Austin Schuh | dace2a6 | 2020-08-18 10:56:48 -0700 | [diff] [blame^] | 1 | /* mpz_oddfac_1(RESULT, N) -- Set RESULT to the odd factor of N!. |
| 2 | |
| 3 | Contributed to the GNU project by Marco Bodrato. |
| 4 | |
| 5 | THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE. |
| 6 | IT IS ONLY SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES. |
| 7 | IN FACT, IT IS ALMOST GUARANTEED THAT IT WILL CHANGE OR |
| 8 | DISAPPEAR IN A FUTURE GNU MP RELEASE. |
| 9 | |
| 10 | Copyright 2010-2012, 2015-2017 Free Software Foundation, Inc. |
| 11 | |
| 12 | This file is part of the GNU MP Library. |
| 13 | |
| 14 | The GNU MP Library is free software; you can redistribute it and/or modify |
| 15 | it under the terms of either: |
| 16 | |
| 17 | * the GNU Lesser General Public License as published by the Free |
| 18 | Software Foundation; either version 3 of the License, or (at your |
| 19 | option) any later version. |
| 20 | |
| 21 | or |
| 22 | |
| 23 | * the GNU General Public License as published by the Free Software |
| 24 | Foundation; either version 2 of the License, or (at your option) any |
| 25 | later version. |
| 26 | |
| 27 | or both in parallel, as here. |
| 28 | |
| 29 | The GNU MP Library is distributed in the hope that it will be useful, but |
| 30 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| 31 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 32 | for more details. |
| 33 | |
| 34 | You should have received copies of the GNU General Public License and the |
| 35 | GNU Lesser General Public License along with the GNU MP Library. If not, |
| 36 | see https://www.gnu.org/licenses/. */ |
| 37 | |
| 38 | #include "gmp-impl.h" |
| 39 | #include "longlong.h" |
| 40 | |
| 41 | /* TODO: |
| 42 | - split this file in smaller parts with functions that can be recycled for different computations. |
| 43 | */ |
| 44 | |
| 45 | /**************************************************************/ |
| 46 | /* Section macros: common macros, for mswing/fac/bin (&sieve) */ |
| 47 | /**************************************************************/ |
| 48 | |
| 49 | #define FACTOR_LIST_APPEND(PR, MAX_PR, VEC, I) \ |
| 50 | if ((PR) > (MAX_PR)) { \ |
| 51 | (VEC)[(I)++] = (PR); \ |
| 52 | (PR) = 1; \ |
| 53 | } |
| 54 | |
| 55 | #define FACTOR_LIST_STORE(P, PR, MAX_PR, VEC, I) \ |
| 56 | do { \ |
| 57 | if ((PR) > (MAX_PR)) { \ |
| 58 | (VEC)[(I)++] = (PR); \ |
| 59 | (PR) = (P); \ |
| 60 | } else \ |
| 61 | (PR) *= (P); \ |
| 62 | } while (0) |
| 63 | |
| 64 | #define LOOP_ON_SIEVE_CONTINUE(prime,end,sieve) \ |
| 65 | __max_i = (end); \ |
| 66 | \ |
| 67 | do { \ |
| 68 | ++__i; \ |
| 69 | if (((sieve)[__index] & __mask) == 0) \ |
| 70 | { \ |
| 71 | mp_limb_t prime; \ |
| 72 | prime = id_to_n(__i) |
| 73 | |
| 74 | #define LOOP_ON_SIEVE_BEGIN(prime,start,end,off,sieve) \ |
| 75 | do { \ |
| 76 | mp_limb_t __mask, __index, __max_i, __i; \ |
| 77 | \ |
| 78 | __i = (start)-(off); \ |
| 79 | __index = __i / GMP_LIMB_BITS; \ |
