINE_MPN_BROOTINV (mpn_brootinv, 5*s->size);
928}
929
930double
931speed_mpn_binvert (struct speed_params *s)
932{
933 SPEED_ROUTINE_MPN_BINVERT (mpn_binvert, mpn_binvert_itch);
934}
935
936double
937speed_mpn_invert (struct speed_params *s)
938{
939 SPEED_ROUTINE_MPN_INVERT (mpn_invert, mpn_invert_itch);
940}
941
942double
943speed_mpn_invertappr (struct speed_params *s)
944{
945 SPEED_ROUTINE_MPN_INVERTAPPR (mpn_invertappr, mpn_invertappr_itch);
946}
947
948double
949speed_mpn_ni_invertappr (struct speed_params *s)
950{
951 SPEED_ROUTINE_MPN_INVERTAPPR (mpn_ni_invertappr, mpn_invertappr_itch);
952}
953
954double
955speed_mpn_sec_invert (struct speed_params *s)
956{
957 SPEED_ROUTINE_MPN_SEC_INVERT (mpn_sec_invert, mpn_sec_invert_itch);
958}
959
960double
961speed_mpn_redc_1 (struct speed_params *s)
962{
963 SPEED_ROUTINE_REDC_1 (mpn_redc_1);
964}
965double
966speed_mpn_redc_2 (struct speed_params *s)
967{
968 SPEED_ROUTINE_REDC_2 (mpn_redc_2);
969}
970double
971speed_mpn_redc_n (struct speed_params *s)
972{
973 SPEED_ROUTINE_REDC_N (mpn_redc_n);
974}
975
976
977double
978speed_mpn_popcount (struct speed_params *s)
979{
980 SPEED_ROUTINE_MPN_POPCOUNT (mpn_popcount);
981}
982double
983speed_mpn_hamdist (struct speed_params *s)
984{
985 SPEED_ROUTINE_MPN_HAMDIST (mpn_hamdist);
986}
987
988
989double
990speed_mpn_add_n (struct speed_params *s)
991{
992 SPEED_ROUTINE_MPN_BINARY_N (mpn_add_n);
993}
994double
995speed_mpn_sub_n (struct speed_params *s)
996{
997SPEED_ROUTINE_MPN_BINARY_N (mpn_sub_n);
998}
999double
1000speed_mpn_add_1 (struct speed_params *s)
1001{
1002 SPEED_ROUTINE_MPN_UNARY_1 (mpn_add_1);
1003}
1004double
1005speed_mpn_add_1_inplace (struct speed_params *s)
1006{
1007 SPEED_ROUTINE_MPN_UNARY_1_INPLACE (mpn_add_1);
1008}
1009double
1010speed_mpn_sub_1 (struct speed_params *s)
1011{
1012 SPEED_ROUTINE_MPN_UNARY_1 (mpn_sub_1);
1013}
1014double
1015speed_mpn_sub_1_inplace (struct speed_params *s)
1016{
1017 SPEED_ROUTINE_MPN_UNARY_1_INPLACE (mpn_sub_1);
1018}
1019
1020double
1021speed_mpn_add_err1_n (struct speed_params *s)
1022{
1023 SPEED_ROUTINE_MPN_BINARY_ERR1_N (mpn_add_err1_n);
1024}
1025double
1026speed_mpn_sub_err1_n (struct speed_params *s)
1027{
1028 SPEED_ROUTINE_MPN_BINARY_ERR1_N (mpn_sub_err1_n);
1029}
1030double
1031speed_mpn_add_err2_n (struct speed_params *s)
1032{
1033 SPEED_ROUTINE_MPN_BINARY_ERR2_N (mpn_add_err2_n);
1034}
1035double
1036speed_mpn_sub_err2_n (struct speed_params *s)
1037{
1038 SPEED_ROUTINE_MPN_BINARY_ERR2_N (mpn_sub_err2_n);
1039}
1040double
1041speed_mpn_add_err3_n (struct speed_params *s)
1042{
1043 SPEED_ROUTINE_MPN_BINARY_ERR3_N (mpn_add_err3_n);
1044}
1045double
1046speed_mpn_sub_err3_n (struct speed_params *s)
1047{
1048 SPEED_ROUTINE_MPN_BINARY_ERR3_N (mpn_sub_err3_n);
1049}
1050
1051
1052#if HAVE_NATIVE_mpn_add_n_sub_n
1053double
1054speed_mpn_add_n_sub_n (struct speed_params *s)
1055{
1056 SPEED_ROUTINE_MPN_ADDSUB_N_CALL (mpn_add_n_sub_n (ap, sp, s->xp, s->yp, s->size));
1057}
1058#endif
1059
1060#if HAVE_NATIVE_mpn_addlsh1_n == 1
1061double
1062speed_mpn_addlsh1_n (struct speed_params *s)
1063{
1064 SPEED_ROUTINE_MPN_BINARY_N (mpn_addlsh1_n);
1065}
1066#endif
1067#if HAVE_NATIVE_mpn_sublsh1_n == 1
1068double
1069speed_mpn_sublsh1_n (struct speed_params *s)
1070{
1071 SPEED_ROUTINE_MPN_BINARY_N (mpn_sublsh1_n);
1072}
1073#endif
1074#if HAVE_NATIVE_mpn_addlsh1_n_ip1
1075double
1076speed_mpn_addlsh1_n_ip1 (struct speed_params *s)
1077{
1078 SPEED_ROUTINE_MPN_COPY (mpn_addlsh1_n_ip1);
1079}
1080#endif
1081#if HAVE_NATIVE_mpn_addlsh1_n_ip2
1082double
1083speed_mpn_addlsh1_n_ip2 (struct speed_params *s)
1084{
1085 SPEED_ROUTINE_MPN_COPY (mpn_addlsh1_n_ip2);
1086}
1087#endif
1088#if HAVE_NATIVE_mpn_sublsh1_n_ip1
1089double
1090speed_mpn_sublsh1_n_ip1 (struct speed_params *s)
1091{
1092 SPEED_ROUTINE_MPN_COPY (mpn_sublsh1_n_ip1);
1093}
1094#endif
1095#if HAVE_NATIVE_mpn_rsblsh1_n == 1
1096double
1097speed_mpn_rsblsh1_n (struct speed_params *s)
1098{
1099 SPEED_ROUTINE_MPN_BINARY_N (mpn_rsblsh1_n);
1100}
1101#endif
1102#if HAVE_NATIVE_mpn_addlsh2_n == 1
1103double
1104speed_mpn_addlsh2_n (struct speed_params *s)
1105{
1106 SPEED_ROUTINE_MPN_BINARY_N (mpn_addlsh2_n);
1107}
1108#endif
1109#if HAVE_NATIVE_mpn_sublsh2_n == 1
1110double
1111speed_mpn_sublsh2_n (struct speed_params *s)
1112{
1113 SPEED_ROUTINE_MPN_BINARY_N (mpn_sublsh2_n);
1114}
1115#endif
1116#if HAVE_NATIVE_mpn_addlsh2_n_ip1
1117double
1118speed_mpn_addlsh2_n_ip1 (struct speed_params *s)
1119{
1120 SPEED_ROUTINE_MPN_COPY (mpn_addlsh2_n_ip1);
1121}
1122#endif
1123#if HAVE_NATIVE_mpn_addlsh2_n_ip2
1124double
1125speed_mpn_addlsh2_n_ip2 (struct speed_params *s)
1126{
1127 SPEED_ROUTINE_MPN_COPY (mpn_addlsh2_n_ip2);
1128}
1129#endif
1130#if HAVE_NATIVE_mpn_sublsh2_n_ip1
1131double
1132speed_mpn_sublsh2_n_ip1 (struct speed_params *s)
1133{
1134 SPEED_ROUTINE_MPN_COPY (mpn_sublsh2_n_ip1);
1135}
1136#endif
1137#if HAVE_NATIVE_mpn_rsblsh2_n == 1
1138double
1139speed_mpn_rsblsh2_n (struct speed_params *s)
1140{
1141 SPEED_ROUTINE_MPN_BINARY_N (mpn_rsblsh2_n);
1142}
1143#endif
1144#if HAVE_NATIVE_mpn_addlsh_n
1145double
1146speed_mpn_addlsh_n (struct speed_params *s)
1147{
1148 SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_addlsh_n (wp, xp, yp, s->size, 7));
1149}
1150#endif
1151#if HAVE_NATIVE_mpn_sublsh_n
1152double
1153speed_mpn_sublsh_n (struct speed_params *s)
1154{
1155 SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_sublsh_n (wp, xp, yp, s->size, 7));
1156}
1157#endif
1158#if HAVE_NATIVE_mpn_addlsh_n_ip1
1159double
1160speed_mpn_addlsh_n_ip1 (struct speed_params *s)
1161{
1162 SPEED_ROUTINE_MPN_UNARY_1_CALL (mpn_addlsh_n_ip1 (wp, s->xp, s->size, 7));
1163}
1164#endif
1165#if HAVE_NATIVE_mpn_addlsh_n_ip2
1166double
1167speed_mpn_addlsh_n_ip2 (struct speed_params *s)
1168{
1169 SPEED_ROUTINE_MPN_UNARY_1_CALL (mpn_addlsh_n_ip2 (wp, s->xp, s->size, 7));
1170}
1171#endif
1172#if HAVE_NATIVE_mpn_sublsh_n_ip1
1173double
1174speed_mpn_sublsh_n_ip1 (struct speed_params *s)
1175{
1176 SPEED_ROUTINE_MPN_UNARY_1_CALL (mpn_sublsh_n_ip1 (wp, s->xp, s->size, 7));
1177}
1178#endif
1179#if HAVE_NATIVE_mpn_rsblsh_n
1180double
1181speed_mpn_rsblsh_n (struct speed_params *s)
1182{
1183 SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_rsblsh_n (wp, xp, yp, s->size, 7));
1184}
1185#endif
1186#if HAVE_NATIVE_mpn_rsh1add_n
1187double
1188speed_mpn_rsh1add_n (struct speed_params *s)
1189{
1190 SPEED_ROUTINE_MPN_BINARY_N (mpn_rsh1add_n);
1191}
1192#endif
1193#if HAVE_NATIVE_mpn_rsh1sub_n
1194double
1195speed_mpn_rsh1sub_n (struct speed_params *s)
1196{
1197 SPEED_ROUTINE_MPN_BINARY_N (mpn_rsh1sub_n);
1198}
1199#endif
1200
1201double
1202speed_mpn_cnd_add_n (struct speed_params *s)
1203{
1204 SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_cnd_add_n (1, wp, xp, yp, s->size));
1205}
1206double
1207speed_mpn_cnd_sub_n (struct speed_params *s)
1208{
1209 SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_cnd_sub_n (1, wp, xp, yp, s->size));
1210}
1211
1212/* mpn_and_n etc can be macros and so have to be handled with
1213 SPEED_ROUTINE_MPN_BINARY_N_CALL forms */
1214double
1215speed_mpn_and_n (struct speed_params *s)
1216{
1217 SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_and_n (wp, xp, yp, s->size));
1218}
1219double
1220speed_mpn_andn_n (struct speed_params *s)
1221{
1222 SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_andn_n (wp, xp, yp, s->size));
1223}
1224double
1225speed_mpn_nand_n (struct speed_params *s)
1226{
1227 SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_nand_n (wp, xp, yp, s->size));
1228}
1229double
1230speed_mpn_ior_n (struct speed_params *s)
1231{
1232 SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_ior_n (wp, xp, yp, s->size));
1233}
1234double
1235speed_mpn_iorn_n (struct speed_params *s)
1236{
1237 SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_iorn_n (wp, xp, yp, s->size));
1238}
1239double
1240speed_mpn_nior_n (struct speed_params *s)
1241{
1242 SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_nior_n (wp, xp, yp, s->size));
1243}
1244double
1245speed_mpn_xor_n (struct speed_params *s)
1246{
1247 SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_xor_n (wp, xp, yp, s->size));
1248}
1249double
1250speed_mpn_xnor_n (struct speed_params *s)
1251{
1252 SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_xnor_n (wp, xp, yp, s->size));
1253}
1254
1255
1256double
1257speed_mpn_mul_n (struct speed_params *s)
1258{
1259 SPEED_ROUTINE_MPN_MUL_N (mpn_mul_n);
1260}
1261double
1262speed_mpn_sqr (struct speed_params *s)
1263{
1264 SPEED_ROUTINE_MPN_SQR (mpn_sqr);
1265}
1266double
1267speed_mpn_mul_n_sqr (struct speed_params *s)
1268{
1269 SPEED_ROUTINE_MPN_SQR_CALL (mpn_mul_n (wp, s->xp, s->xp, s->size));
1270}
1271
1272double
1273speed_mpn_mul_basecase (struct speed_params *s)
1274{
1275 SPEED_ROUTINE_MPN_MUL(mpn_mul_basecase);
1276}
1277double
1278speed_mpn_mul (struct speed_params *s)
1279{
1280 SPEED_ROUTINE_MPN_MUL(mpn_mul);
1281}
1282double
1283speed_mpn_sqr_basecase (struct speed_params *s)
1284{
1285 /* FIXME: size restrictions on some versions of sqr_basecase */
1286 SPEED_ROUTINE_MPN_SQR (mpn_sqr_basecase);
1287}
1288
1289#if HAVE_NATIVE_mpn_sqr_diagonal
1290double
1291speed_mpn_sqr_diagonal (struct speed_params *s)
1292{
1293 SPEED_ROUTINE_MPN_SQR (mpn_sqr_diagonal);
1294}
1295#endif
1296
1297#if HAVE_NATIVE_mpn_sqr_diag_addlsh1
1298double
1299speed_mpn_sqr_diag_addlsh1 (struct speed_params *s)
1300{
1301 SPEED_ROUTINE_MPN_SQR_DIAG_ADDLSH1_CALL (mpn_sqr_diag_addlsh1 (wp, tp, s->xp, s->size));
1302}
1303#endif
1304
1305double
1306speed_mpn_toom2_sqr (struct speed_params *s)
1307{
1308 SPEED_ROUTINE_MPN_TOOM2_SQR (mpn_toom2_sqr);
1309}
1310double
1311speed_mpn_toom3_sqr (struct speed_params *s)
1312{
1313 SPEED_ROUTINE_MPN_TOOM3_SQR (mpn_toom3_sqr);
1314}
1315double
1316speed_mpn_toom4_sqr (struct speed_params *s)
1317{
1318 SPEED_ROUTINE_MPN_TOOM4_SQR (mpn_toom4_sqr);
1319}
1320double
1321speed_mpn_toom6_sqr (struct speed_params *s)
1322{
1323 SPEED_ROUTINE_MPN_TOOM6_SQR (mpn_toom6_sqr);
1324}
1325double
1326speed_mpn_toom8_sqr (struct speed_params *s)
1327{
1328 SPEED_ROUTINE_MPN_TOOM8_SQR (mpn_toom8_sqr);
1329}
1330double
1331speed_mpn_toom22_mul (struct speed_params *s)
1332{
1333 SPEED_ROUTINE_MPN_TOOM22_MUL_N (mpn_toom22_mul);
1334}
1335double
1336speed_mpn_toom33_mul (struct speed_params *s)
1337{
1338 SPEED_ROUTINE_MPN_TOOM33_MUL_N (mpn_toom33_mul);
1339}
1340double
1341speed_mpn_toom44_mul (struct speed_params *s)
1342{
1343 SPEED_ROUTINE_MPN_TOOM44_MUL_N (mpn_toom44_mul);
1344}
1345double
1346speed_mpn_toom6h_mul (struct speed_params *s)
1347{
1348 SPEED_ROUTINE_MPN_TOOM6H_MUL_N (mpn_toom6h_mul);
1349}
1350double
1351speed_mpn_toom8h_mul (struct speed_params *s)
1352{
1353 SPEED_ROUTINE_MPN_TOOM8H_MUL_N (mpn_toom8h_mul);
1354}
1355
1356double
1357speed_mpn_toom32_mul (struct speed_params *s)
1358{
1359 SPEED_ROUTINE_MPN_TOOM32_MUL (mpn_toom32_mul);
1360}
1361double
1362speed_mpn_toom42_mul (struct speed_params *s)
1363{
1364 SPEED_ROUTINE_MPN_TOOM42_MUL (mpn_toom42_mul);
1365}
1366double
1367speed_mpn_toom43_mul (struct speed_params *s)
1368{
1369 SPEED_ROUTINE_MPN_TOOM43_MUL (mpn_toom43_mul);
1370}
1371double
1372speed_mpn_toom63_mul (struct speed_params *s)
1373{
1374 SPEED_ROUTINE_MPN_TOOM63_MUL (mpn_toom63_mul);
1375}
1376double
1377speed_mpn_toom32_for_toom43_mul (struct speed_params *s)
1378{
1379 SPEED_ROUTINE_MPN_TOOM32_FOR_TOOM43_MUL (mpn_toom32_mul);
1380}
1381double
1382speed_mpn_toom43_for_toom32_mul (struct speed_params *s)
1383{
1384 SPEED_ROUTINE_MPN_TOOM43_FOR_TOOM32_MUL (mpn_toom43_mul);
1385}
1386double
1387speed_mpn_toom32_for_toom53_mul (struct speed_params *s)
1388{
1389 SPEED_ROUTINE_MPN_TOOM32_FOR_TOOM53_MUL (mpn_toom32_mul);
1390}
1391double
1392speed_mpn_toom53_for_toom32_mul (struct speed_params *s)
1393{
1394 SPEED_ROUTINE_MPN_TOOM53_FOR_TOOM32_MUL (mpn_toom53_mul);
1395}
1396double
1397speed_mpn_toom42_for_toom53_mul (struct speed_params *s)
1398{
1399 SPEED_ROUTINE_MPN_TOOM42_FOR_TOOM53_MUL (mpn_toom42_mul);
1400}
1401double
1402speed_mpn_toom53_for_toom42_mul (struct speed_params *s)
1403{
1404 SPEED_ROUTINE_MPN_TOOM53_FOR_TOOM42_MUL (mpn_toom53_mul);
1405}
1406double
1407speed_mpn_toom43_for_toom54_mul (struct speed_params *s)
1408{
1409 SPEED_ROUTINE_MPN_TOOM43_FOR_TOOM54_MUL (mpn_toom43_mul);
1410}
1411double
1412speed_mpn_toom54_for_toom43_mul (struct speed_params *s)
1413{