| 80 | __mask = CNST_LIMB(1) << (__i % GMP_LIMB_BITS); \ |
| 81 | __i += (off); \ |
| 82 | \ |
| 83 | LOOP_ON_SIEVE_CONTINUE(prime,end,sieve) |
| 84 | |
| 85 | #define LOOP_ON_SIEVE_STOP \ |
| 86 | } \ |
| 87 | __mask = __mask << 1 | __mask >> (GMP_LIMB_BITS-1); \ |
| 88 | __index += __mask & 1; \ |
| 89 | } while (__i <= __max_i) |
| 90 | |
| 91 | #define LOOP_ON_SIEVE_END \ |
| 92 | LOOP_ON_SIEVE_STOP; \ |
| 93 | } while (0) |
| 94 | |
| 95 | /*********************************************************/ |
| 96 | /* Section sieve: sieving functions and tools for primes */ |
| 97 | /*********************************************************/ |
| 98 | |
| 99 | #if WANT_ASSERT |
| 100 | static mp_limb_t |
| 101 | bit_to_n (mp_limb_t bit) { return (bit*3+4)|1; } |
| 102 | #endif |
| 103 | |
| 104 | /* id_to_n (x) = bit_to_n (x-1) = (id*3+1)|1*/ |
| 105 | static mp_limb_t |
| 106 | id_to_n (mp_limb_t id) { return id*3+1+(id&1); } |
| 107 | |
| 108 | /* n_to_bit (n) = ((n-1)&(-CNST_LIMB(2)))/3U-1 */ |
| 109 | static mp_limb_t |
| 110 | n_to_bit (mp_limb_t n) { return ((n-5)|1)/3U; } |
| 111 | |
| 112 | #if WANT_ASSERT |
| 113 | static mp_size_t |
| 114 | primesieve_size (mp_limb_t n) { return n_to_bit(n) / GMP_LIMB_BITS + 1; } |
| 115 | #endif |
| 116 | |
| 117 | /*********************************************************/ |
| 118 | /* Section mswing: 2-multiswing factorial */ |
| 119 | /*********************************************************/ |
| 120 | |
| 121 | /* Returns an approximation of the sqare root of x. |
| 122 | * It gives: |
| 123 | * limb_apprsqrt (x) ^ 2 <= x < (limb_apprsqrt (x)+1) ^ 2 |
| 124 | * or |
| 125 | * x <= limb_apprsqrt (x) ^ 2 <= x * 9/8 |
| 126 | */ |
| 127 | static mp_limb_t |
| 128 | limb_apprsqrt (mp_limb_t x) |
| 129 | { |
| 130 | int s; |
| 131 | |
| 132 | ASSERT (x > 2); |
| 133 | count_leading_zeros (s, x); |
| 134 | s = (GMP_LIMB_BITS - s) >> 1; |
| 135 | return ((CNST_LIMB(1) << s) + (x >> s)) >> 1; |
| 136 | } |
| 137 | |
| 138 | #if 0 |
| 139 | /* A count-then-exponentiate variant for SWING_A_PRIME */ |
| 140 | #define SWING_A_PRIME(P, N, PR, MAX_PR, VEC, I) \ |
| 141 | do { \ |
| 142 | mp_limb_t __q, __prime; \ |
| 143 | int __exp; \ |
| 144 | __prime = (P); \ |
| 145 | __exp = 0; \ |
| 146 | __q = (N); \ |
| 147 | do { \ |
| 148 | __q /= __prime; \ |
| 149 | __exp += __q & 1; \ |
| 150 | } while (__q >= __prime); \ |
| 151 | if (__exp) { /* Store $prime^{exp}$ */ \ |
| 152 | for (__q = __prime; --__exp; __q *= __prime); \ |
| 153 | FACTOR_LIST_STORE(__q, PR, MAX_PR, VEC, I); \ |
| 154 | }; \ |
| 155 | } while (0) |
| 156 | #else |
| 157 | #define SWING_A_PRIME(P, N, PR, MAX_PR, VEC, I) \ |
| 158 | do { \ |
| 159 | mp_limb_t __q, __prime; \ |
| 160 | __prime = (P); \ |
| 161 | FACTOR_LIST_APPEND(PR, MAX_PR, VEC, I); \ |
| 162 | __q = (N); \ |
| 163 | do { \ |
| 164 | __q /= __prime; \ |
| 165 | if ((__q & 1) != 0) (PR) *= __prime; \ |
| 166 | } while (__q >= __prime); \ |
| 167 | } while (0) |