1414 SPEED_ROUTINE_MPN_TOOM54_FOR_TOOM43_MUL (mpn_toom54_mul);
1415}
1416
1417double
1418speed_mpn_nussbaumer_mul (struct speed_params *s)
1419{
1420 SPEED_ROUTINE_MPN_MUL_N_CALL
1421 (mpn_nussbaumer_mul (wp, s->xp, s->size, s->yp, s->size));
1422}
1423double
1424speed_mpn_nussbaumer_mul_sqr (struct speed_params *s)
1425{
1426 SPEED_ROUTINE_MPN_SQR_CALL
1427 (mpn_nussbaumer_mul (wp, s->xp, s->size, s->xp, s->size));
1428}
1429
1430#if WANT_OLD_FFT_FULL
1431double
1432speed_mpn_mul_fft_full (struct speed_params *s)
1433{
1434 SPEED_ROUTINE_MPN_MUL_N_CALL
1435 (mpn_mul_fft_full (wp, s->xp, s->size, s->yp, s->size));
1436}
1437double
1438speed_mpn_mul_fft_full_sqr (struct speed_params *s)
1439{
1440 SPEED_ROUTINE_MPN_SQR_CALL
1441 (mpn_mul_fft_full (wp, s->xp, s->size, s->xp, s->size));
1442}
1443#endif
1444
1445/* These are mod 2^N+1 multiplies and squares. If s->r is supplied it's
1446 used as k, otherwise the best k for the size is used. If s->size isn't a
1447 multiple of 2^k it's rounded up to make the effective operation size. */
1448
1449#define SPEED_ROUTINE_MPN_MUL_FFT_CALL(call, sqr) \
1450 { \
1451 mp_ptr wp; \
1452 mp_size_t pl; \
1453 int k; \
1454 unsigned i; \
1455 double t; \
1456 TMP_DECL; \
1457 \
1458 SPEED_RESTRICT_COND (s->size >= 1); \
1459 \
1460 if (s->r != 0) \
1461 k = s->r; \
1462 else \
1463 k = mpn_fft_best_k (s->size, sqr); \
1464 \
1465 TMP_MARK; \
1466 pl = mpn_fft_next_size (s->size, k); \
1467 SPEED_TMP_ALLOC_LIMBS (wp, pl+1, s->align_wp); \
1468 \
1469 speed_operand_src (s, s->xp, s->size); \
1470 if (!sqr) \
1471 speed_operand_src (s, s->yp, s->size); \
1472 speed_operand_dst (s, wp, pl+1); \
1473 speed_cache_fill (s); \
1474 \
1475 speed_starttime (); \
1476 i = s->reps; \
1477 do \
1478 call; \
1479 while (--i != 0); \
1480 t = speed_endtime (); \
1481 \
1482 TMP_FREE; \
1483 return t; \
1484 }
1485
1486double
1487speed_mpn_mul_fft (struct speed_params *s)
1488{
1489 SPEED_ROUTINE_MPN_MUL_FFT_CALL
1490 (mpn_mul_fft (wp, pl, s->xp, s->size, s->yp, s->size, k), 0);
1491}
1492
1493double
1494speed_mpn_mul_fft_sqr (struct speed_params *s)
1495{
1496 SPEED_ROUTINE_MPN_MUL_FFT_CALL
1497 (mpn_mul_fft (wp, pl, s->xp, s->size, s->xp, s->size, k), 1);
1498}
1499
1500double
1501speed_mpn_fft_mul (struct speed_params *s)
1502{
1503 SPEED_ROUTINE_MPN_MUL_N_CALL (mpn_fft_mul (wp, s->xp, s->size, s->yp, s->size));
1504}
1505
1506double
1507speed_mpn_fft_sqr (struct speed_params *s)
1508{
1509 SPEED_ROUTINE_MPN_SQR_CALL (mpn_fft_mul (wp, s->xp, s->size, s->xp, s->size));
1510}
1511
1512double
1513speed_mpn_sqrlo (struct speed_params *s)
1514{
1515 SPEED_ROUTINE_MPN_SQRLO (mpn_sqrlo);
1516}
1517double
1518speed_mpn_sqrlo_basecase (struct speed_params *s)
1519{
1520 SPEED_RESTRICT_COND (ABOVE_THRESHOLD (s->size, MIN (3, SQRLO_BASECASE_THRESHOLD))
1521 && BELOW_THRESHOLD (s->size, SQRLO_DC_THRESHOLD));
1522 SPEED_ROUTINE_MPN_SQRLO (mpn_sqrlo_basecase);
1523}
1524double
1525speed_mpn_mullo_n (struct speed_params *s)
1526{
1527 SPEED_ROUTINE_MPN_MULLO_N (mpn_mullo_n);
1528}
1529double
1530speed_mpn_mullo_basecase (struct speed_params *s)
1531{
1532 SPEED_ROUTINE_MPN_MULLO_BASECASE (mpn_mullo_basecase);
1533}
1534
1535double
1536speed_mpn_mulmid_basecase (struct speed_params *s)
1537{
1538 SPEED_ROUTINE_MPN_MULMID (mpn_mulmid_basecase);
1539}
1540
1541double
1542speed_mpn_mulmid (struct speed_params *s)
1543{
1544 SPEED_ROUTINE_MPN_MULMID (mpn_mulmid);
1545}
1546
1547double
1548speed_mpn_mulmid_n (struct speed_params *s)
1549{
1550 SPEED_ROUTINE_MPN_MULMID_N (mpn_mulmid_n);
1551}
1552
1553double
1554speed_mpn_toom42_mulmid (struct speed_params *s)
1555{
1556 SPEED_ROUTINE_MPN_TOOM42_MULMID (mpn_toom42_mulmid);
1557}
1558
1559double
1560speed_mpn_mulmod_bnm1 (struct speed_params *s)
1561{
1562 SPEED_ROUTINE_MPN_MULMOD_BNM1_CALL (mpn_mulmod_bnm1 (wp, s->size, s->xp, s->size, s->yp, s->size, tp));
1563}
1564
1565double
1566speed_mpn_bc_mulmod_bnm1 (struct speed_params *s)
1567{
1568 SPEED_ROUTINE_MPN_MULMOD_BNM1_CALL (mpn_bc_mulmod_bnm1 (wp, s->xp, s->yp, s->size, tp));
1569}
1570
1571double
1572speed_mpn_mulmod_bnm1_rounded (struct speed_params *s)
1573{
1574 SPEED_ROUTINE_MPN_MULMOD_BNM1_ROUNDED (mpn_mulmod_bnm1);
1575}
1576
1577double
1578speed_mpn_sqrmod_bnm1 (struct speed_params *s)
1579{
1580 SPEED_ROUTINE_MPN_MULMOD_BNM1_CALL (mpn_sqrmod_bnm1 (wp, s->size, s->xp, s->size, tp));
1581}
1582
1583double
1584speed_mpn_matrix22_mul (struct speed_params *s)
1585{
1586 /* Speed params only includes 2 inputs, so we have to invent the
1587 other 6. */
1588
1589 mp_ptr a;
1590 mp_ptr r;
1591 mp_ptr b;
1592 mp_ptr tp;
1593 mp_size_t itch;
1594 unsigned i;
1595 double t;
1596 TMP_DECL;
1597
1598 TMP_MARK;
1599 SPEED_TMP_ALLOC_LIMBS (a, 4 * s->size, s->align_xp);
1600 SPEED_TMP_ALLOC_LIMBS (b, 4 * s->size, s->align_yp);
1601 SPEED_TMP_ALLOC_LIMBS (r, 8 * s->size + 4, s->align_wp);
1602
1603 MPN_COPY (a, s->xp, s->size);
1604 mpn_random (a + s->size, 3 * s->size);
1605 MPN_COPY (b, s->yp, s->size);
1606 mpn_random (b + s->size, 3 * s->size);
1607
1608 itch = mpn_matrix22_mul_itch (s->size, s->size);
1609 SPEED_TMP_ALLOC_LIMBS (tp, itch, s->align_wp2);
1610
1611 speed_operand_src (s, a, 4 * s->size);
1612 speed_operand_src (s, b, 4 * s->size);
1613 speed_operand_dst (s, r, 8 * s->size + 4);
1614 speed_operand_dst (s, tp, itch);
1615 speed_cache_fill (s);
1616
1617 speed_starttime ();
1618 i = s->reps;
1619 do
1620 {
1621 mp_size_t sz = s->size;
1622 MPN_COPY (r + 0 * sz + 0, a + 0 * sz, sz);
1623 MPN_COPY (r + 2 * sz + 1, a + 1 * sz, sz);
1624 MPN_COPY (r + 4 * sz + 2, a + 2 * sz, sz);
1625 MPN_COPY (r + 6 * sz + 3, a + 3 * sz, sz);
1626 mpn_matrix22_mul (r, r + 2 * sz + 1, r + 4 * sz + 2, r + 6 * sz + 3, sz,
1627 b, b + 1 * sz, b + 2 * sz, b + 3 * sz, sz,
1628 tp);
1629 }
1630 while (--i != 0);
1631 t = speed_endtime();
1632 TMP_FREE;
1633 return t;
1634}
1635
1636double
1637speed_mpn_hgcd2 (struct speed_params *s)
1638{
1639 SPEED_ROUTINE_MPN_HGCD2 (mpn_hgcd2);
1640}
1641double
1642speed_mpn_hgcd2_1 (struct speed_params *s)
1643{
1644 SPEED_ROUTINE_MPN_HGCD2 (mpn_hgcd2_1);
1645}
1646double
1647speed_mpn_hgcd2_2 (struct speed_params *s)
1648{
1649 SPEED_ROUTINE_MPN_HGCD2 (mpn_hgcd2_2);
1650}
1651double
1652speed_mpn_hgcd2_3 (struct speed_params *s)
1653{
1654 SPEED_ROUTINE_MPN_HGCD2 (mpn_hgcd2_3);
1655}
1656double
1657speed_mpn_hgcd2_4 (struct speed_params *s)
1658{
1659 SPEED_ROUTINE_MPN_HGCD2 (mpn_hgcd2_4);
1660}
1661double
1662speed_mpn_hgcd2_5 (struct speed_params *s)
1663{
1664 SPEED_ROUTINE_MPN_HGCD2 (mpn_hgcd2_5);
1665}
1666
1667double
1668speed_mpn_hgcd (struct speed_params *s)
1669{
1670 SPEED_ROUTINE_MPN_HGCD_CALL (mpn_hgcd, mpn_hgcd_itch);
1671}
1672
1673double
1674speed_mpn_hgcd_lehmer (struct speed_params *s)
1675{
1676 SPEED_ROUTINE_MPN_HGCD_CALL (mpn_hgcd_lehmer, mpn_hgcd_lehmer_itch);
1677}
1678
1679double
1680speed_mpn_hgcd_appr (struct speed_params *s)
1681{
1682 SPEED_ROUTINE_MPN_HGCD_CALL (mpn_hgcd_appr, mpn_hgcd_appr_itch);
1683}
1684
1685double
1686speed_mpn_hgcd_appr_lehmer (struct speed_params *s)
1687{
1688 SPEED_ROUTINE_MPN_HGCD_CALL (mpn_hgcd_appr_lehmer, mpn_hgcd_appr_lehmer_itch);
1689}
1690
1691double
1692speed_mpn_hgcd_reduce (struct speed_params *s)
1693{
1694 SPEED_ROUTINE_MPN_HGCD_REDUCE_CALL (mpn_hgcd_reduce, mpn_hgcd_reduce_itch);
1695}
1696double
1697speed_mpn_hgcd_reduce_1 (struct speed_params *s)
1698{
1699 SPEED_ROUTINE_MPN_HGCD_REDUCE_CALL (mpn_hgcd_reduce_1, mpn_hgcd_reduce_1_itch);
1700}
1701double
1702speed_mpn_hgcd_reduce_2 (struct speed_params *s)
1703{
1704 SPEED_ROUTINE_MPN_HGCD_REDUCE_CALL (mpn_hgcd_reduce_2, mpn_hgcd_reduce_2_itch);
1705}
1706
1707double
1708speed_mpn_gcd (struct speed_params *s)
1709{
1710 SPEED_ROUTINE_MPN_GCD (mpn_gcd);
1711}
1712
1713double
1714speed_mpn_gcdext (struct speed_params *s)
1715{
1716 SPEED_ROUTINE_MPN_GCDEXT (mpn_gcdext);
1717}
1718#if 0
1719double
1720speed_mpn_gcdext_lehmer (struct speed_params *s)
1721{
1722 SPEED_ROUTINE_MPN_GCDEXT (__gmpn_gcdext_lehmer);
1723}
1724#endif
1725double
1726speed_mpn_gcdext_single (struct speed_params *s)
1727{
1728 SPEED_ROUTINE_MPN_GCDEXT (mpn_gcdext_single);
1729}
1730double
1731speed_mpn_gcdext_double (struct speed_params *s)
1732{
1733 SPEED_ROUTINE_MPN_GCDEXT (mpn_gcdext_double);
1734}
1735double
1736speed_mpn_gcdext_one_single (struct speed_params *s)
1737{
1738 SPEED_ROUTINE_MPN_GCDEXT_ONE (mpn_gcdext_one_single);
1739}
1740double
1741speed_mpn_gcdext_one_double (struct speed_params *s)
1742{
1743 SPEED_ROUTINE_MPN_GCDEXT_ONE (mpn_gcdext_one_double);
1744}
1745double
1746speed_mpn_gcd_1 (struct speed_params *s)
1747{
1748 SPEED_ROUTINE_MPN_GCD_1 (mpn_gcd_1);
1749}
1750double
1751speed_mpn_gcd_11 (struct speed_params *s)
1752{
1753 SPEED_ROUTINE_MPN_GCD_11 (mpn_gcd_11);
1754}
1755double
1756speed_mpn_gcd_1N (struct speed_params *s)
1757{
1758 SPEED_ROUTINE_MPN_GCD_1N (mpn_gcd_1);
1759}
1760double
1761speed_mpn_gcd_22 (struct speed_params *s)
1762{
1763 SPEED_ROUTINE_MPN_GCD_22 (mpn_gcd_22);
1764}
1765
1766double
1767speed_mpz_nextprime (struct speed_params *s)
1768{
1769 SPEED_ROUTINE_MPZ_NEXTPRIME (mpz_nextprime);
1770}
1771
1772double
1773speed_mpz_jacobi (struct speed_params *s)
1774{
1775 SPEED_ROUTINE_MPZ_JACOBI (mpz_jacobi);
1776}
1777double
1778speed_mpn_jacobi_base (struct speed_params *s)
1779{
1780 SPEED_ROUTINE_MPN_JACBASE (mpn_jacobi_base);
1781}
1782double
1783speed_mpn_jacobi_base_1 (struct speed_params *s)
1784{
1785 SPEED_ROUTINE_MPN_JACBASE (mpn_jacobi_base_1);
1786}
1787double
1788speed_mpn_jacobi_base_2 (struct speed_params *s)
1789{
1790 SPEED_ROUTINE_MPN_JACBASE (mpn_jacobi_base_2);
1791}
1792double
1793speed_mpn_jacobi_base_3 (struct speed_params *s)
1794{
1795 SPEED_ROUTINE_MPN_JACBASE (mpn_jacobi_base_3);
1796}
1797double
1798speed_mpn_jacobi_base_4 (struct speed_params *s)
1799{
1800 SPEED_ROUTINE_MPN_JACBASE (mpn_jacobi_base_4);
1801}
1802
1803
1804double
1805speed_mpn_sqrtrem (struct speed_params *s)
1806{
1807 SPEED_ROUTINE_MPN_SQRTROOT_CALL (mpn_sqrtrem (wp, wp2, s->xp, s->size));
1808}
1809
1810double
1811speed_mpn_sqrt (struct speed_params *s)
1812{
1813 SPEED_ROUTINE_MPN_SQRTROOT_CALL (mpn_sqrtrem (wp, NULL, s->xp, s->size));
1814}
1815
1816double
1817speed_mpn_rootrem (struct speed_params *s)
1818{
1819 SPEED_ROUTINE_MPN_SQRTROOT_CALL (mpn_rootrem (wp, wp2, s->xp, s->size, s->r));
1820}
1821
1822double
1823speed_mpn_root (struct speed_params *s)
1824{
1825 SPEED_ROUTINE_MPN_SQRTROOT_CALL (mpn_rootrem (wp, NULL, s->xp, s->size, s->r));
1826}
1827
1828
1829double
1830speed_mpn_perfect_power_p (struct speed_params *s)
1831{
1832 SPEED_ROUTINE_MPN_PERFECT_POWER (mpn_perfect_power_p);
1833}
1834
1835double
1836speed_mpn_perfect_square_p (struct speed_params *s)
1837{
1838 SPEED_ROUTINE_MPN_PERFECT_SQUARE (mpn_perfect_square_p);
1839}
1840
1841
1842double
1843speed_mpz_fac_ui (struct speed_params *s)
1844{
1845 SPEED_ROUTINE_MPZ_FAC_UI (mpz_fac_ui);
1846}
1847
1848double
1849speed_mpz_2fac_ui (struct speed_params *s)
1850{
1851 SPEED_ROUTINE_MPZ_UI (mpz_2fac_ui);
1852}
1853
1854double
1855speed_mpz_primorial_ui (struct speed_params *s)
1856{
1857 SPEED_ROUTINE_MPZ_UI (mpz_primorial_ui);
1858}
1859
1860
1861double
1862speed_mpn_fib2_ui (struct speed_params *s)
1863{
1864 SPEED_ROUTINE_MPN_FIB2_UI (mpn_fib2_ui);
1865}
1866double
1867speed_mpz_fib_ui (struct speed_params *s)
1868{
1869 SPEED_ROUTINE_MPZ_FIB_UI (mpz_fib_ui);
1870}
1871double
1872speed_mpz_fib2_ui (struct speed_params *s)
1873{
1874 SPEED_ROUTINE_MPZ_FIB2_UI (mpz_fib2_ui);
1875}
1876double
1877speed_mpz_lucnum_ui (struct speed_params *s)
1878{
1879 SPEED_ROUTINE_MPZ_LUCNUM_UI (mpz_lucnum_ui);
1880}
1881double
1882speed_mpz_lucnum2_ui (struct speed_params *s)
1883{
1884 SPEED_ROUTINE_MPZ_LUCNUM2_UI (mpz_lucnum2_ui);
1885}
1886
1887
1888double
1889speed_mpz_powm (struct speed_params *s)
1890{
1891 SPEED_ROUTINE_MPZ_POWM (mpz_powm);
1892}
1893double
1894speed_mpz_powm_mod (struct speed_params *s)
1895{
1896 SPEED_ROUTINE_MPZ_POWM (mpz_powm_mod);
1897}
1898double
1899speed_mpz_powm_redc (struct speed_params *s)
1900{
1901 SPEED_ROUTINE_MPZ_POWM (mpz_powm_redc);
1902}
1903double
1904speed_mpz_powm_sec (struct speed_params *s)
1905{
1906 SPEED_ROUTINE_MPZ_POWM (mpz_powm_sec);
1907}
1908double
1909speed_mpz_powm_ui (struct speed_params *s)
1910{
1911 SPEED_ROUTINE_MPZ_POWM_UI (mpz_powm_ui);
1912}
1913
1914
1915double
1916speed_binvert_limb (struct speed_params *s)
1917{
1918 SPEED_ROUTINE_MODLIMB_INVERT (binvert_limb);
1919}
1920