| 168 | #endif |
| 169 | |
| 170 | #define SH_SWING_A_PRIME(P, N, PR, MAX_PR, VEC, I) \ |
| 171 | do { \ |
| 172 | mp_limb_t __prime; \ |
| 173 | __prime = (P); \ |
| 174 | if ((((N) / __prime) & 1) != 0) \ |
| 175 | FACTOR_LIST_STORE(__prime, PR, MAX_PR, VEC, I); \ |
| 176 | } while (0) |
| 177 | |
| 178 | /* mpz_2multiswing_1 computes the odd part of the 2-multiswing |
| 179 | factorial of the parameter n. The result x is an odd positive |
| 180 | integer so that multiswing(n,2) = x 2^a. |
| 181 | |
| 182 | Uses the algorithm described by Peter Luschny in "Divide, Swing and |
| 183 | Conquer the Factorial!". |
| 184 | |
| 185 | The pointer sieve points to primesieve_size(n) limbs containing a |
| 186 | bit-array where primes are marked as 0. |
| 187 | Enough (FIXME: explain :-) limbs must be pointed by factors. |
| 188 | */ |
| 189 | |
| 190 | static void |
| 191 | mpz_2multiswing_1 (mpz_ptr x, mp_limb_t n, mp_ptr sieve, mp_ptr factors) |
| 192 | { |
| 193 | mp_limb_t prod, max_prod; |
| 194 | mp_size_t j; |
| 195 | |
| 196 | ASSERT (n > 25); |
| 197 | |
| 198 | j = 0; |
| 199 | prod = -(n & 1); |
| 200 | n &= ~ CNST_LIMB(1); /* n-1, if n is odd */ |
| 201 | |
| 202 | prod = (prod & n) + 1; /* the original n, if it was odd, 1 otherwise */ |
| 203 | max_prod = GMP_NUMB_MAX / (n-1); |
| 204 | |
| 205 | /* Handle prime = 3 separately. */ |
| 206 | SWING_A_PRIME (3, n, prod, max_prod, factors, j); |
| 207 | |
| 208 | /* Swing primes from 5 to n/3 */ |
| 209 | { |
| 210 | mp_limb_t s, l_max_prod; |
| 211 | |
| 212 | s = limb_apprsqrt(n); |
| 213 | ASSERT (s >= 5); |
| 214 | s = n_to_bit (s); |
| 215 | ASSERT (bit_to_n (s+1) * bit_to_n (s+1) > n); |
| 216 | ASSERT (s < n_to_bit (n / 3)); |
| 217 | LOOP_ON_SIEVE_BEGIN (prime, n_to_bit (5), s, 0,sieve); |
| 218 | SWING_A_PRIME (prime, n, prod, max_prod, factors, j); |
| 219 | LOOP_ON_SIEVE_STOP; |
| 220 | |
| 221 | ASSERT (max_prod <= GMP_NUMB_MAX / 3); |
| 222 | |
| 223 | l_max_prod = max_prod * 3; |
| 224 | |
| 225 | LOOP_ON_SIEVE_CONTINUE (prime, n_to_bit (n/3), sieve); |
| 226 | SH_SWING_A_PRIME (prime, n, prod, l_max_prod, factors, j); |
| 227 | LOOP_ON_SIEVE_END; |
| 228 | } |
| 229 | |
| 230 | /* Store primes from (n+1)/2 to n */ |
| 231 | LOOP_ON_SIEVE_BEGIN (prime, n_to_bit (n >> 1) + 1, n_to_bit (n), 0,sieve); |
| 232 | FACTOR_LIST_STORE (prime, prod, max_prod, factors, j); |
| 233 | LOOP_ON_SIEVE_END; |
| 234 | |
| 235 | if (LIKELY (j != 0)) |
| 236 | { |
| 237 | factors[j++] = prod; |
| 238 | mpz_prodlimbs (x, factors, j); |
| 239 | } |
| 240 | else |
| 241 | { |
| 242 | ASSERT (ALLOC (x) > 0); |
| 243 | PTR (x)[0] = prod; |
| 244 | SIZ (x) = 1; |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | #undef SWING_A_PRIME |
| 249 | #undef SH_SWING_A_PRIME |
| 250 | #undef LOOP_ON_SIEVE_END |
| 251 | #undef LOOP_ON_SIEVE_STOP |
| 252 | #undef LOOP_ON_SIEVE_BEGIN |
| 253 | #undef LOOP_ON_SIEVE_CONTINUE |
| 254 | #undef FACTOR_LIST_APPEND |
| 255 | |