1921
1922double
1923speed_noop (struct speed_params *s)
1924{
1925 unsigned i;
1926
1927 speed_starttime ();
1928 i = s->reps;
1929 do
1930 noop ();
1931 while (--i != 0);
1932 return speed_endtime ();
1933}
1934
1935double
1936speed_noop_wxs (struct speed_params *s)
1937{
1938 mp_ptr wp;
1939 unsigned i;
1940 double t;
1941 TMP_DECL;
1942
1943 TMP_MARK;
1944 wp = TMP_ALLOC_LIMBS (1);
1945
1946 speed_starttime ();
1947 i = s->reps;
1948 do
1949 noop_wxs (wp, s->xp, s->size);
1950 while (--i != 0);
1951 t = speed_endtime ();
1952
1953 TMP_FREE;
1954 return t;
1955}
1956
1957double
1958speed_noop_wxys (struct speed_params *s)
1959{
1960 mp_ptr wp;
1961 unsigned i;
1962 double t;
1963 TMP_DECL;
1964
1965 TMP_MARK;
1966 wp = TMP_ALLOC_LIMBS (1);
1967
1968 speed_starttime ();
1969 i = s->reps;
1970 do
1971 noop_wxys (wp, s->xp, s->yp, s->size);
1972 while (--i != 0);
1973 t = speed_endtime ();
1974
1975 TMP_FREE;
1976 return t;
1977}
1978
1979
1980#define SPEED_ROUTINE_ALLOC_FREE(variables, calls) \
1981 { \
1982 unsigned i; \
1983 variables; \
1984 \
1985 speed_starttime (); \
1986 i = s->reps; \
1987 do \
1988 { \
1989 calls; \
1990 } \
1991 while (--i != 0); \
1992 return speed_endtime (); \
1993 }
1994
1995
1996/* Compare these to see how much malloc/free costs and then how much
1997 __gmp_default_allocate/free and mpz_init/clear add. mpz_init/clear or
1998 mpq_init/clear will be doing a 1 limb allocate, so use that as the size
1999 when including them in comparisons. */
2000
2001double
2002speed_malloc_free (struct speed_params *s)
2003{
2004 size_t bytes = s->size * GMP_LIMB_BYTES;
2005 SPEED_ROUTINE_ALLOC_FREE (void *p,
2006 p = malloc (bytes);
2007 free (p));
2008}
2009
2010double
2011speed_malloc_realloc_free (struct speed_params *s)
2012{
2013 size_t bytes = s->size * GMP_LIMB_BYTES;
2014 SPEED_ROUTINE_ALLOC_FREE (void *p,
2015 p = malloc (GMP_LIMB_BYTES);
2016 p = realloc (p, bytes);
2017 free (p));
2018}
2019
2020double
2021speed_gmp_allocate_free (struct speed_params *s)
2022{
2023 size_t bytes = s->size * GMP_LIMB_BYTES;
2024 SPEED_ROUTINE_ALLOC_FREE (void *p,
2025 p = (*__gmp_allocate_func) (bytes);
2026 (*__gmp_free_func) (p, bytes));
2027}
2028
2029double
2030speed_gmp_allocate_reallocate_free (struct speed_params *s)
2031{
2032 size_t bytes = s->size * GMP_LIMB_BYTES;
2033 SPEED_ROUTINE_ALLOC_FREE
2034 (void *p,
2035 p = (*__gmp_allocate_func) (GMP_LIMB_BYTES);
2036 p = (*__gmp_reallocate_func) (p, bytes, GMP_LIMB_BYTES);
2037 (*__gmp_free_func) (p, bytes));
2038}
2039
2040double
2041speed_mpz_init_clear (struct speed_params *s)
2042{
2043 SPEED_ROUTINE_ALLOC_FREE (mpz_t z,
2044 mpz_init (z);
2045 mpz_clear (z));
2046}
2047
2048double
2049speed_mpz_init_realloc_clear (struct speed_params *s)
2050{
2051 SPEED_ROUTINE_ALLOC_FREE (mpz_t z,
2052 mpz_init (z);
2053 _mpz_realloc (z, s->size);
2054 mpz_clear (z));
2055}
2056
2057double
2058speed_mpq_init_clear (struct speed_params *s)
2059{
2060 SPEED_ROUTINE_ALLOC_FREE (mpq_t q,
2061 mpq_init (q);
2062 mpq_clear (q));
2063}
2064
2065double
2066speed_mpf_init_clear (struct speed_params *s)
2067{
2068 SPEED_ROUTINE_ALLOC_FREE (mpf_t f,
2069 mpf_init (f);
2070 mpf_clear (f));
2071}
2072
2073
2074/* Compare this to mpn_add_n to see how much overhead mpz_add adds. Note
2075 that repeatedly calling mpz_add with the same data gives branch prediction
2076 in it an advantage. */
2077
2078double
2079speed_mpz_add (struct speed_params *s)
2080{
2081 mpz_t w, x, y;
2082 unsigned i;
2083 double t;
2084
2085 mpz_init (w);
2086 mpz_init (x);
2087 mpz_init (y);
2088
2089 mpz_set_n (x, s->xp, s->size);
2090 mpz_set_n (y, s->yp, s->size);
2091 mpz_add (w, x, y);
2092
2093 speed_starttime ();
2094 i = s->reps;
2095 do
2096 {
2097 mpz_add (w, x, y);
2098 }
2099 while (--i != 0);
2100 t = speed_endtime ();
2101
2102 mpz_clear (w);
2103 mpz_clear (x);
2104 mpz_clear (y);
2105 return t;
2106}
2107
2108
2109/* An inverse (s->r) or (s->size)/2 modulo s->size limbs */
2110
2111double
2112speed_mpz_invert (struct speed_params *s)
2113{
2114 mpz_t a, m, r;
2115 mp_size_t k;
2116 unsigned i;
2117 double t;
2118
2119 if (s->r == 0)
2120 k = s->size/2;
2121 else if (s->r < GMP_LIMB_HIGHBIT)
2122 k = s->r;
2123 else /* s->r < 0 */
2124 k = s->size - (-s->r);
2125
2126 SPEED_RESTRICT_COND (k > 0 && k <= s->size);
2127
2128 mpz_init_set_n (m, s->yp, s->size);
2129 mpz_setbit (m, 0); /* force m to odd */
2130
2131 mpz_init_set_n (a, s->xp, k);
2132
2133 mpz_init (r);
2134 while (mpz_invert (r, a, m) == 0)
2135 mpz_add_ui (a, a, 1);
2136
2137 speed_starttime ();
2138 i = s->reps;
2139 do
2140 mpz_invert (r, a, m);
2141 while (--i != 0);
2142 t = speed_endtime ();
2143
2144 mpz_clear (r);
2145 mpz_clear (a);
2146 mpz_clear (m);
2147 return t;
2148 }
2149
2150/* If r==0, calculate binomial(size,size/2),
2151 otherwise calculate binomial(size,r). */
2152
2153double
2154speed_mpz_bin_uiui (struct speed_params *s)
2155{
2156 mpz_t w;
2157 unsigned long k;
2158 unsigned i;
2159 double t;
2160
2161 mpz_init (w);
2162 if (s->r != 0)
2163 k = s->r;
2164 else
2165 k = s->size/2;
2166
2167 speed_starttime ();
2168 i = s->reps;
2169 do
2170 {
2171 mpz_bin_uiui (w, s->size, k);
2172 }
2173 while (--i != 0);
2174 t = speed_endtime ();
2175
2176 mpz_clear (w);
2177 return t;
2178}
2179
2180/* If r==0, calculate binomial(2^size,size),
2181 otherwise calculate binomial(2^size,r). */
2182
2183double
2184speed_mpz_bin_ui (struct speed_params *s)
2185{
2186 mpz_t w, x;
2187 unsigned long k;
2188 unsigned i;
2189 double t;
2190
2191 mpz_init (w);
2192 mpz_init_set_ui (x, 0);
2193
2194 mpz_setbit (x, s->size);
2195
2196 if (s->r != 0)
2197 k = s->r;
2198 else
2199 k = s->size;
2200
2201 speed_starttime ();
2202 i = s->reps;
2203 do
2204 {
2205 mpz_bin_ui (w, x, k);
2206 }
2207 while (--i != 0);
2208 t = speed_endtime ();
2209
2210 mpz_clear (w);
2211 mpz_clear (x);
2212 return t;
2213}
2214
2215/* If r==0, calculate mfac(size,log(size)),
2216 otherwise calculate mfac(size,r). */
2217
2218double
2219speed_mpz_mfac_uiui (struct speed_params *s)
2220{
2221 mpz_t w;
2222 unsigned long k;
2223 unsigned i;
2224 double t;
2225
2226 mpz_init (w);
2227 if (s->r != 0)
2228 k = s->r;
2229 else
2230 for (k = 1; s->size >> k; ++k);
2231
2232 speed_starttime ();
2233 i = s->reps;
2234 do
2235 {
2236 mpz_mfac_uiui (w, s->size, k);
2237 }
2238 while (--i != 0);
2239 t = speed_endtime ();
2240
2241 mpz_clear (w);
2242 return t;
2243}
2244
2245/* The multiplies are successively dependent so the latency is measured, not
2246 the issue rate. There's only 10 per loop so the code doesn't get too big
2247 since umul_ppmm is several instructions on some cpus.
2248
2249 Putting the arguments as "h,l,l,h" gets slightly better code from gcc
2250 2.95.2 on x86, it puts only one mov between each mul, not two. That mov
2251 though will probably show up as a bogus extra cycle though.
2252
2253 The measuring function macros are into three parts to avoid overflowing
2254 preprocessor expansion space if umul_ppmm is big.
2255
2256 Limitations:
2257
2258 The default umul_ppmm doing h*l will be getting increasing numbers of
2259 high zero bits in the calculation. CPUs with data-dependent multipliers
2260 will want to use umul_ppmm.1 to get some randomization into the
2261 calculation. The extra xors and fetches will be a slowdown of course. */
2262
2263#define SPEED_MACRO_UMUL_PPMM_A \
2264 { \
2265 mp_limb_t h, l; \
2266 unsigned i; \
2267 double t; \
2268 \
2269 s->time_divisor = 10; \
2270 \
2271 h = s->xp[0]; \
2272 l = s->yp[0]; \
2273 \
2274 if (s->r == 1) \
2275 { \
2276 speed_starttime (); \
2277 i = s->reps; \
2278 do \
2279 {
2280
2281#define SPEED_MACRO_UMUL_PPMM_B \
2282 } \
2283 while (--i != 0); \
2284 t = speed_endtime (); \
2285 } \
2286 else \
2287 { \
2288 speed_starttime (); \
2289 i = s->reps; \
2290 do \
2291 {
2292
2293#define SPEED_MACRO_UMUL_PPMM_C \
2294 } \
2295 while (--i != 0); \
2296 t = speed_endtime (); \
2297 } \
2298 \
2299 /* stop the compiler optimizing away the whole calculation! */ \
2300 noop_1 (h); \
2301 noop_1 (l); \
2302 \
2303 return t; \
2304 }
2305
2306
2307double
2308speed_umul_ppmm (struct speed_params *s)
2309{
2310 SPEED_MACRO_UMUL_PPMM_A;
2311 {
2312 umul_ppmm (h, l, l, h); h ^= s->xp_block[0]; l ^= s->yp_block[0];
2313 umul_ppmm (h, l, l, h); h ^= s->xp_block[1]; l ^= s->yp_block[1];
2314 umul_ppmm (h, l, l, h); h ^= s->xp_block[2]; l ^= s->yp_block[2];
2315 umul_ppmm (h, l, l, h); h ^= s->xp_block[3]; l ^= s->yp_block[3];
2316 umul_ppmm (h, l, l, h); h ^= s->xp_block[4]; l ^= s->yp_block[4];
2317 umul_ppmm (h, l, l, h); h ^= s->xp_block[5]; l ^= s->yp_block[5];
2318 umul_ppmm (h, l, l, h); h ^= s->xp_block[6]; l ^= s->yp_block[6];
2319 umul_ppmm (h, l, l, h); h ^= s->xp_block[7]; l ^= s->yp_block[7];
2320 umul_ppmm (h, l, l, h); h ^= s->xp_block[8]; l ^= s->yp_block[8];
2321 umul_ppmm (h, l, l, h); h ^= s->xp_block[9]; l ^= s->yp_block[9];
2322 }
2323 SPEED_MACRO_UMUL_PPMM_B;
2324 {
2325 umul_ppmm (h, l, l, h);
2326 umul_ppmm (h, l, l, h);
2327 umul_ppmm (h, l, l, h);
2328 umul_ppmm (h, l, l, h);
2329 umul_ppmm (h, l, l, h);
2330 umul_ppmm (h, l, l, h);
2331 umul_ppmm (h, l, l, h);
2332 umul_ppmm (h, l, l, h);
2333 umul_ppmm (h, l, l, h);
2334 umul_ppmm (h, l, l, h);
2335 }
2336 SPEED_MACRO_UMUL_PPMM_C;
2337}
2338
2339
2340#if HAVE_NATIVE_mpn_umul_ppmm
2341double
2342speed_mpn_umul_ppmm (struct speed_params *s)
2343{
2344 SPEED_MACRO_UMUL_PPMM_A;
2345 {
2346 h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[0]; l ^= s->yp_block[0];
2347 h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[1]; l ^= s->yp_block[1];
2348 h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[2]; l ^= s->yp_block[2];
2349 h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[3]; l ^= s->yp_block[3];
2350 h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[4]; l ^= s->yp_block[4];
2351 h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[5]; l ^= s->yp_block[5];
2352 h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[6]; l ^= s->yp_block[6];
2353 h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[7]; l ^= s->yp_block[7];
2354 h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[8]; l ^= s->yp_block[8];
2355 h = mpn_umul_ppmm (&l, h, l); h ^= s->xp_block[9]; l ^= s->yp_block[9];
2356 }
2357 SPEED_MACRO_UMUL_PPMM_B;
2358 {
2359 h = mpn_umul_ppmm (&l, h, l);
2360 h = mpn_umul_ppmm (&l, h, l);
2361 h = mpn_umul_ppmm (&l, h, l);
2362 h = mpn_umul_ppmm (&l, h, l);
2363 h = mpn_umul_ppmm (&l, h, l);
2364 h = mpn_umul_ppmm (&l, h, l);
2365 h = mpn_umul_ppmm (&l, h, l);
2366 h = mpn_umul_ppmm (&l, h, l);
2367 h = mpn_umul_ppmm (&l, h, l);
2368 h = mpn_umul_ppmm (&l, h, l);
2369 }
2370 SPEED_MACRO_UMUL_PPMM_C;
2371}
2372#endif
2373
2374#if HAVE_NATIVE_mpn_umul_ppmm_r
2375double
2376speed_mpn_umul_ppmm_r (struct speed_params *s)
2377{
2378 SPEED_MACRO_UMUL_PPMM_A;
2379 {
2380 h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[0]; l ^= s->yp_block[0];
2381 h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[1]; l ^= s->yp_block[1];
2382 h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[2]; l ^= s->yp_block[2];
2383 h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[3]; l ^= s->yp_block[3];
2384 h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[4]; l ^= s->yp_block[4];
2385 h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[5]; l ^= s->yp_block[5];
2386 h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[6]; l ^= s->yp_block[6];
2387 h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[7]; l ^= s->yp_block[7];
2388 h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[8]; l ^= s->yp_block[8];
2389 h = mpn_umul_ppmm_r (h, l, &l); h ^= s->xp_block[9]; l ^= s->yp_block[9];
2390 }
2391 SPEED_MACRO_UMUL_PPMM_B;
2392 {
2393 h = mpn_umul_ppmm_r (h, l, &l);
2394 h = mpn_umul_ppmm_r (h, l, &l);
2395 h = mpn_umul_ppmm_r (h, l, &l);
2396 h = mpn_umul_ppmm_r (h, l, &l);
2397 h = mpn_umul_ppmm_r (h, l, &l);
2398 h = mpn_umul_ppmm_r (h, l, &l);
2399 h = mpn_umul_ppmm_r (h, l, &l);
2400 h = mpn_umul_ppmm_r (h, l, &l);
2401 h = mpn_umul_ppmm_r (h, l, &l);
2402 h = mpn_umul_ppmm_r (h, l, &l);
2403 }
2404 SPEED_MACRO_UMUL_PPMM_C;
2405}
2406#endif
2407
2408
2409/* The divisions are successively dependent so latency is measured, not
2410 issue rate. There's only 10 per loop so the code doesn't get too big,
2411 especially for udiv_qrnnd_preinv and preinv2norm, which are several
2412 instructions each.