| 256 | /*********************************************************/ |
| 257 | /* Section oddfac: odd factorial, needed also by binomial*/ |
| 258 | /*********************************************************/ |
| 259 | |
| 260 | #if TUNE_PROGRAM_BUILD |
| 261 | #define FACTORS_PER_LIMB (GMP_NUMB_BITS / (LOG2C(FAC_DSC_THRESHOLD_LIMIT-1)+1)) |
| 262 | #else |
| 263 | #define FACTORS_PER_LIMB (GMP_NUMB_BITS / (LOG2C(FAC_DSC_THRESHOLD-1)+1)) |
| 264 | #endif |
| 265 | |
| 266 | /* mpz_oddfac_1 computes the odd part of the factorial of the |
| 267 | parameter n. I.e. n! = x 2^a, where x is the returned value: an |
| 268 | odd positive integer. |
| 269 | |
| 270 | If flag != 0 a square is skipped in the DSC part, e.g. |
| 271 | if n is odd, n > FAC_DSC_THRESHOLD and flag = 1, x is set to n!!. |
| 272 | |
| 273 | If n is too small, flag is ignored, and an ASSERT can be triggered. |
| 274 | |
| 275 | TODO: FAC_DSC_THRESHOLD is used here with two different roles: |
| 276 | - to decide when prime factorisation is needed, |
| 277 | - to stop the recursion, once sieving is done. |
| 278 | Maybe two thresholds can do a better job. |
| 279 | */ |
| 280 | void |
| 281 | mpz_oddfac_1 (mpz_ptr x, mp_limb_t n, unsigned flag) |
| 282 | { |
| 283 | ASSERT (n <= GMP_NUMB_MAX); |
| 284 | ASSERT (flag == 0 || (flag == 1 && n > ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1 && ABOVE_THRESHOLD (n, FAC_DSC_THRESHOLD))); |
| 285 | |
| 286 | if (n <= ODD_FACTORIAL_TABLE_LIMIT) |
| 287 | { |
| 288 | MPZ_NEWALLOC (x, 1)[0] = __gmp_oddfac_table[n]; |
| 289 | SIZ (x) = 1; |
| 290 | } |
| 291 | else if (n <= ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1) |
| 292 | { |
| 293 | mp_ptr px; |
| 294 | |
| 295 | px = MPZ_NEWALLOC (x, 2); |
| 296 | umul_ppmm (px[1], px[0], __gmp_odd2fac_table[(n - 1) >> 1], __gmp_oddfac_table[n >> 1]); |
| 297 | SIZ (x) = 2; |
| 298 | } |
| 299 | else |
| 300 | { |
| 301 | unsigned s; |
| 302 | mp_ptr factors; |
| 303 | |
| 304 | s = 0; |
| 305 | { |
| 306 | mp_limb_t tn; |
| 307 | mp_limb_t prod, max_prod, i; |
| 308 | mp_size_t j; |
| 309 | TMP_SDECL; |
| 310 | |
| 311 | #if TUNE_PROGRAM_BUILD |
| 312 | ASSERT (FAC_DSC_THRESHOLD_LIMIT >= FAC_DSC_THRESHOLD); |
| 313 | ASSERT (FAC_DSC_THRESHOLD >= 2 * (ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 2)); |
| 314 | #endif |
| 315 | |
| 316 | /* Compute the number of recursive steps for the DSC algorithm. */ |
| 317 | for (tn = n; ABOVE_THRESHOLD (tn, FAC_DSC_THRESHOLD); s++) |
| 318 | tn >>= 1; |
| 319 | |
| 320 | j = 0; |
| 321 | |
| 322 | TMP_SMARK; |
| 323 | factors = TMP_SALLOC_LIMBS (1 + tn / FACTORS_PER_LIMB); |
| 324 | ASSERT (tn >= FACTORS_PER_LIMB); |
| 325 | |
| 326 | prod = 1; |
| 327 | #if TUNE_PROGRAM_BUILD |
| 328 | max_prod = GMP_NUMB_MAX / FAC_DSC_THRESHOLD_LIMIT; |
| 329 | #else |
| 330 | max_prod = GMP_NUMB_MAX / FAC_DSC_THRESHOLD; |
| 331 | #endif |
| 332 | |
| 333 | ASSERT (tn > ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1); |
| 334 | do { |