2413
2414 Note that it's only the division which is measured here, there's no data
2415 fetching and no shifting if the divisor gets normalized.
2416
2417 In speed_udiv_qrnnd with gcc 2.95.2 on x86 the parameters "q,r,r,q,d"
2418 generate x86 div instructions with nothing in between.
2419
2420 The measuring function macros are in two parts to avoid overflowing
2421 preprocessor expansion space if udiv_qrnnd etc are big.
2422
2423 Limitations:
2424
2425 Don't blindly use this to set UDIV_TIME in gmp-mparam.h, check the code
2426 generated first.
2427
2428 CPUs with data-dependent divisions may want more attention paid to the
2429 randomness of the data used. Probably the measurement wanted is over
2430 uniformly distributed numbers, but what's here might not be giving that. */
2431
2432#define SPEED_ROUTINE_UDIV_QRNND_A(normalize) \
2433 { \
2434 double t; \
2435 unsigned i; \
2436 mp_limb_t q, r, d; \
2437 mp_limb_t dinv; \
2438 \
2439 s->time_divisor = 10; \
2440 \
2441 /* divisor from "r" parameter, or a default */ \
2442 d = s->r; \
2443 if (d == 0) \
2444 d = mp_bases[10].big_base; \
2445 \
2446 if (normalize) \
2447 { \
2448 unsigned norm; \
2449 count_leading_zeros (norm, d); \
2450 d <<= norm; \
2451 invert_limb (dinv, d); \
2452 } \
2453 \
2454 q = s->xp[0]; \
2455 r = s->yp[0] % d; \
2456 \
2457 speed_starttime (); \
2458 i = s->reps; \
2459 do \
2460 {
2461
2462#define SPEED_ROUTINE_UDIV_QRNND_B \
2463 } \
2464 while (--i != 0); \
2465 t = speed_endtime (); \
2466 \
2467 /* stop the compiler optimizing away the whole calculation! */ \
2468 noop_1 (q); \
2469 noop_1 (r); \
2470 \
2471 return t; \
2472 }
2473
2474double
2475speed_udiv_qrnnd (struct speed_params *s)
2476{
2477 SPEED_ROUTINE_UDIV_QRNND_A (UDIV_NEEDS_NORMALIZATION);
2478 {
2479 udiv_qrnnd (q, r, r, q, d);
2480 udiv_qrnnd (q, r, r, q, d);
2481 udiv_qrnnd (q, r, r, q, d);
2482 udiv_qrnnd (q, r, r, q, d);
2483 udiv_qrnnd (q, r, r, q, d);
2484 udiv_qrnnd (q, r, r, q, d);
2485 udiv_qrnnd (q, r, r, q, d);
2486 udiv_qrnnd (q, r, r, q, d);
2487 udiv_qrnnd (q, r, r, q, d);
2488 udiv_qrnnd (q, r, r, q, d);
2489 }
2490 SPEED_ROUTINE_UDIV_QRNND_B;
2491}
2492
2493double
2494speed_udiv_qrnnd_c (struct speed_params *s)
2495{
2496 SPEED_ROUTINE_UDIV_QRNND_A (1);
2497 {
2498 __udiv_qrnnd_c (q, r, r, q, d);
2499 __udiv_qrnnd_c (q, r, r, q, d);
2500 __udiv_qrnnd_c (q, r, r, q, d);
2501 __udiv_qrnnd_c (q, r, r, q, d);
2502 __udiv_qrnnd_c (q, r, r, q, d);
2503 __udiv_qrnnd_c (q, r, r, q, d);
2504 __udiv_qrnnd_c (q, r, r, q, d);
2505 __udiv_qrnnd_c (q, r, r, q, d);
2506 __udiv_qrnnd_c (q, r, r, q, d);
2507 __udiv_qrnnd_c (q, r, r, q, d);
2508 }
2509 SPEED_ROUTINE_UDIV_QRNND_B;
2510}
2511
2512#if HAVE_NATIVE_mpn_udiv_qrnnd
2513double
2514speed_mpn_udiv_qrnnd (struct speed_params *s)
2515{
2516 SPEED_ROUTINE_UDIV_QRNND_A (1);
2517 {
2518 q = mpn_udiv_qrnnd (&r, r, q, d);
2519 q = mpn_udiv_qrnnd (&r, r, q, d);
2520 q = mpn_udiv_qrnnd (&r, r, q, d);
2521 q = mpn_udiv_qrnnd (&r, r, q, d);
2522 q = mpn_udiv_qrnnd (&r, r, q, d);
2523 q = mpn_udiv_qrnnd (&r, r, q, d);
2524 q = mpn_udiv_qrnnd (&r, r, q, d);
2525 q = mpn_udiv_qrnnd (&r, r, q, d);
2526 q = mpn_udiv_qrnnd (&r, r, q, d);
2527 q = mpn_udiv_qrnnd (&r, r, q, d);
2528 }
2529 SPEED_ROUTINE_UDIV_QRNND_B;
2530}
2531#endif
2532
2533#if HAVE_NATIVE_mpn_udiv_qrnnd_r
2534double
2535speed_mpn_udiv_qrnnd_r (struct speed_params *s)
2536{
2537 SPEED_ROUTINE_UDIV_QRNND_A (1);
2538 {
2539 q = mpn_udiv_qrnnd_r (r, q, d, &r);
2540 q = mpn_udiv_qrnnd_r (r, q, d, &r);
2541 q = mpn_udiv_qrnnd_r (r, q, d, &r);
2542 q = mpn_udiv_qrnnd_r (r, q, d, &r);
2543 q = mpn_udiv_qrnnd_r (r, q, d, &r);
2544 q = mpn_udiv_qrnnd_r (r, q, d, &r);
2545 q = mpn_udiv_qrnnd_r (r, q, d, &r);
2546 q = mpn_udiv_qrnnd_r (r, q, d, &r);
2547 q = mpn_udiv_qrnnd_r (r, q, d, &r);
2548 q = mpn_udiv_qrnnd_r (r, q, d, &r);
2549 }
2550 SPEED_ROUTINE_UDIV_QRNND_B;
2551}
2552#endif
2553
2554
2555double
2556speed_invert_limb (struct speed_params *s)
2557{
2558 SPEED_ROUTINE_INVERT_LIMB_CALL (invert_limb (dinv, d));
2559}
2560
2561
2562/* xp[0] might not be particularly random, but should give an indication how
2563 "/" runs. Same for speed_operator_mod below. */
2564double
2565speed_operator_div (struct speed_params *s)
2566{
2567 double t;
2568 unsigned i;
2569 mp_limb_t x, q, d;
2570
2571 s->time_divisor = 10;
2572
2573 /* divisor from "r" parameter, or a default */
2574 d = s->r;
2575 if (d == 0)
2576 d = mp_bases[10].big_base;
2577
2578 x = s->xp[0];
2579 q = 0;
2580
2581 speed_starttime ();
2582 i = s->reps;
2583 do
2584 {
2585 q ^= x; q /= d;
2586 q ^= x; q /= d;
2587 q ^= x; q /= d;
2588 q ^= x; q /= d;
2589 q ^= x; q /= d;
2590 q ^= x; q /= d;
2591 q ^= x; q /= d;
2592 q ^= x; q /= d;
2593 q ^= x; q /= d;
2594 q ^= x; q /= d;
2595 }
2596 while (--i != 0);
2597 t = speed_endtime ();
2598
2599 /* stop the compiler optimizing away the whole calculation! */
2600 noop_1 (q);
2601
2602 return t;
2603}
2604
2605double
2606speed_operator_mod (struct speed_params *s)
2607{
2608 double t;
2609 unsigned i;
2610 mp_limb_t x, r, d;
2611
2612 s->time_divisor = 10;
2613
2614 /* divisor from "r" parameter, or a default */
2615 d = s->r;
2616 if (d == 0)
2617 d = mp_bases[10].big_base;
2618
2619 x = s->xp[0];
2620 r = 0;
2621
2622 speed_starttime ();
2623 i = s->reps;
2624 do
2625 {
2626 r ^= x; r %= d;
2627 r ^= x; r %= d;
2628 r ^= x; r %= d;
2629 r ^= x; r %= d;
2630 r ^= x; r %= d;
2631 r ^= x; r %= d;
2632 r ^= x; r %= d;
2633 r ^= x; r %= d;
2634 r ^= x; r %= d;
2635 r ^= x; r %= d;
2636 }
2637 while (--i != 0);
2638 t = speed_endtime ();
2639
2640 /* stop the compiler optimizing away the whole calculation! */
2641 noop_1 (r);
2642
2643 return t;
2644}
2645
2646
2647/* r==0 measures on data with the values uniformly distributed. This will
2648 be typical for count_trailing_zeros in a GCD etc.