| 335 | i = ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 2; |
| 336 | factors[j++] = ODD_DOUBLEFACTORIAL_TABLE_MAX; |
| 337 | do { |
| 338 | FACTOR_LIST_STORE (i, prod, max_prod, factors, j); |
| 339 | i += 2; |
| 340 | } while (i <= tn); |
| 341 | max_prod <<= 1; |
| 342 | tn >>= 1; |
| 343 | } while (tn > ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1); |
| 344 | |
| 345 | factors[j++] = prod; |
| 346 | factors[j++] = __gmp_odd2fac_table[(tn - 1) >> 1]; |
| 347 | factors[j++] = __gmp_oddfac_table[tn >> 1]; |
| 348 | mpz_prodlimbs (x, factors, j); |
| 349 | |
| 350 | TMP_SFREE; |
| 351 | } |
| 352 | |
| 353 | if (s != 0) |
| 354 | /* Use the algorithm described by Peter Luschny in "Divide, |
| 355 | Swing and Conquer the Factorial!". |
| 356 | |
| 357 | Improvement: there are two temporary buffers, factors and |
| 358 | square, that are never used together; with a good estimate |
| 359 | of the maximal needed size, they could share a single |
| 360 | allocation. |
| 361 | */ |
| 362 | { |
| 363 | mpz_t mswing; |
| 364 | mp_ptr sieve; |
| 365 | mp_size_t size; |
| 366 | TMP_DECL; |
| 367 | |
| 368 | TMP_MARK; |
| 369 | |
| 370 | flag--; |
| 371 | size = n / GMP_NUMB_BITS + 4; |
| 372 | ASSERT (primesieve_size (n - 1) <= size - (size / 2 + 1)); |
| 373 | /* 2-multiswing(n) < 2^(n-1)*sqrt(n/pi) < 2^(n+GMP_NUMB_BITS); |
| 374 | one more can be overwritten by mul, another for the sieve */ |
| 375 | MPZ_TMP_INIT (mswing, size); |
| 376 | /* Initialize size, so that ASSERT can check it correctly. */ |
| 377 | ASSERT_CODE (SIZ (mswing) = 0); |
| 378 | |
| 379 | /* Put the sieve on the second half, it will be overwritten by the last mswing. */ |
| 380 | sieve = PTR (mswing) + size / 2 + 1; |
| 381 | |
| 382 | size = (gmp_primesieve (sieve, n - 1) + 1) / log_n_max (n) + 1; |
| 383 | |
| 384 | factors = TMP_ALLOC_LIMBS (size); |
| 385 | do { |
| 386 | mp_ptr square, px; |
| 387 | mp_size_t nx, ns; |
| 388 | mp_limb_t cy; |
| 389 | TMP_DECL; |
| 390 | |
| 391 | s--; |
| 392 | ASSERT (ABSIZ (mswing) < ALLOC (mswing) / 2); /* Check: sieve has not been overwritten */ |
| 393 | mpz_2multiswing_1 (mswing, n >> s, sieve, factors); |
| 394 | |
| 395 | TMP_MARK; |
| 396 | nx = SIZ (x); |
| 397 | if (s == flag) { |
| 398 | size = nx; |
| 399 | square = TMP_ALLOC_LIMBS (size); |
| 400 | MPN_COPY (square, PTR (x), nx); |
| 401 | } else { |
| 402 | size = nx << 1; |
| 403 | square = TMP_ALLOC_LIMBS (size); |
| 404 | mpn_sqr (square, PTR (x), nx); |
| 405 | size -= (square[size - 1] == 0); |
| 406 | } |
| 407 | ns = SIZ (mswing); |
| 408 | nx = size + ns; |
| 409 | px = MPZ_NEWALLOC (x, nx); |
| 410 | ASSERT (ns <= size); |
| 411 | cy = mpn_mul (px, square, size, PTR(mswing), ns); /* n!= n$ * floor(n/2)!^2 */ |
| 412 | |
| 413 | SIZ(x) = nx - (cy == 0); |
| 414 | TMP_FREE; |
| 415 | } while (s != 0); |
| 416 | TMP_FREE; |
| 417 | } |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | #undef FACTORS_PER_LIMB |
| 422 | #undef FACTOR_LIST_STORE |