2649
2650 r==1 measures on data with the resultant count uniformly distributed
2651 between 0 and GMP_LIMB_BITS-1. This is probably sensible for
2652 count_leading_zeros on the high limbs of divisors. */
2653
2654int
2655speed_routine_count_zeros_setup (struct speed_params *s,
2656 mp_ptr xp, int leading, int zero)
2657{
2658 int i, c;
2659 mp_limb_t n;
2660
2661 if (s->r == 0)
2662 {
2663 /* Make uniformly distributed data. If zero isn't allowed then change
2664 it to 1 for leading, or 0x800..00 for trailing. */
2665 MPN_COPY (xp, s->xp_block, SPEED_BLOCK_SIZE);
2666 if (! zero)
2667 for (i = 0; i < SPEED_BLOCK_SIZE; i++)
2668 if (xp[i] == 0)
2669 xp[i] = leading ? 1 : GMP_LIMB_HIGHBIT;
2670 }
2671 else if (s->r == 1)
2672 {
2673 /* Make counts uniformly distributed. A randomly chosen bit is set, and
2674 for leading the rest above it are cleared, or for trailing then the
2675 rest below. */
2676 for (i = 0; i < SPEED_BLOCK_SIZE; i++)
2677 {
2678 mp_limb_t set = CNST_LIMB(1) << (s->yp_block[i] % GMP_LIMB_BITS);
2679 mp_limb_t keep_below = set-1;
2680 mp_limb_t keep_above = MP_LIMB_T_MAX ^ keep_below;
2681 mp_limb_t keep = (leading ? keep_below : keep_above);
2682 xp[i] = (s->xp_block[i] & keep) | set;
2683 }
2684 }
2685 else
2686 {
2687 return 0;
2688 }
2689
2690 /* Account for the effect of n^=c. */
2691 c = 0;
2692 for (i = 0; i < SPEED_BLOCK_SIZE; i++)
2693 {
2694 n = xp[i];
2695 xp[i] ^= c;
2696
2697 if (leading)
2698 count_leading_zeros (c, n);
2699 else
2700 count_trailing_zeros (c, n);
2701 }
2702
2703 return 1;
2704}
2705
2706double
2707speed_count_leading_zeros (struct speed_params *s)
2708{
2709#ifdef COUNT_LEADING_ZEROS_0
2710#define COUNT_LEADING_ZEROS_0_ALLOWED 1
2711#else
2712#define COUNT_LEADING_ZEROS_0_ALLOWED 0
2713#endif
2714
2715 SPEED_ROUTINE_COUNT_ZEROS_A (1, COUNT_LEADING_ZEROS_0_ALLOWED);
2716 count_leading_zeros (c, n);
2717 SPEED_ROUTINE_COUNT_ZEROS_B ();
2718}
2719double
2720speed_count_trailing_zeros (struct speed_params *s)
2721{
2722 SPEED_ROUTINE_COUNT_ZEROS_A (0, 0);
2723 count_trailing_zeros (c, n);
2724 SPEED_ROUTINE_COUNT_ZEROS_B ();
2725}
2726
2727
2728double
2729speed_mpn_get_str (struct speed_params *s)
2730{
2731 SPEED_ROUTINE_MPN_GET_STR (mpn_get_str);
2732}
2733
2734double
2735speed_mpn_set_str (struct speed_params *s)
2736{
2737 SPEED_ROUTINE_MPN_SET_STR_CALL (mpn_set_str (wp, xp, s->size, base));
2738}
2739double
2740speed_mpn_bc_set_str (struct speed_params *s)
2741{
2742 SPEED_ROUTINE_MPN_SET_STR_CALL (mpn_bc_set_str (wp, xp, s->size, base));
2743}
2744
2745double
2746speed_MPN_ZERO (struct speed_params *s)
2747{
2748 SPEED_ROUTINE_MPN_ZERO_CALL (MPN_ZERO (wp, s->size));
2749}
2750
2751
2752int
2753speed_randinit (struct speed_params *s, gmp_randstate_ptr rstate)
2754{
2755 if (s->r == 0)
2756 gmp_randinit_default (rstate);
2757 else if (s->r == 1)
2758 gmp_randinit_mt (rstate);
2759 else
2760 {
2761 return gmp_randinit_lc_2exp_size (rstate, s->r);
2762 }
2763 return 1;
2764}
2765
2766double
2767speed_gmp_randseed (struct speed_params *s)
2768{
2769 gmp_randstate_t rstate;
2770 unsigned i;
2771 double t;
2772 mpz_t x;
2773
2774 SPEED_RESTRICT_COND (s->size >= 1);
2775 SPEED_RESTRICT_COND (speed_randinit (s, rstate));
2776
2777 /* s->size bits of seed */
2778 mpz_init_set_n (x, s->xp, s->size);
2779 mpz_fdiv_r_2exp (x, x, (unsigned long) s->size);
2780
2781 /* cache priming */
2782 gmp_randseed (rstate, x);
2783
2784 speed_starttime ();
2785 i = s->reps;
2786 do
2787 gmp_randseed (rstate, x);
2788 while (--i != 0);
2789 t = speed_endtime ();
2790
2791 gmp_randclear (rstate);
2792 mpz_clear (x);
2793 return t;
2794}
2795
2796double
2797speed_gmp_randseed_ui (struct speed_params *s)
2798{
2799 gmp_randstate_t rstate;
2800 unsigned i, j;
2801 double t;
2802
2803 SPEED_RESTRICT_COND (speed_randinit (s, rstate));
2804
2805 /* cache priming */
2806 gmp_randseed_ui (rstate, 123L);
2807
2808 speed_starttime ();
2809 i = s->reps;
2810 j = 0;
2811 do
2812 {
2813 gmp_randseed_ui (rstate, (unsigned long) s->xp_block[j]);
2814 j++;
2815 if (j >= SPEED_BLOCK_SIZE)
2816 j = 0;
2817 }
2818 while (--i != 0);
2819 t = speed_endtime ();
2820
2821 gmp_randclear (rstate);
2822 return t;
2823}
2824
2825double
2826speed_mpz_urandomb (struct speed_params *s)
2827{
2828 gmp_randstate_t rstate;
2829 mpz_t z;
2830 unsigned i;
2831 double t;
2832
2833 SPEED_RESTRICT_COND (s->size >= 0);
2834 SPEED_RESTRICT_COND (speed_randinit (s, rstate));
2835
2836 mpz_init (z);
2837
2838 /* cache priming */
2839 mpz_urandomb (z, rstate, (unsigned long) s->size);
2840 mpz_urandomb (z, rstate, (unsigned long) s->size);
2841
2842 speed_starttime ();
2843 i = s->reps;
2844 do
2845 mpz_urandomb (z, rstate, (unsigned long) s->size);
2846 while (--i != 0);
2847 t = speed_endtime ();
2848
2849 mpz_clear (z);
2850 gmp_randclear (rstate);
2851 return t;
2852}